organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Adipic acid–2,4-di­amino-6-(4-meth­­oxy­phen­yl)-1,3,5-triazine (1/2)

aSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Angalamman College of Engineering and Technology, Siruganur, Tiruchirappalli 621 105, Tamil Nadu, India, and cDepartment of Chemistry, St. Joseph's College, Tiruchirappalli 620 002, Tamil Nadu, India
*Correspondence e-mail: arazaki@usm.my

(Received 4 September 2012; accepted 10 September 2012; online 15 September 2012)

The asymmetric unit of the title compound, 2C10H11N5O·C6H10O4, consists of a 2,4-diamino-6-(4-meth­oxy­phen­yl)-1,3,5-triazine mol­ecule and one-half mol­ecule of adipic acid which lies about an inversion center. The triazine ring makes a dihedral angle of 12.89 (4)° with the adjacent benzene ring. In the crystal, the components are linked by N—H⋯O and O—H⋯N hydrogen bonds, thus generating a centrosymmetric 2 + 1 unit of triazine and adipic acid mol­ecules with R22(8) motifs. The triazine mol­ecules are connected to each other by N—H⋯N hydrogen bonds, forming an R22(8) motif and a supra­molecular ribbon along the c axis. The 2 + 1 units and the supra­molecular ribbons are further inter­linked by weak N—H⋯O, C—H⋯O and C—H⋯π inter­actions, resulting in a three-dimensional network.

Related literature

For the biological activity of triazine derivatives, see: Bork et al. (2003[Bork, J. T., Lee, J. W., Khersonsky, S. M., Moon, H. S. & Chang, Y. T. (2003). Org. Lett. 5, 117-120.]). For bond-length data, see: Allen et al. (1987)[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]. For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • 2C10H11N5O·C6H10O4

  • Mr = 580.62

  • Monoclinic, P 2/c

  • a = 15.9952 (9) Å

  • b = 7.3104 (5) Å

  • c = 12.0351 (7) Å

  • β = 96.912 (1)°

  • V = 1397.05 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.64 × 0.40 × 0.22 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.938, Tmax = 0.979

  • 13850 measured reflections

  • 4993 independent reflections

  • 4263 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.126

  • S = 1.08

  • 4993 reflections

  • 211 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C2/N3/C4/N5/C6 triazine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯N5i 0.894 (15) 2.051 (15) 2.9438 (10) 177.7 (14)
N2—H2N2⋯O2i 0.868 (16) 2.336 (16) 2.9891 (10) 132.2 (13)
N4—H1N4⋯O2ii 0.901 (15) 2.021 (15) 2.9142 (11) 170.9 (13)
N4—H2N4⋯N1iii 0.906 (16) 2.245 (16) 3.1456 (10) 172.5 (14)
O1—H1O1⋯N3iv 0.953 (15) 1.728 (15) 2.6655 (10) 167.5 (15)
C13—H13A⋯O3v 0.98 2.53 3.3997 (12) 148
C15—H15ACg1 0.99 2.83 3.598 135
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [x, -y+1, z-{\script{1\over 2}}]; (iv) x, y+1, z; (v) -x, -y+3, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Triazine derivatives show antitumour activity as well as a broad range of biological activities, such as anti-angiogenesis and antimicrobial effects (Bork et al., 2003). Adipic acid is used to ester for platicizers and as food additive. In order to study some interesting hydrogen bonding interaction, the synthesis and structure of the title compound, (I), is presented here.

The asymmetric unit of the title compound, (I), consists of a 2,4-diamino-6-(4-methoxyphenyl)-1,3,5-triazine molecule and a half of the adipic acid molecule (Fig. 1). The planar adipic acid molecule is centrosymmetric with the mid-point of the central C—C bond located at an inversion center. The C14—O2 bond distance of 1.2248 (10) Å is much shorter than the C14—O1 bond distance of 1.3199 (11) Å, indicating that the carboxyl group is not deprotonated in the crystal structure. The dihedral angle between the triazine ring [N1/C2/N3/C4/N5/C6, maximum deviation = 0.010 (1) Å for atoms N4 & C4] and the plane formed by the adipic acid molecule (O1/O2/C14-C16) is 2.14 (4)°. The triazine ring forms dihedral angle of 12.89 (4)° with the benzene ring (C7–C12). The conformation of adipic acid can be described by the two torsion angles C14—C15—C16—C16A of -175.20 (7)° and C15—C16—C16A—C15A of 179.98 (9)°. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal (Fig. 2). the triazine molecules are base-paired [with a graph set (Bernstein et al., 1995) of R22(8)] on either side via N2—H1N2···N5i and N4—H2N4···N1iii hydrogen bonds (symmetry codes in Table 1), forming a supramolecular ribbon. Each triazine molecule interacts with the carboxyl group of adipic acid molecule via N4—H1N4···O2ii and O1—H1O1···N3iV hydrogen bonds (symmetry codes in Table 1), generating R22(8) motifs (Bernstein et al., 1995). The supramolecular ribbons are linked by N2—H2N2···O2i hydrogen bonds, resulting a three-dimensional network. The crystal structure are further stabilized by weak C13—H13A···O3v and C—H···π interactions (Table 1) involving the N1/C2/N3/C4/N5/C6 (centroid Cg1) ring.

Related literature top

For the biological activity of triazine derivatives, see: Bork et al. (2003). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A hot methanol solution (20 ml) of 2,4-diamino-6-(4-methoxyphenyl)-1,3,5-triazine (54 mg Aldrich) and adipic acid (36 mg Loba) was warmed for a half an hour over a water bath. The resulting solution was allowed to cool slowly at room temperature. After a few days colourless block crystals were obtained.

Refinement top

Atoms H1N2, H2N2, H1N4, H2N4 and H1O1 were located from a difference Fourier maps and refined freely [N—H = 0.894 (15), 0.868 (16), 0.903 (15) and 0.906 (16) Å and O—H = 0.952 (17) Å]. The remaining H atoms were positioned geometrically (C—H= 0.95–0.99 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). A rotating-group model was used for the methyl group.

Structure description top

Triazine derivatives show antitumour activity as well as a broad range of biological activities, such as anti-angiogenesis and antimicrobial effects (Bork et al., 2003). Adipic acid is used to ester for platicizers and as food additive. In order to study some interesting hydrogen bonding interaction, the synthesis and structure of the title compound, (I), is presented here.

The asymmetric unit of the title compound, (I), consists of a 2,4-diamino-6-(4-methoxyphenyl)-1,3,5-triazine molecule and a half of the adipic acid molecule (Fig. 1). The planar adipic acid molecule is centrosymmetric with the mid-point of the central C—C bond located at an inversion center. The C14—O2 bond distance of 1.2248 (10) Å is much shorter than the C14—O1 bond distance of 1.3199 (11) Å, indicating that the carboxyl group is not deprotonated in the crystal structure. The dihedral angle between the triazine ring [N1/C2/N3/C4/N5/C6, maximum deviation = 0.010 (1) Å for atoms N4 & C4] and the plane formed by the adipic acid molecule (O1/O2/C14-C16) is 2.14 (4)°. The triazine ring forms dihedral angle of 12.89 (4)° with the benzene ring (C7–C12). The conformation of adipic acid can be described by the two torsion angles C14—C15—C16—C16A of -175.20 (7)° and C15—C16—C16A—C15A of 179.98 (9)°. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal (Fig. 2). the triazine molecules are base-paired [with a graph set (Bernstein et al., 1995) of R22(8)] on either side via N2—H1N2···N5i and N4—H2N4···N1iii hydrogen bonds (symmetry codes in Table 1), forming a supramolecular ribbon. Each triazine molecule interacts with the carboxyl group of adipic acid molecule via N4—H1N4···O2ii and O1—H1O1···N3iV hydrogen bonds (symmetry codes in Table 1), generating R22(8) motifs (Bernstein et al., 1995). The supramolecular ribbons are linked by N2—H2N2···O2i hydrogen bonds, resulting a three-dimensional network. The crystal structure are further stabilized by weak C13—H13A···O3v and C—H···π interactions (Table 1) involving the N1/C2/N3/C4/N5/C6 (centroid Cg1) ring.

For the biological activity of triazine derivatives, see: Bork et al. (2003). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
Adipic acid–2,4-diamino-6-(4-methoxyphenyl)-1,3,5-triazine (1/2) top
Crystal data top
2C10H11N5O·C6H10O4F(000) = 612
Mr = 580.62Dx = 1.380 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 7141 reflections
a = 15.9952 (9) Åθ = 2.8–32.4°
b = 7.3104 (5) ŵ = 0.10 mm1
c = 12.0351 (7) ÅT = 100 K
β = 96.912 (1)°Block, colourless
V = 1397.05 (15) Å30.64 × 0.40 × 0.22 mm
Z = 2
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4993 independent reflections
Radiation source: fine-focus sealed tube4263 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scansθmax = 32.6°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2424
Tmin = 0.938, Tmax = 0.979k = 1011
13850 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0737P)2 + 0.2639P]
where P = (Fo2 + 2Fc2)/3
4993 reflections(Δ/σ)max = 0.001
211 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
2C10H11N5O·C6H10O4V = 1397.05 (15) Å3
Mr = 580.62Z = 2
Monoclinic, P2/cMo Kα radiation
a = 15.9952 (9) ŵ = 0.10 mm1
b = 7.3104 (5) ÅT = 100 K
c = 12.0351 (7) Å0.64 × 0.40 × 0.22 mm
β = 96.912 (1)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4993 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4263 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.979Rint = 0.019
13850 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.49 e Å3
4993 reflectionsΔρmin = 0.22 e Å3
211 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38325 (5)0.96141 (10)0.63437 (6)0.02222 (15)
O20.39639 (4)0.93287 (9)0.45203 (5)0.01924 (14)
O30.06629 (4)1.28973 (9)0.50394 (6)0.01951 (14)
N10.24094 (4)0.53425 (10)0.66667 (5)0.01295 (13)
N20.30198 (5)0.29976 (11)0.77505 (6)0.01611 (14)
N30.30677 (4)0.28034 (10)0.58551 (5)0.01296 (13)
N40.30393 (5)0.26981 (11)0.39410 (6)0.01582 (14)
N50.24267 (4)0.51829 (10)0.46927 (5)0.01320 (13)
C20.28291 (5)0.37227 (11)0.67348 (6)0.01221 (14)
C40.28388 (5)0.35704 (11)0.48465 (6)0.01227 (14)
C60.22262 (4)0.59896 (11)0.56262 (6)0.01197 (14)
C70.17790 (5)0.77580 (12)0.54733 (6)0.01294 (15)
C80.16892 (5)0.89239 (12)0.63761 (7)0.01547 (15)
H8A0.18960.85500.71140.019*
C90.13032 (5)1.06136 (12)0.62062 (7)0.01631 (16)
H9A0.12461.13870.68270.020*
C100.09974 (5)1.11861 (12)0.51240 (7)0.01452 (15)
C110.10537 (5)1.00202 (13)0.42193 (7)0.01636 (16)
H11A0.08281.03790.34850.020*
C120.14445 (5)0.83235 (12)0.44012 (7)0.01592 (15)
H12A0.14850.75340.37830.019*
C130.04003 (6)1.35766 (14)0.39371 (8)0.02142 (18)
H13A0.01941.48330.39860.032*
H13B0.00521.28020.35720.032*
H13C0.08781.35600.34990.032*
C140.40924 (5)0.87581 (12)0.54826 (7)0.01502 (15)
C150.45564 (5)0.70071 (12)0.58066 (7)0.01631 (16)
H15A0.41980.62320.62300.020*
H15B0.50740.73050.63110.020*
C160.47996 (5)0.59149 (12)0.48172 (7)0.01603 (15)
H16A0.52010.66370.44300.019*
H16B0.42910.56940.42790.019*
H1N20.2826 (9)0.353 (2)0.8337 (12)0.030 (4)*
H2N20.3333 (10)0.203 (2)0.7873 (13)0.036 (4)*
H1N40.3319 (9)0.163 (2)0.4039 (12)0.027 (3)*
H2N40.2840 (9)0.316 (2)0.3262 (13)0.035 (4)*
H1O10.3554 (11)1.070 (2)0.6062 (14)0.041 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0314 (3)0.0187 (3)0.0169 (3)0.0107 (3)0.0047 (2)0.0004 (2)
O20.0258 (3)0.0157 (3)0.0157 (3)0.0051 (2)0.0006 (2)0.0016 (2)
O30.0257 (3)0.0149 (3)0.0178 (3)0.0063 (2)0.0016 (2)0.0010 (2)
N10.0156 (3)0.0133 (3)0.0100 (3)0.0017 (2)0.0017 (2)0.0006 (2)
N20.0233 (3)0.0151 (3)0.0097 (3)0.0037 (3)0.0011 (2)0.0014 (2)
N30.0158 (3)0.0130 (3)0.0102 (3)0.0015 (2)0.0019 (2)0.0001 (2)
N40.0223 (3)0.0147 (3)0.0106 (3)0.0037 (3)0.0026 (2)0.0006 (2)
N50.0155 (3)0.0137 (3)0.0105 (3)0.0024 (2)0.0022 (2)0.0002 (2)
C20.0131 (3)0.0128 (3)0.0106 (3)0.0002 (2)0.0008 (2)0.0005 (2)
C40.0130 (3)0.0128 (3)0.0111 (3)0.0005 (2)0.0016 (2)0.0003 (2)
C60.0122 (3)0.0135 (3)0.0102 (3)0.0006 (2)0.0014 (2)0.0001 (2)
C70.0132 (3)0.0143 (4)0.0115 (3)0.0019 (3)0.0023 (2)0.0002 (3)
C80.0170 (3)0.0172 (4)0.0121 (3)0.0024 (3)0.0010 (2)0.0003 (3)
C90.0193 (3)0.0158 (4)0.0139 (3)0.0025 (3)0.0021 (3)0.0019 (3)
C100.0142 (3)0.0138 (4)0.0156 (3)0.0016 (3)0.0020 (2)0.0005 (3)
C110.0187 (3)0.0169 (4)0.0132 (3)0.0038 (3)0.0010 (3)0.0010 (3)
C120.0190 (3)0.0168 (4)0.0119 (3)0.0040 (3)0.0016 (2)0.0002 (3)
C130.0247 (4)0.0187 (4)0.0202 (4)0.0055 (3)0.0001 (3)0.0037 (3)
C140.0149 (3)0.0127 (4)0.0173 (3)0.0007 (3)0.0012 (2)0.0017 (3)
C150.0177 (3)0.0132 (4)0.0179 (3)0.0033 (3)0.0017 (3)0.0004 (3)
C160.0164 (3)0.0130 (4)0.0185 (3)0.0032 (3)0.0011 (3)0.0003 (3)
Geometric parameters (Å, º) top
O1—C141.3199 (10)C7—C81.4018 (11)
O1—H1O10.952 (17)C8—C91.3851 (12)
O2—C141.2249 (10)C8—H8A0.9500
O3—C101.3595 (10)C9—C101.3991 (11)
O3—C131.4314 (11)C9—H9A0.9500
N1—C61.3377 (10)C10—C111.3942 (12)
N1—C21.3587 (10)C11—C121.3944 (12)
N2—C21.3337 (10)C11—H11A0.9500
N2—H1N20.894 (15)C12—H12A0.9500
N2—H2N20.868 (16)C13—H13A0.9800
N3—C41.3472 (10)C13—H13B0.9800
N3—C21.3473 (10)C13—H13C0.9800
N4—C41.3347 (10)C14—C151.5072 (12)
N4—H1N40.903 (15)C15—C161.5226 (12)
N4—H2N40.906 (16)C15—H15A0.9900
N5—C61.3415 (10)C15—H15B0.9900
N5—C41.3524 (11)C16—C16i1.5251 (17)
C6—C71.4783 (11)C16—H16A0.9900
C7—C121.3985 (11)C16—H16B0.9900
C14—O1—H1O1107.1 (10)O3—C10—C9115.80 (7)
C10—O3—C13117.23 (7)C11—C10—C9119.73 (8)
C6—N1—C2114.56 (7)C10—C11—C12119.41 (7)
C2—N2—H1N2119.2 (10)C10—C11—H11A120.3
C2—N2—H2N2122.8 (10)C12—C11—H11A120.3
H1N2—N2—H2N2118.0 (14)C11—C12—C7121.49 (7)
C4—N3—C2115.37 (7)C11—C12—H12A119.3
C4—N4—H1N4118.1 (9)C7—C12—H12A119.3
C4—N4—H2N4117.7 (10)O3—C13—H13A109.5
H1N4—N4—H2N4123.8 (14)O3—C13—H13B109.5
C6—N5—C4115.48 (7)H13A—C13—H13B109.5
N2—C2—N3117.83 (7)O3—C13—H13C109.5
N2—C2—N1117.29 (7)H13A—C13—H13C109.5
N3—C2—N1124.88 (7)H13B—C13—H13C109.5
N4—C4—N3118.09 (7)O2—C14—O1123.24 (8)
N4—C4—N5117.76 (7)O2—C14—C15123.73 (7)
N3—C4—N5124.15 (7)O1—C14—C15113.04 (7)
N1—C6—N5125.52 (7)C14—C15—C16114.03 (7)
N1—C6—C7118.30 (7)C14—C15—H15A108.7
N5—C6—C7116.17 (7)C16—C15—H15A108.7
C12—C7—C8118.16 (8)C14—C15—H15B108.7
C12—C7—C6119.94 (7)C16—C15—H15B108.7
C8—C7—C6121.89 (7)H15A—C15—H15B107.6
C9—C8—C7120.88 (7)C15—C16—C16i111.86 (9)
C9—C8—H8A119.6C15—C16—H16A109.2
C7—C8—H8A119.6C16i—C16—H16A109.2
C8—C9—C10120.26 (7)C15—C16—H16B109.2
C8—C9—H9A119.9C16i—C16—H16B109.2
C10—C9—H9A119.9H16A—C16—H16B107.9
O3—C10—C11124.46 (7)
C4—N3—C2—N2178.22 (7)C12—C7—C8—C91.99 (12)
C4—N3—C2—N11.99 (11)C6—C7—C8—C9176.85 (7)
C6—N1—C2—N2179.18 (7)C7—C8—C9—C100.16 (12)
C6—N1—C2—N31.04 (11)C13—O3—C10—C114.03 (12)
C2—N3—C4—N4178.37 (7)C13—O3—C10—C9175.58 (7)
C2—N3—C4—N52.48 (11)C8—C9—C10—O3177.20 (7)
C6—N5—C4—N4178.87 (7)C8—C9—C10—C112.43 (12)
C6—N5—C4—N31.97 (11)O3—C10—C11—C12177.11 (8)
C2—N1—C6—N50.45 (12)C9—C10—C11—C122.49 (12)
C2—N1—C6—C7179.26 (7)C10—C11—C12—C70.30 (12)
C4—N5—C6—N10.90 (12)C8—C7—C12—C111.92 (12)
C4—N5—C6—C7179.73 (7)C6—C7—C12—C11176.95 (7)
N1—C6—C7—C12168.63 (7)O2—C14—C15—C164.38 (12)
N5—C6—C7—C1212.46 (11)O1—C14—C15—C16175.24 (7)
N1—C6—C7—C812.56 (11)C14—C15—C16—C16i175.20 (8)
N5—C6—C7—C8166.36 (7)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C2/N3/C4/N5/C6 triazine ring.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···N5ii0.894 (15)2.051 (15)2.9438 (10)177.7 (14)
N2—H2N2···O2ii0.868 (16)2.336 (16)2.9891 (10)132.2 (13)
N4—H1N4···O2iii0.901 (15)2.021 (15)2.9142 (11)170.9 (13)
N4—H2N4···N1iv0.906 (16)2.245 (16)3.1456 (10)172.5 (14)
O1—H1O1···N3v0.953 (15)1.728 (15)2.6655 (10)167.5 (15)
C13—H13A···O3vi0.982.533.3997 (12)148
C15—H15A···Cg10.992.833.598135
Symmetry codes: (ii) x, y+1, z+1/2; (iii) x, y1, z; (iv) x, y+1, z1/2; (v) x, y+1, z; (vi) x, y+3, z+1.

Experimental details

Crystal data
Chemical formula2C10H11N5O·C6H10O4
Mr580.62
Crystal system, space groupMonoclinic, P2/c
Temperature (K)100
a, b, c (Å)15.9952 (9), 7.3104 (5), 12.0351 (7)
β (°) 96.912 (1)
V3)1397.05 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.64 × 0.40 × 0.22
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.938, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
13850, 4993, 4263
Rint0.019
(sin θ/λ)max1)0.757
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.126, 1.08
No. of reflections4993
No. of parameters211
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.22

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C2/N3/C4/N5/C6 triazine ring.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···N5i0.894 (15)2.051 (15)2.9438 (10)177.7 (14)
N2—H2N2···O2i0.868 (16)2.336 (16)2.9891 (10)132.2 (13)
N4—H1N4···O2ii0.901 (15)2.021 (15)2.9142 (11)170.9 (13)
N4—H2N4···N1iii0.906 (16)2.245 (16)3.1456 (10)172.5 (14)
O1—H1O1···N3iv0.953 (15)1.728 (15)2.6655 (10)167.5 (15)
C13—H13A···O3v0.982.533.3997 (12)148
C15—H15A···Cg10.992.833.598135
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y1, z; (iii) x, y+1, z1/2; (iv) x, y+1, z; (v) x, y+3, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for research facilities and the Fundamental Research Grant Scheme (FRGS) No. 203/PFIZIK/6711171 to conduct this work. KT thanks The Academy of Sciences for the Developing World and USM for a TWAS–USM fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBork, J. T., Lee, J. W., Khersonsky, S. M., Moon, H. S. & Chang, Y. T. (2003). Org. Lett. 5, 117–120.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds