organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(Piperidin-1-yl)-9,10-anthra­quinone

aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: trzybinski@chem.univ.gda.pl

(Received 23 August 2012; accepted 2 September 2012; online 8 September 2012)

In the title compound, C19H17NO2, the piperidine ring adopts a chair conformation. The mean planes of the piperidine ring and the anthracene ring system are inclined at a dihedral angle of 38.7 (1)°. In the crystal, adjacent mol­ecules are linked through C—H⋯π and ππ [centroid–centroid distance = 3.782 (1) Å] inter­actions, forming a layer parallel to the bc plane.

Related literature

For general background to and applications of anthraquinone derivatives, see: Alves et al. (2004[Alves, D. S., Perez-Fons, L., Estepa, A. & Micol, V. (2004). Biochem. Pharmacol. 68, 549-561.]); Czupryniak et al. (2012[Czupryniak, J., Niedziałkowski, P., Karbarz, M., Ossowski, T. & Stojek, Z. (2012). Electroanalysis, 24, 975-982.]); Wang et al. (2011[Wang, Y., Zhu, K., Zheng, Y., Wang, H., Dong, G., He, N. & Li, Q. (2011). Molecules, 16, 9838-9849.]); Yeh & Wang (2006[Yeh, S. Y. & Wang, C. M. (2006). J. Electroanal. Chem. 592, 131-138.]). For related structures, see: Niedziałkowski et al. (2011[Niedziałkowski, P., Narloch, J., Trzybiński, D. & Ossowski, T. (2011). Acta Cryst. E67, o723.]); Yatsenko et al. (2000[Yatsenko, A. V., Paseshnichenko, K. A. & Popov, S. I. (2000). Z. Kristallogr. 215, 542-546.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17NO2

  • Mr = 291.34

  • Monoclinic, P 21 /c

  • a = 16.7798 (4) Å

  • b = 6.84599 (14) Å

  • c = 12.6126 (3) Å

  • β = 90.723 (2)°

  • V = 1448.75 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.42 × 0.35 × 0.05 mm

Data collection
  • Oxford Diffraction GEMINI R ULTRA Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.969, Tmax = 0.996

  • 18914 measured reflections

  • 2565 independent reflections

  • 2189 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.106

  • S = 1.04

  • 2565 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C5–C8/C13/C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg3i 0.93 2.88 3.685 (2) 146
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Anthraquinones are the most important group of naturally occurring quinones. Both natural and synthetic derivatives of this group of compounds show a wide variety of applications. The color of anthraquinone-based compounds is partially associated with the anthraquinone nucleus and can be easily modified by the type, number and position of the substituents. This phenomenon determines their practical application as pigments or dyes in textile, photographic, cosmetic and other industries (Wang et al., 2011). Additionally, they are also known for their anti-inflammatory, wound healing, analgesic, antimicrobial, antitumor and other medicinal properties, which makes them a natural target for pharmaceutical industry (Alves et al., 2004). Due to the favorable structure, anthaquinone derivatives found also numerous applications in supramolecular and electroanalytical chemistry (Czupryniak et al., 2012; Yeh & Wang, 2006). For the above-mentioned reasons, the synthesis of new anthaquinone compounds seems to be important. Here, we present the report on the crystal structure of 1-(piperidin-1-yl)-9,10-anthraquinone.

In the molecule of the title compound (Fig. 1), likewise in the 1-dimethylamino-9,10-anthraquinone (Niedziałkowski et al., 2011) and 1-[methyl(phenyl)amino]anthraquinone (Yatsenko et al., 2000), deviation of planarity of the anthraquinone skeleton is observed. In case of the title compound, such distortion is found to be 0.0885 (3) Å. The piperidine ring adopts a chair conformation, with ring-puckering parameters Q = 0.5742 (14) Å, Θ = 1.93 (14)° and φ = 11 (4)°. The mean planes of piperidine ring and anthracene ring system are inclined at a dihedral angle of 38.7 (1)°. The neighboring anthracene moieties are parallel or inclined at an angle of 63.9 (1)° in the crystal lattice. In the crystal structure, the adjacent molecules are linked by C—H···π (Table 2, Fig. 2) and ππ [centroid-centroid distance = 3.782 (1) Å] (Table 3, Fig. 2) interactions, forming a layer parallel to the bc plane.

Related literature top

For general background to and applications of anthraquinone derivatives, see: Alves et al. (2004); Czupryniak et al. (2012); Wang et al. (2011); Yeh & Wang (2006). For related structures, see: Niedziałkowski et al. (2011); Yatsenko et al. (2000).

Experimental top

To 0.5 g 1-chloro-9,10-anthraquinone (2.06 mmol) in 60 ml toluene was added the 177 mg of piperidine (2.05 mmol). The reaction mixture was stirred in 80 °C oil bath for 48 h. After completed reaction, the resulting mixture was evaporated to remove solvent, and dissolved in 150 ml of dichloromethane. The product was washed with water (2 × 100 ml), the organic layer was dried with MgSO4, filtered and concentrated. The crude product was purified by silica gel column chromatography using dichloromethane: methanol mixture (5: 0.1). The product was obtained as red solid with yield 90%, 540 mg. Single-crystals were grown by slow evaporation from mixture of methanol and dichloromethane solution at room temperature (m.p. 112–114 °C).

Spectral data: 1H NMR (CDCl3, 400 MHz): δ (p.p.m.): 1.650–1.711 (p, 2H, –HN–CH2–CH2CH2–CH2–CH2–, J1 = 4.8 Hz, J1 = 5.6 Hz, J1 = 6.8 Hz, J1 = 7.2 Hz, J2 = 5.2 Hz, J2 = 5.8 Hz, J2 = 6.4 Hz, J3 = 11.3 Hz); 1.839–1.895 (p, 4H, –HN–CH2CH2–CH2CH2–CH2–, J1 = 5,.2 Hz, J1 = 5.6 Hz, J1 = 6.0 Hz, J2 = 5.4 Hz, J2 = 5.6 Hz, J3 = 11.0 Hz); 3.187–3,213 (t, 4H, –HN–CH2–CH2–CH2–CH2CH2–, J1 = 5.2 Hz, J1 = 5.6 Hz, J2 = 5.4 Hz); 7.390–7.410 (d, 1H, H-2 Ar, Hz, J2 = 8.0 Hz); 7.575–7.616 (t, 1H, H-3 Ar, J1 = 8.0 Hz, J1 = 8.4 Hz, J2 = 8.2); 7.698–7.720 (dt, 1H, H-6 Ar, J1 = 1.2 Hz, J1 = 7.4 Hz, J1 = 7.6 Hz, J2 = 7.5 Hz); 7.738–7.779 (dt, 1H, H-7 Ar, J1 = 0.8 Hz, J1 = 1.2 Hz, J1 = 7.4 Hz, J1 = 7.8 Hz, J2 = 7.6 Hz); 7.869–7.889 (dd, 1H, H-4 Ar, J1 = 0.8 Hz, J2 = 7.2); 8.211–8.233 (dd, 1H, H-5 Ar, J1 = 1.2 Hz, J2 = 7.6); 8.273–8.295 (dd, 1H, H-8 Ar, J1 = 1.2 Hz, J2 = 7.2 Hz). IR (KBr): 2943, 2808, 1667, 1648, 1580, 1424, 1312, 1260, 1240, 1132, 1081, 896, 708 cm-1. MALDI TOF MS: m/z 292.1 [M+H]+, (MW = 291.34). Elemental analysis: calculated for C19H17NO2: C 78.33, H 5.88, N 4.81; found: C 78.34, H 5.88, N 4.82.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å and 0.97 Å for the aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methylene H atoms.

Structure description top

Anthraquinones are the most important group of naturally occurring quinones. Both natural and synthetic derivatives of this group of compounds show a wide variety of applications. The color of anthraquinone-based compounds is partially associated with the anthraquinone nucleus and can be easily modified by the type, number and position of the substituents. This phenomenon determines their practical application as pigments or dyes in textile, photographic, cosmetic and other industries (Wang et al., 2011). Additionally, they are also known for their anti-inflammatory, wound healing, analgesic, antimicrobial, antitumor and other medicinal properties, which makes them a natural target for pharmaceutical industry (Alves et al., 2004). Due to the favorable structure, anthaquinone derivatives found also numerous applications in supramolecular and electroanalytical chemistry (Czupryniak et al., 2012; Yeh & Wang, 2006). For the above-mentioned reasons, the synthesis of new anthaquinone compounds seems to be important. Here, we present the report on the crystal structure of 1-(piperidin-1-yl)-9,10-anthraquinone.

In the molecule of the title compound (Fig. 1), likewise in the 1-dimethylamino-9,10-anthraquinone (Niedziałkowski et al., 2011) and 1-[methyl(phenyl)amino]anthraquinone (Yatsenko et al., 2000), deviation of planarity of the anthraquinone skeleton is observed. In case of the title compound, such distortion is found to be 0.0885 (3) Å. The piperidine ring adopts a chair conformation, with ring-puckering parameters Q = 0.5742 (14) Å, Θ = 1.93 (14)° and φ = 11 (4)°. The mean planes of piperidine ring and anthracene ring system are inclined at a dihedral angle of 38.7 (1)°. The neighboring anthracene moieties are parallel or inclined at an angle of 63.9 (1)° in the crystal lattice. In the crystal structure, the adjacent molecules are linked by C—H···π (Table 2, Fig. 2) and ππ [centroid-centroid distance = 3.782 (1) Å] (Table 3, Fig. 2) interactions, forming a layer parallel to the bc plane.

For general background to and applications of anthraquinone derivatives, see: Alves et al. (2004); Czupryniak et al. (2012); Wang et al. (2011); Yeh & Wang (2006). For related structures, see: Niedziałkowski et al. (2011); Yatsenko et al. (2000).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level, and H atoms are shown as small spheres of arbitrary radius. Cg2 and Cg3 are the centroids of the C1–C4/C11/C12 and C5–C8/C13/C14 rings respectively.
[Figure 2] Fig. 2. The arrangement of the molecules in the crystal structure. The C—H···π and ππ interactions are represented by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) x, –y + 3/2, z + 1/2; (ii) x, y + 1, z.]
1-(Piperidin-1-yl)-9,10-anthraquinone top
Crystal data top
C19H17NO2F(000) = 616
Mr = 291.34Dx = 1.336 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10180 reflections
a = 16.7798 (4) Åθ = 3.4–29.3°
b = 6.84599 (14) ŵ = 0.09 mm1
c = 12.6126 (3) ÅT = 295 K
β = 90.723 (2)°Plate, red
V = 1448.75 (6) Å30.42 × 0.35 × 0.05 mm
Z = 4
Data collection top
Oxford Diffraction GEMINI R ULTRA Ruby CCD
diffractometer
2565 independent reflections
Radiation source: Enhance (Mo) X-ray Source2189 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 10.4002 pixels mm-1θmax = 25.1°, θmin = 3.4°
ω scansh = 2020
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 88
Tmin = 0.969, Tmax = 0.996l = 1515
18914 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.233P]
where P = (Fo2 + 2Fc2)/3
2565 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C19H17NO2V = 1448.75 (6) Å3
Mr = 291.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.7798 (4) ŵ = 0.09 mm1
b = 6.84599 (14) ÅT = 295 K
c = 12.6126 (3) Å0.42 × 0.35 × 0.05 mm
β = 90.723 (2)°
Data collection top
Oxford Diffraction GEMINI R ULTRA Ruby CCD
diffractometer
2565 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
2189 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.996Rint = 0.023
18914 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.04Δρmax = 0.12 e Å3
2565 reflectionsΔρmin = 0.21 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.25956 (7)0.80184 (16)0.58372 (9)0.0352 (3)
C20.31025 (8)0.95054 (19)0.62053 (11)0.0451 (3)
H20.29001.04550.66550.054*
C30.38886 (9)0.9603 (2)0.59230 (12)0.0530 (4)
H30.42121.05920.61950.064*
C40.42001 (8)0.82494 (19)0.52427 (11)0.0473 (3)
H40.47290.83470.50360.057*
C50.40087 (8)0.22450 (19)0.31080 (10)0.0454 (3)
H50.45350.23990.29000.054*
C60.35703 (9)0.0683 (2)0.27434 (11)0.0532 (4)
H60.37990.02230.22900.064*
C70.27893 (10)0.0461 (2)0.30517 (12)0.0574 (4)
H70.24880.05730.27850.069*
C80.24507 (9)0.17570 (18)0.37514 (11)0.0476 (3)
H80.19280.15720.39680.057*
C90.25025 (7)0.47080 (18)0.48949 (10)0.0397 (3)
C100.41166 (7)0.53500 (18)0.41201 (10)0.0405 (3)
C110.29271 (7)0.65477 (17)0.51749 (9)0.0344 (3)
C120.37301 (7)0.67421 (17)0.48642 (9)0.0369 (3)
C130.28871 (7)0.33387 (17)0.41345 (9)0.0370 (3)
C140.36646 (7)0.35977 (17)0.37891 (9)0.0371 (3)
N150.18002 (6)0.80008 (15)0.61441 (8)0.0378 (3)
C160.11888 (7)0.8051 (2)0.53068 (10)0.0455 (3)
H16A0.13610.72650.47120.055*
H16B0.11190.93830.50610.055*
C170.04046 (8)0.7281 (2)0.57052 (12)0.0547 (4)
H17A0.04630.59180.59010.066*
H17B0.00040.73690.51460.066*
C180.01381 (8)0.8450 (2)0.66587 (12)0.0561 (4)
H18A0.00130.97770.64440.067*
H18B0.03390.78710.69500.067*
C190.07945 (8)0.8471 (2)0.74937 (11)0.0516 (4)
H19A0.06380.93070.80760.062*
H19B0.08690.71610.77700.062*
C200.15707 (8)0.91992 (19)0.70485 (10)0.0452 (3)
H20A0.15121.05490.68260.054*
H20B0.19840.91420.75920.054*
O210.18687 (6)0.42388 (15)0.52784 (10)0.0682 (3)
O220.47785 (6)0.56781 (15)0.37776 (9)0.0607 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0364 (6)0.0372 (6)0.0320 (6)0.0020 (5)0.0002 (5)0.0035 (5)
C20.0474 (8)0.0424 (7)0.0457 (7)0.0052 (5)0.0029 (6)0.0085 (6)
C30.0491 (8)0.0500 (8)0.0600 (9)0.0166 (6)0.0019 (7)0.0124 (7)
C40.0375 (7)0.0500 (8)0.0546 (8)0.0115 (5)0.0059 (6)0.0026 (6)
C50.0478 (7)0.0490 (7)0.0395 (7)0.0071 (6)0.0057 (6)0.0011 (6)
C60.0666 (10)0.0464 (8)0.0468 (8)0.0066 (7)0.0065 (7)0.0079 (6)
C70.0716 (10)0.0429 (8)0.0577 (9)0.0096 (7)0.0036 (8)0.0115 (6)
C80.0500 (8)0.0424 (7)0.0505 (8)0.0081 (6)0.0053 (6)0.0017 (6)
C90.0374 (7)0.0398 (7)0.0420 (7)0.0059 (5)0.0066 (5)0.0001 (5)
C100.0382 (7)0.0450 (7)0.0386 (6)0.0029 (5)0.0053 (5)0.0048 (5)
C110.0359 (6)0.0355 (6)0.0319 (6)0.0035 (5)0.0009 (5)0.0027 (5)
C120.0365 (6)0.0380 (6)0.0363 (6)0.0043 (5)0.0030 (5)0.0041 (5)
C130.0422 (7)0.0338 (6)0.0350 (6)0.0018 (5)0.0019 (5)0.0040 (5)
C140.0408 (7)0.0385 (6)0.0319 (6)0.0010 (5)0.0017 (5)0.0045 (5)
N150.0361 (6)0.0443 (6)0.0331 (5)0.0007 (4)0.0007 (4)0.0050 (4)
C160.0405 (7)0.0576 (8)0.0384 (7)0.0002 (6)0.0027 (5)0.0008 (6)
C170.0401 (7)0.0658 (9)0.0583 (9)0.0045 (6)0.0018 (6)0.0042 (7)
C180.0413 (8)0.0607 (9)0.0667 (10)0.0037 (6)0.0112 (7)0.0017 (7)
C190.0535 (8)0.0564 (8)0.0452 (8)0.0071 (6)0.0129 (6)0.0030 (6)
C200.0480 (7)0.0464 (7)0.0414 (7)0.0033 (6)0.0025 (6)0.0084 (6)
O210.0557 (6)0.0568 (6)0.0930 (8)0.0234 (5)0.0358 (6)0.0244 (6)
O220.0451 (6)0.0679 (7)0.0696 (7)0.0129 (5)0.0234 (5)0.0109 (5)
Geometric parameters (Å, º) top
C1—N151.3943 (15)C10—O221.2176 (15)
C1—C21.4020 (17)C10—C141.4766 (17)
C1—C111.4257 (17)C10—C121.4917 (18)
C2—C31.3722 (19)C11—C121.4142 (17)
C2—H20.9300C13—C141.3919 (17)
C3—C41.3707 (19)N15—C201.4608 (15)
C3—H30.9300N15—C161.4634 (16)
C4—C121.3804 (17)C16—C171.5094 (19)
C4—H40.9300C16—H16A0.9700
C5—C61.374 (2)C16—H16B0.9700
C5—C141.3934 (18)C17—C181.517 (2)
C5—H50.9300C17—H17A0.9700
C6—C71.380 (2)C17—H17B0.9700
C6—H60.9300C18—C191.514 (2)
C7—C81.379 (2)C18—H18A0.9700
C7—H70.9300C18—H18B0.9700
C8—C131.3905 (18)C19—C201.5094 (19)
C8—H80.9300C19—H19A0.9700
C9—O211.2171 (15)C19—H19B0.9700
C9—C111.4873 (17)C20—H20A0.9700
C9—C131.4936 (17)C20—H20B0.9700
N15—C1—C2119.55 (11)C14—C13—C9122.36 (11)
N15—C1—C11122.58 (10)C13—C14—C5120.37 (12)
C2—C1—C11117.86 (11)C13—C14—C10119.68 (11)
C3—C2—C1122.03 (12)C5—C14—C10119.92 (11)
C3—C2—H2119.0C1—N15—C20118.34 (10)
C1—C2—H2119.0C1—N15—C16117.66 (9)
C4—C3—C2120.34 (12)C20—N15—C16111.16 (10)
C4—C3—H3119.8N15—C16—C17110.97 (11)
C2—C3—H3119.8N15—C16—H16A109.4
C3—C4—C12120.06 (12)C17—C16—H16A109.4
C3—C4—H4120.0N15—C16—H16B109.4
C12—C4—H4120.0C17—C16—H16B109.4
C6—C5—C14119.96 (13)H16A—C16—H16B108.0
C6—C5—H5120.0C16—C17—C18110.29 (12)
C14—C5—H5120.0C16—C17—H17A109.6
C5—C6—C7119.84 (12)C18—C17—H17A109.6
C5—C6—H6120.1C16—C17—H17B109.6
C7—C6—H6120.1C18—C17—H17B109.6
C8—C7—C6120.67 (13)H17A—C17—H17B108.1
C8—C7—H7119.7C19—C18—C17109.72 (11)
C6—C7—H7119.7C19—C18—H18A109.7
C7—C8—C13120.26 (13)C17—C18—H18A109.7
C7—C8—H8119.9C19—C18—H18B109.7
C13—C8—H8119.9C17—C18—H18B109.7
O21—C9—C11123.20 (11)H18A—C18—H18B108.2
O21—C9—C13118.45 (11)C20—C19—C18111.59 (11)
C11—C9—C13118.32 (10)C20—C19—H19A109.3
O22—C10—C14121.14 (12)C18—C19—H19A109.3
O22—C10—C12120.74 (11)C20—C19—H19B109.3
C14—C10—C12118.10 (10)C18—C19—H19B109.3
C12—C11—C1118.43 (10)H19A—C19—H19B108.0
C12—C11—C9117.97 (10)N15—C20—C19110.02 (11)
C1—C11—C9123.22 (11)N15—C20—H20A109.7
C4—C12—C11121.11 (11)C19—C20—H20A109.7
C4—C12—C10116.37 (11)N15—C20—H20B109.7
C11—C12—C10122.52 (11)C19—C20—H20B109.7
C8—C13—C14118.82 (11)H20A—C20—H20B108.2
C8—C13—C9118.81 (11)
N15—C1—C2—C3179.53 (12)O21—C9—C13—C811.05 (19)
C11—C1—C2—C31.84 (19)C11—C9—C13—C8171.04 (11)
C1—C2—C3—C41.5 (2)O21—C9—C13—C14169.48 (12)
C2—C3—C4—C122.1 (2)C11—C9—C13—C148.43 (17)
C14—C5—C6—C70.1 (2)C8—C13—C14—C52.79 (18)
C5—C6—C7—C82.2 (2)C9—C13—C14—C5177.74 (11)
C6—C7—C8—C131.7 (2)C8—C13—C14—C10175.23 (11)
N15—C1—C11—C12176.97 (10)C9—C13—C14—C104.24 (17)
C2—C1—C11—C124.45 (16)C6—C5—C14—C132.36 (18)
N15—C1—C11—C910.26 (17)C6—C5—C14—C10175.66 (12)
C2—C1—C11—C9168.32 (11)O22—C10—C14—C13175.33 (12)
O21—C9—C11—C12166.47 (13)C12—C10—C14—C132.97 (17)
C13—C9—C11—C1211.33 (16)O22—C10—C14—C52.71 (18)
O21—C9—C11—C16.3 (2)C12—C10—C14—C5179.00 (10)
C13—C9—C11—C1175.87 (10)C2—C1—N15—C2016.08 (16)
C3—C4—C12—C110.7 (2)C11—C1—N15—C20162.48 (11)
C3—C4—C12—C10179.43 (12)C2—C1—N15—C16122.15 (12)
C1—C11—C12—C43.98 (17)C11—C1—N15—C1659.30 (15)
C9—C11—C12—C4169.18 (11)C1—N15—C16—C17158.76 (11)
C1—C11—C12—C10176.15 (10)C20—N15—C16—C1760.21 (14)
C9—C11—C12—C1010.69 (17)N15—C16—C17—C1857.32 (16)
O22—C10—C12—C48.32 (18)C16—C17—C18—C1954.05 (16)
C14—C10—C12—C4173.38 (11)C17—C18—C19—C2054.41 (16)
O22—C10—C12—C11171.81 (12)C1—N15—C20—C19159.99 (11)
C14—C10—C12—C116.49 (17)C16—N15—C20—C1959.26 (13)
C7—C8—C13—C140.77 (19)C18—C19—C20—N1556.84 (15)
C7—C8—C13—C9179.74 (12)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C5–C8/C13/C14 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg3i0.932.883.685 (2)146
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC19H17NO2
Mr291.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)16.7798 (4), 6.84599 (14), 12.6126 (3)
β (°) 90.723 (2)
V3)1448.75 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.42 × 0.35 × 0.05
Data collection
DiffractometerOxford Diffraction GEMINI R ULTRA Ruby CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.969, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
18914, 2565, 2189
Rint0.023
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 1.04
No. of reflections2565
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.21

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C5–C8/C13/C14 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg3i0.932.883.685 (2)146
Symmetry code: (i) x, y+1/2, z1/2.
ππ interaction geometry (Å,°). top
IJCgI···CgJDihedral angleCgI_PerpCgJ_PerpCgI_OffsetCgJ_Offset
23ii3.782 (1)3.31 (6)3.615 (1)3.660 (1)1.112 (1)0.953 (1)
Symmetry code: (ii) x, y + 1, z.

Notes: Cg2 and Cg3 are the centroids of the C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgJ_Perp is the perpendicular distance of CgJ from ring I. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I. CgJ_Offset is the distance between CgJ and perpendicular projection of CgI on ring J.
 

Acknowledgements

This work was supported from funds for science in years 2011 as research project No. 538–8210–1030–12, and by grant DS/8210–4–0177–12.

References

First citationAlves, D. S., Perez-Fons, L., Estepa, A. & Micol, V. (2004). Biochem. Pharmacol. 68, 549–561.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCzupryniak, J., Niedziałkowski, P., Karbarz, M., Ossowski, T. & Stojek, Z. (2012). Electroanalysis, 24, 975–982.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNiedziałkowski, P., Narloch, J., Trzybiński, D. & Ossowski, T. (2011). Acta Cryst. E67, o723.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Zhu, K., Zheng, Y., Wang, H., Dong, G., He, N. & Li, Q. (2011). Molecules, 16, 9838–9849.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYatsenko, A. V., Paseshnichenko, K. A. & Popov, S. I. (2000). Z. Kristallogr. 215, 542–546.  Web of Science CSD CrossRef CAS Google Scholar
First citationYeh, S. Y. & Wang, C. M. (2006). J. Electroanal. Chem. 592, 131–138.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds