organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-[(3-Bromo-4-hy­dr­oxy-5-meth­­oxy­phen­yl)methyl­­idene]bis­­(3-hy­dr­oxy-5,5-di­methyl­cyclo­hex-2-en-1-one)

aDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India
*Correspondence e-mail: saisukanyashri@gmail.com

(Received 25 August 2012; accepted 3 September 2012; online 8 September 2012)

In the title compound, C24H29BrO6, the dihedral angle between the cyclo­hexenone mean planes is 57.63 (2)° while the dihedral angles between the benzene ring and the cyclo­hexenone mean planes are 58.42 (2) and 69.08 (3)°. The two cyclo­hexenone rings both show an envelope conformation, with the C atom bearing two methyl groups as the flap atom in each ring. Two intra­molecular O—H⋯O hydrogen bonds occur. In the crystal, molecules are linked via pairs of O—H⋯O hydrogen bonds, forming inversion dimers.

Related literature

For the synthesis of bis­dimedones, see: Vanag & Stankevich (1960[Vanag, G. Y. & Stankevich, E. L. Z. (1960). Obshch. Khim. 30, 3287-3290.]); Hilderbrand & Weissleder (2007[Hilderbrand, S. A. & Weissleder, R. (2007). Tetrahedron Lett. 48, 4383-4385.]). For their pharmaceutical properties, see: Lambert et al. (1997[Lambert, R. W., Martin, J. A., Merrett, J. H., Parkes, K. E. B. & Thomas, G. J. (1997). PCT Int. Appl. WO 9706178.]); Poupelin et al. (1978[Poupelin, J. P., Rut, G. S., Blanpin, O. F., Narcisse, G., Ernouf, G. U. & Lacroise, R. (1978). Eur. J. Med. Chem. 13, 67-71.]); Hideo (1981[Hideo, T. (1981). Jpn Kokai Tokkyo Koho JP, 56 005480.]); Selvanayagam et al. (1996[Selvanayagam, Z. E., Gnanavendhan, S. G., Balakrishnan, K., Rao, R. B., Sivaraman, R. E. & Subramanian, K. (1996). J. Nat. Prod. 59, 664-667.]); Jonathan et al. (1988[Jonathan, R. D., Srinivas, K. R. & Glen, E. B. (1988). Eur. J. Med. Chem. 23, 111-117.]). For crystal structures of related xanthene derivatives, see: Odabaşoğlu et al. (2008[Odabaşoğlu, M., Kaya, M., Yıldırır, Y. & Büyükgüngör, O. (2008). Acta Cryst. E64, o681.]); Mehdi et al. (2011[Mehdi, S. H., Hashim, R., Ghalib, R. M., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, o1449.]); Ravikumar et al. (2012[Ravikumar, N., Gopikrishna, G. & Solomon, K. A. (2012). Acta Cryst. E68, o265.]); Sureshbabu & Sughanya (2012[Sureshbabu, N. & Sughanya, V. (2012). Acta Cryst. E68, o2638.]). For the assignment of ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C24H29BrO6

  • Mr = 493.38

  • Monoclinic, P 21 /c

  • a = 11.7479 (4) Å

  • b = 19.3706 (6) Å

  • c = 11.5958 (4) Å

  • β = 118.365 (1)°

  • V = 2321.97 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.81 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.604, Tmax = 0.765

  • 22187 measured reflections

  • 4313 independent reflections

  • 3395 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.095

  • S = 1.04

  • 4313 reflections

  • 285 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O3i 0.82 2.12 2.852 (2) 149
O3—H3⋯O2 0.82 1.97 2.615 (2) 135
O1—H1⋯O4 0.82 1.82 2.640 (2) 174
Symmetry code: (i) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Xanthene derivatives possess biological properties such as antibacterial, antiviral and anti-inflammatory activities (Jonathan et al., 1988) and are used in medicine. Several methods have been reported in the literature for the synthesis of the title compound (Vanag & Stankevich, 1960; Hilderbrand & Weissleder, 2007). In view of the importance of the title compound, we herein report its crystal structure.

In the title compound, the cyclohexenone rings C3–C8 and C10–C15 both adopt envelope conformations, with flap atoms C3 and C13, respectively. The dihedral angle between the two cyclohexenone planes Q(C4/C5/C6/C7/C8) and R(C10/C11/C12/C14/C15) is 57.63 (2)°. The dihedral angle between the phenyl ring P(C18-C23) and the cyclohexenone planes Q and R are 58.42 (2)° and 69.08 (3)°, respectively. The hydroxy and carbonyl oxygen atoms face to each other and are oriented to allow for the formation of intermolecular as well as intramolecular O—H···O hydrogen bonds (Table 1, Fig.2), typical for xanthene derivatives.

Related literature top

For the synthesis of bisdimedones, see: Vanag & Stankevich (1960); Hilderbrand & Weissleder (2007). For their pharmaceutical properties, see: Lambert et al. (1997); Poupelin et al. (1978); Hideo (1981); Selvanayagam et al. (1996); Jonathan et al. (1988). For crystal structures of related xanthene derivatives, see: Odabaşoğlu et al. (2008); Mehdi et al. (2011); Ravikumar et al. (2012); Sureshbabu & Sughanya (2012). For the assignment of ring conformations, see: Cremer & Pople (1975).

Experimental top

The title compound was prepared in single stage. A mixture of 3-bromo-4-hydroxy-5-methoxy-benzaldehyde (1.84 g, 8 mmol), 5,5-dimethyl cyclohexane-1,3-dione (2.24 g, 16 mmol) and 20 ml of ethanol was heated to 70°C for about 10 minutes. The reaction mixture was allowed to cool to room temperature and the resulting title compound 2,2'-((3-Bromo-4-hydroxy -5-methoxyphenyl)methylene)bis(3-hydroxy-5,5-dimethylcyclohex-2-en-1-one) was filtered and dried. The crystal used for data collection was obtained by crystallisation from ethanol at room temperature.(m.pt. 491 K, Yield 85% ).

Refinement top

All hydrogen atoms were identified from difference electron density peaks and subsequently treated as riding atoms with d(Csp2—H) = 0.93 Å, d(Cmethyl—H) = 0.96 Å, d(Cmethylene—H) = 0.97 Å, d(Cmethine—H) = 0.98 Å; d(O—H) = 0.82 Å; Uiso(H) = x Ueq(C,O), where x = 1.5 for methyl H and 1.2 for all other H atoms.

Structure description top

Xanthene derivatives possess biological properties such as antibacterial, antiviral and anti-inflammatory activities (Jonathan et al., 1988) and are used in medicine. Several methods have been reported in the literature for the synthesis of the title compound (Vanag & Stankevich, 1960; Hilderbrand & Weissleder, 2007). In view of the importance of the title compound, we herein report its crystal structure.

In the title compound, the cyclohexenone rings C3–C8 and C10–C15 both adopt envelope conformations, with flap atoms C3 and C13, respectively. The dihedral angle between the two cyclohexenone planes Q(C4/C5/C6/C7/C8) and R(C10/C11/C12/C14/C15) is 57.63 (2)°. The dihedral angle between the phenyl ring P(C18-C23) and the cyclohexenone planes Q and R are 58.42 (2)° and 69.08 (3)°, respectively. The hydroxy and carbonyl oxygen atoms face to each other and are oriented to allow for the formation of intermolecular as well as intramolecular O—H···O hydrogen bonds (Table 1, Fig.2), typical for xanthene derivatives.

For the synthesis of bisdimedones, see: Vanag & Stankevich (1960); Hilderbrand & Weissleder (2007). For their pharmaceutical properties, see: Lambert et al. (1997); Poupelin et al. (1978); Hideo (1981); Selvanayagam et al. (1996); Jonathan et al. (1988). For crystal structures of related xanthene derivatives, see: Odabaşoğlu et al. (2008); Mehdi et al. (2011); Ravikumar et al. (2012); Sureshbabu & Sughanya (2012). For the assignment of ring conformations, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the packing in the crystal structure, showing intermolecular as well as intramolecular O—H···O hydrogen bonds as dotted lines.
2,2'-[(3-Bromo-4-hydroxy-5-methoxyphenyl)methylidene]bis(3- hydroxy-5,5-dimethylcyclohex-2-en-1-one) top
Crystal data top
C24H29BrO6F(000) = 1024
Mr = 493.38Dx = 1.411 Mg m3
Monoclinic, P21/cMelting point: 491 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.7479 (4) ÅCell parameters from 7579 reflections
b = 19.3706 (6) Åθ = 2.1–25.4°
c = 11.5958 (4) ŵ = 1.81 mm1
β = 118.365 (1)°T = 296 K
V = 2321.97 (13) Å3Block, yellow
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4313 independent reflections
Radiation source: fine-focus sealed tube3395 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and φ scanθmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1414
Tmin = 0.604, Tmax = 0.765k = 2319
22187 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0471P)2 + 1.1375P]
where P = (Fo2 + 2Fc2)/3
4313 reflections(Δ/σ)max = 0.002
285 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C24H29BrO6V = 2321.97 (13) Å3
Mr = 493.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.7479 (4) ŵ = 1.81 mm1
b = 19.3706 (6) ÅT = 296 K
c = 11.5958 (4) Å0.30 × 0.20 × 0.20 mm
β = 118.365 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4313 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3395 reflections with I > 2σ(I)
Tmin = 0.604, Tmax = 0.765Rint = 0.031
22187 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.04Δρmax = 0.37 e Å3
4313 reflectionsΔρmin = 0.51 e Å3
285 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.2613 (3)0.26315 (17)0.2601 (3)0.0659 (9)
H1A1.22460.30110.20050.099*
H1B1.28710.22770.21940.099*
H1C1.33540.27880.33830.099*
C21.1247 (3)0.28939 (14)0.3665 (3)0.0577 (7)
H2A1.05750.27220.38350.087*
H2B1.09480.33000.31280.087*
H2C1.19940.30070.44790.087*
C31.1605 (2)0.23420 (13)0.2953 (2)0.0417 (6)
C41.0407 (2)0.21187 (13)0.1703 (2)0.0397 (5)
H4A0.99880.25250.11870.048*
H4B1.06740.18310.11900.048*
C50.9453 (2)0.17286 (11)0.1961 (2)0.0328 (5)
C60.98674 (19)0.12637 (11)0.3011 (2)0.0306 (5)
C71.1163 (2)0.12824 (11)0.3968 (2)0.0346 (5)
C81.2146 (2)0.17062 (13)0.3816 (2)0.0407 (6)
H8A1.25670.14170.34480.049*
H8B1.28010.18530.46780.049*
C90.89559 (19)0.07694 (11)0.3184 (2)0.0303 (5)
H90.95360.04320.38240.036*
C100.8246 (2)0.10924 (11)0.3857 (2)0.0310 (5)
C110.7081 (2)0.14463 (11)0.3181 (2)0.0341 (5)
C120.6363 (2)0.17136 (13)0.3861 (3)0.0460 (6)
H12A0.54430.16970.32570.055*
H12B0.65970.21930.40930.055*
C130.6627 (2)0.13151 (14)0.5090 (3)0.0468 (6)
C140.8083 (2)0.12723 (14)0.5938 (2)0.0449 (6)
H14A0.84040.17230.63210.054*
H14B0.82740.09520.66510.054*
C150.8790 (2)0.10448 (12)0.5219 (2)0.0365 (5)
C160.6047 (3)0.05929 (17)0.4753 (3)0.0685 (9)
H16A0.51510.06240.41090.103*
H16B0.61190.03750.55290.103*
H16C0.65040.03250.44100.103*
C170.6055 (3)0.16999 (19)0.5846 (3)0.0728 (9)
H17A0.64050.21580.60440.109*
H17B0.62680.14590.66470.109*
H17C0.51320.17240.53220.109*
C180.8103 (2)0.03309 (11)0.1981 (2)0.0310 (5)
C190.8378 (2)0.02503 (11)0.0962 (2)0.0353 (5)
H190.90510.04980.09540.042*
C200.7654 (2)0.01994 (12)0.0051 (2)0.0379 (5)
C210.6656 (2)0.05795 (12)0.0079 (2)0.0348 (5)
C220.6402 (2)0.05102 (12)0.0971 (2)0.0339 (5)
C230.7111 (2)0.00615 (12)0.1986 (2)0.0329 (5)
H230.69260.00210.26780.039*
C240.5090 (2)0.09167 (15)0.1878 (3)0.0520 (7)
H24A0.58330.10520.26780.078*
H24B0.43970.12360.16810.078*
H24C0.48250.04620.19780.078*
O11.16091 (15)0.09328 (9)0.50350 (16)0.0475 (4)
H11.10500.08970.52640.057*
O20.82574 (15)0.18263 (9)0.11431 (16)0.0440 (4)
O30.65632 (14)0.15767 (9)0.19490 (15)0.0423 (4)
H30.70210.14210.16540.051*
O40.99402 (16)0.08135 (9)0.59430 (16)0.0464 (4)
O50.59553 (16)0.10130 (9)0.10871 (17)0.0499 (5)
H5A0.53270.11520.10270.060*
O60.54020 (16)0.09165 (9)0.08626 (16)0.0461 (4)
Br10.80247 (3)0.027192 (18)0.14649 (3)0.06469 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0487 (16)0.076 (2)0.072 (2)0.0183 (15)0.0283 (15)0.0118 (16)
C20.0609 (17)0.0437 (16)0.0598 (18)0.0099 (14)0.0214 (14)0.0080 (13)
C30.0372 (12)0.0411 (14)0.0468 (14)0.0109 (11)0.0200 (11)0.0024 (11)
C40.0404 (13)0.0394 (14)0.0424 (13)0.0010 (11)0.0222 (11)0.0035 (10)
C50.0335 (11)0.0303 (12)0.0341 (12)0.0008 (9)0.0156 (10)0.0040 (9)
C60.0285 (10)0.0265 (12)0.0351 (12)0.0011 (9)0.0137 (9)0.0023 (9)
C70.0341 (11)0.0296 (12)0.0379 (12)0.0008 (10)0.0153 (10)0.0018 (10)
C80.0280 (11)0.0456 (15)0.0456 (14)0.0060 (10)0.0152 (10)0.0022 (11)
C90.0280 (10)0.0271 (12)0.0315 (11)0.0016 (9)0.0105 (9)0.0011 (9)
C100.0311 (11)0.0259 (12)0.0352 (12)0.0065 (9)0.0152 (9)0.0019 (9)
C110.0303 (11)0.0276 (12)0.0409 (13)0.0081 (9)0.0141 (10)0.0047 (9)
C120.0352 (12)0.0471 (15)0.0557 (16)0.0010 (11)0.0217 (12)0.0104 (12)
C130.0421 (13)0.0542 (17)0.0528 (15)0.0160 (12)0.0295 (12)0.0129 (12)
C140.0467 (14)0.0525 (16)0.0411 (14)0.0143 (12)0.0255 (12)0.0080 (11)
C150.0379 (12)0.0300 (12)0.0402 (13)0.0094 (10)0.0175 (11)0.0027 (10)
C160.0684 (19)0.072 (2)0.076 (2)0.0374 (17)0.0432 (17)0.0181 (17)
C170.0594 (18)0.099 (3)0.078 (2)0.0160 (18)0.0469 (17)0.0260 (19)
C180.0276 (10)0.0262 (12)0.0342 (11)0.0003 (9)0.0107 (9)0.0006 (9)
C190.0285 (11)0.0355 (13)0.0424 (13)0.0033 (9)0.0173 (10)0.0054 (10)
C200.0345 (12)0.0436 (14)0.0375 (12)0.0020 (10)0.0188 (10)0.0048 (10)
C210.0308 (11)0.0318 (12)0.0350 (12)0.0002 (10)0.0100 (10)0.0054 (9)
C220.0288 (11)0.0285 (12)0.0398 (12)0.0036 (9)0.0125 (10)0.0015 (10)
C230.0344 (12)0.0310 (12)0.0331 (12)0.0013 (10)0.0159 (10)0.0014 (9)
C240.0421 (14)0.0511 (17)0.0687 (18)0.0103 (12)0.0310 (13)0.0051 (13)
O10.0329 (8)0.0556 (11)0.0452 (10)0.0014 (8)0.0115 (8)0.0117 (8)
O20.0321 (8)0.0451 (10)0.0447 (9)0.0018 (7)0.0101 (7)0.0096 (8)
O30.0345 (8)0.0473 (10)0.0418 (10)0.0010 (7)0.0153 (7)0.0044 (8)
O40.0424 (9)0.0513 (11)0.0361 (9)0.0028 (8)0.0110 (8)0.0070 (8)
O50.0421 (9)0.0560 (11)0.0485 (10)0.0165 (8)0.0189 (8)0.0213 (8)
O60.0437 (9)0.0443 (10)0.0461 (10)0.0162 (8)0.0179 (8)0.0066 (8)
Br10.0637 (2)0.0859 (3)0.0594 (2)0.01735 (16)0.04152 (16)0.02778 (15)
Geometric parameters (Å, º) top
C1—C31.530 (3)C13—C141.517 (3)
C1—H1A0.9600C13—C161.523 (4)
C1—H1B0.9600C13—C171.528 (4)
C1—H1C0.9600C14—C151.497 (3)
C2—C31.526 (4)C14—H14A0.9700
C2—H2A0.9600C14—H14B0.9700
C2—H2B0.9600C15—O41.286 (3)
C2—H2C0.9600C16—H16A0.9600
C3—C81.522 (3)C16—H16B0.9600
C3—C41.527 (3)C16—H16C0.9600
C4—C51.496 (3)C17—H17A0.9600
C4—H4A0.9700C17—H17B0.9600
C4—H4B0.9700C17—H17C0.9600
C5—O21.282 (3)C18—C191.374 (3)
C5—C61.402 (3)C18—C231.393 (3)
C6—C71.394 (3)C19—C201.384 (3)
C6—C91.520 (3)C19—H190.9300
C7—O11.284 (3)C20—C211.371 (3)
C7—C81.494 (3)C20—Br11.891 (2)
C8—H8A0.9700C21—O51.355 (3)
C8—H8B0.9700C21—C221.392 (3)
C9—C101.521 (3)C22—O61.369 (3)
C9—C181.531 (3)C22—C231.379 (3)
C9—H90.9800C23—H230.9300
C10—C111.392 (3)C24—O61.390 (3)
C10—C151.397 (3)C24—H24A0.9600
C11—O31.284 (3)C24—H24B0.9600
C11—C121.494 (3)C24—H24C0.9600
C12—C131.518 (4)O1—H10.8200
C12—H12A0.9700O3—H30.8200
C12—H12B0.9700O5—H5A0.8200
C3—C1—H1A109.5H12A—C12—H12B107.7
C3—C1—H1B109.5C14—C13—C12107.49 (19)
H1A—C1—H1B109.5C14—C13—C16110.2 (2)
C3—C1—H1C109.5C12—C13—C16111.1 (2)
H1A—C1—H1C109.5C14—C13—C17108.8 (2)
H1B—C1—H1C109.5C12—C13—C17110.0 (2)
C3—C2—H2A109.5C16—C13—C17109.3 (2)
C3—C2—H2B109.5C15—C14—C13114.1 (2)
H2A—C2—H2B109.5C15—C14—H14A108.7
C3—C2—H2C109.5C13—C14—H14A108.7
H2A—C2—H2C109.5C15—C14—H14B108.7
H2B—C2—H2C109.5C13—C14—H14B108.7
C8—C3—C4107.66 (19)H14A—C14—H14B107.6
C8—C3—C2110.3 (2)O4—C15—C10122.4 (2)
C4—C3—C2110.2 (2)O4—C15—C14115.3 (2)
C8—C3—C1109.7 (2)C10—C15—C14122.2 (2)
C4—C3—C1109.4 (2)C13—C16—H16A109.5
C2—C3—C1109.5 (2)C13—C16—H16B109.5
C5—C4—C3113.19 (19)H16A—C16—H16B109.5
C5—C4—H4A108.9C13—C16—H16C109.5
C3—C4—H4A108.9H16A—C16—H16C109.5
C5—C4—H4B108.9H16B—C16—H16C109.5
C3—C4—H4B108.9C13—C17—H17A109.5
H4A—C4—H4B107.8C13—C17—H17B109.5
O2—C5—C6122.9 (2)H17A—C17—H17B109.5
O2—C5—C4116.1 (2)C13—C17—H17C109.5
C6—C5—C4120.93 (19)H17A—C17—H17C109.5
C7—C6—C5118.1 (2)H17B—C17—H17C109.5
C7—C6—C9118.84 (19)C19—C18—C23118.7 (2)
C5—C6—C9122.94 (18)C19—C18—C9121.83 (19)
O1—C7—C6123.0 (2)C23—C18—C9119.05 (19)
O1—C7—C8114.75 (19)C18—C19—C20120.1 (2)
C6—C7—C8122.2 (2)C18—C19—H19120.0
C7—C8—C3114.66 (18)C20—C19—H19120.0
C7—C8—H8A108.6C21—C20—C19122.1 (2)
C3—C8—H8A108.6C21—C20—Br1119.08 (17)
C7—C8—H8B108.6C19—C20—Br1118.78 (17)
C3—C8—H8B108.6O5—C21—C20121.0 (2)
H8A—C8—H8B107.6O5—C21—C22121.3 (2)
C6—C9—C10113.66 (17)C20—C21—C22117.6 (2)
C6—C9—C18115.23 (17)O6—C22—C23125.8 (2)
C10—C9—C18114.48 (17)O6—C22—C21113.30 (19)
C6—C9—H9103.9C23—C22—C21120.9 (2)
C10—C9—H9103.9C22—C23—C18120.5 (2)
C18—C9—H9103.9C22—C23—H23119.7
C11—C10—C15118.0 (2)C18—C23—H23119.7
C11—C10—C9123.07 (19)O6—C24—H24A109.5
C15—C10—C9118.96 (19)O6—C24—H24B109.5
O3—C11—C10122.9 (2)H24A—C24—H24B109.5
O3—C11—C12115.5 (2)O6—C24—H24C109.5
C10—C11—C12121.6 (2)H24A—C24—H24C109.5
C11—C12—C13113.9 (2)H24B—C24—H24C109.5
C11—C12—H12A108.8C7—O1—H1109.5
C13—C12—H12A108.8C11—O3—H3109.5
C11—C12—H12B108.8C21—O5—H5A109.5
C13—C12—H12B108.8C22—O6—C24118.84 (19)
C8—C3—C4—C551.8 (3)C11—C12—C13—C1669.2 (3)
C2—C3—C4—C568.5 (3)C11—C12—C13—C17169.7 (2)
C1—C3—C4—C5171.0 (2)C12—C13—C14—C1548.5 (3)
C3—C4—C5—O2145.4 (2)C16—C13—C14—C1572.7 (3)
C3—C4—C5—C637.2 (3)C17—C13—C14—C15167.5 (2)
O2—C5—C6—C7169.1 (2)C11—C10—C15—O4170.2 (2)
C4—C5—C6—C713.7 (3)C9—C10—C15—O48.7 (3)
O2—C5—C6—C97.6 (3)C11—C10—C15—C148.6 (3)
C4—C5—C6—C9169.5 (2)C9—C10—C15—C14172.5 (2)
C5—C6—C7—O1172.3 (2)C13—C14—C15—O4160.8 (2)
C9—C6—C7—O14.6 (3)C13—C14—C15—C1020.3 (3)
C5—C6—C7—C88.7 (3)C6—C9—C18—C1916.9 (3)
C9—C6—C7—C8174.4 (2)C10—C9—C18—C19151.5 (2)
O1—C7—C8—C3153.3 (2)C6—C9—C18—C23170.77 (19)
C6—C7—C8—C327.6 (3)C10—C9—C18—C2336.2 (3)
C4—C3—C8—C747.4 (3)C23—C18—C19—C201.7 (3)
C2—C3—C8—C772.9 (3)C9—C18—C19—C20174.1 (2)
C1—C3—C8—C7166.4 (2)C18—C19—C20—C210.4 (3)
C7—C6—C9—C1093.2 (2)C18—C19—C20—Br1177.86 (17)
C5—C6—C9—C1083.6 (3)C19—C20—C21—O5179.5 (2)
C7—C6—C9—C18131.8 (2)Br1—C20—C21—O51.3 (3)
C5—C6—C9—C1851.4 (3)C19—C20—C21—C221.3 (3)
C6—C9—C10—C1187.2 (2)Br1—C20—C21—C22179.51 (17)
C18—C9—C10—C1148.1 (3)O5—C21—C22—O60.0 (3)
C6—C9—C10—C1591.7 (2)C20—C21—C22—O6179.2 (2)
C18—C9—C10—C15133.0 (2)O5—C21—C22—C23179.2 (2)
C15—C10—C11—O3173.1 (2)C20—C21—C22—C231.6 (3)
C9—C10—C11—O35.7 (3)O6—C22—C23—C18179.4 (2)
C15—C10—C11—C125.5 (3)C21—C22—C23—C180.2 (3)
C9—C10—C11—C12175.6 (2)C19—C18—C23—C221.4 (3)
O3—C11—C12—C13155.0 (2)C9—C18—C23—C22174.0 (2)
C10—C11—C12—C1326.3 (3)C23—C22—O6—C243.6 (3)
C11—C12—C13—C1451.4 (3)C21—C22—O6—C24177.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3i0.822.122.852 (2)149
O3—H3···O20.821.972.615 (2)135
O1—H1···O40.821.822.640 (2)174
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC24H29BrO6
Mr493.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.7479 (4), 19.3706 (6), 11.5958 (4)
β (°) 118.365 (1)
V3)2321.97 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.81
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.604, 0.765
No. of measured, independent and
observed [I > 2σ(I)] reflections
22187, 4313, 3395
Rint0.031
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.095, 1.04
No. of reflections4313
No. of parameters285
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.51

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3i0.822.122.852 (2)148.7
O3—H3···O20.821.972.615 (2)134.5
O1—H1···O40.821.822.640 (2)174.2
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank Dr Babu Varghese and the SAIF, IIT Madras, for the intensity data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHideo, T. (1981). Jpn Kokai Tokkyo Koho JP, 56 005480.  Google Scholar
First citationHilderbrand, S. A. & Weissleder, R. (2007). Tetrahedron Lett. 48, 4383–4385.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJonathan, R. D., Srinivas, K. R. & Glen, E. B. (1988). Eur. J. Med. Chem. 23, 111–117.  Google Scholar
First citationLambert, R. W., Martin, J. A., Merrett, J. H., Parkes, K. E. B. & Thomas, G. J. (1997). PCT Int. Appl. WO 9706178.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMehdi, S. H., Hashim, R., Ghalib, R. M., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, o1449.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOdabaşoğlu, M., Kaya, M., Yıldırır, Y. & Büyükgüngör, O. (2008). Acta Cryst. E64, o681.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPoupelin, J. P., Rut, G. S., Blanpin, O. F., Narcisse, G., Ernouf, G. U. & Lacroise, R. (1978). Eur. J. Med. Chem. 13, 67–71.  CAS Google Scholar
First citationRavikumar, N., Gopikrishna, G. & Solomon, K. A. (2012). Acta Cryst. E68, o265.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSelvanayagam, Z. E., Gnanavendhan, S. G., Balakrishnan, K., Rao, R. B., Sivaraman, R. E. & Subramanian, K. (1996). J. Nat. Prod. 59, 664–667.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSureshbabu, N. & Sughanya, V. (2012). Acta Cryst. E68, o2638.  CSD CrossRef IUCr Journals Google Scholar
First citationVanag, G. Y. & Stankevich, E. L. Z. (1960). Obshch. Khim. 30, 3287–3290.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds