organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2-(Bi­phenyl-4-yl)-1,3-thia­zol-4-yl]methanol

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 10 September 2012; accepted 12 September 2012; online 19 September 2012)

In the title compound, C16H13NOS, the central benzene ring makes dihedral angles of 3.25 (7) and 41.32 (8)°, respectively, with the thia­zole and phenyl rings. In the crystal, O—H⋯N hydrogen bonds link the mol­ecules into a chain along the c axis. A weak C—H⋯O inter­action further connects the chains into a layer parallel to the ac plane.

Related literature

For pharmacological applications of thia­zole derivatives, see: Bishayee et al. (1997[Bishayee, A., Karmaker, R., Mandal, A., Kundu, S. N. & Chaterjee, M. (1997). Eur. J. Cancer Prev. 6, 58-70.]); Bhattacharya et al. (2005[Bhattacharya, P., Leonard, J. T. & Roy, K. (2005). Bioorg. Med. Chem. 13, 1159-1165.]); Sharma et al. (2009[Sharma, R. N., Xavier, F. P., Vasu, K. K., Chaturvedi, S. C. & Pancholi, S. S. (2009). J. Enzyme Inhib. Med. Chem. 24, 890-897.]). For the preparation of the title compound, see: Miyaura et al. (1979[Miyaura, N., Yamada, K. & Suzuki, A. (1979). Tetrahedron Lett. 20, 3437-3440.]); Finholt et al. (1947[Finholt, A. E., Bond, A. C. & Schlesinger, H. I. (1947). J. Am. Chem. Soc. 69, 1199-1203.]). For related structures, see: Ghabbour, Chia et al. (2012[Ghabbour, H. A., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o1631-o1632.]); Ghabbour, Kadi et al. (2012[Ghabbour, H. A., Kadi, A. A., El-Subbagh, H. I., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o1665.]); Hökelek et al. (2006[Hökelek, T., Seferoğlu, Z. & Ertan, N. (2006). Acta Cryst. E62, o1609-o1611.]); Yathirajan et al. (2006[Yathirajan, H. S., Vijaya Raj, K. K., Narayana, B., Sarojini, B. K. & Bolte, M. (2006). Acta Cryst. E62, o5013-o5014.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13NOS

  • Mr = 267.33

  • Monoclinic, P 21 /c

  • a = 6.05424 (18) Å

  • b = 29.3096 (9) Å

  • c = 7.2064 (2) Å

  • β = 92.668 (3)°

  • V = 1277.37 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.16 mm−1

  • T = 173 K

  • 0.32 × 0.18 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.604, Tmax = 0.841

  • 7600 measured reflections

  • 2501 independent reflections

  • 2232 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.114

  • S = 1.05

  • 2501 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 2.06 2.8618 (19) 166
C3—H3⋯O1ii 0.93 2.42 3.101 (2) 131
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiazole containing drugs have widespread use in a variety of medical conditions such as fungal and bacterial infections, gastric ulcers, cancer, etc (Bishayee et al., 1997). Thiazole derivatives are involved frequently as the subject of drug design and synthesis efforts and they are reported to possess several activities like antibacterial, antifungal, anti-inflammatory (Sharma et al., 2009), analgesic, antitubercular, central nervous system (CNS) stimmulant activity as well as anti-HIV activity (Bhattacharya et al., 2005). Crystal structures of some thiazole derivatives, viz., 3-(2-bromo-5-methoxyphenyl)-5-methyl-1-(4-phenyl-1,3-thiazol-2-yl) -1H-1,2,4-triazole (Yathirajan et al., 2006), 2-amino-4-(4-methoxyphenyl)-1,3-thiazole (Hökelek et al., 2006), 5-bromo-4-(3,4-dimethoxyphenyl)thiazol-2-amine (Ghabbour, Chia et al., 2012) and N-[4-(4-bromophenyl)thiazol-2-yl]-4-(piperidin-1-yl)butanamide (Ghabbour, Kadi et al., 2012) have been reported. In view of the importance of thiazoles, this paper reports the crystal structure of the title compound, (I), C16H13NOS.

In the title compound, (I), the dihedral angle between least-squares planes of the planar thiazole-phenyl unit (C2/C3/S1/C4/N1/C5–C10) and the outer phenyl ring (C11–C16) is 39.9 (5)° (Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987). O—H···N hydrogen bonds and weak C—H···O intermolecular interactions are observed which contribute to crystal packing forming a layer parallel to the ac plane (Fig. 2).

Related literature top

For pharmacological applications of thiazole derivatives, see: Bishayee et al. (1997); Bhattacharya et al. (2005); Sharma et al. (2009). For the preparation of the title compound, see: Miyaura et al. (1979); Finholt et al. (1947). For related structures, see: Ghabbour, Chia et al. (2012); Ghabbour, Kadi et al. (2012); Hökelek et al. (2006); Yathirajan et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the following procedure (Miyaura et al., 1979; Finholt et al., 1947). A mixture of 2-bromo-thiazole-4-carboxylic acid ethyl ester (1 g, 4.24 mmol), biphenyl boronic acid (1 g, 5.08 mmol), Xantphos (122.54 mg,0.212 mmol), tripotassium phosphate (2.6 g, 12.71 mmol) and palladium acetate (47.55 mg, 0.212 mmol) in THF as solvent was degassed for 15 mins and sealed. The sealed tube was heated at 383 K for 16 h under N2 atmosphere. After completion, the reaction mixture was diluted with ethyl acetate and filtered through a celite bed. It was then quenched with water and extracted with ethyl acetate. Organic layers were collected, dried over sodium sulphate and concentrated. Crude mass was purified through silica gel column chromatography (60:120 mesh) using 30% ethyl acetate in petroleum ether to afford 2-biphenyl-4-yl-thiazole-4-carboxylic acid ethyl ester (80% yield). Lithium aluminium hydride (122 mg, 3.23 mmol) was dissolved in minimum amount of THF in a RB flask and cooled to 0 °C under N2 atmosphere (Fig. 3). To this was added drop-wise a solution of 2-biphenyl-4-yl-thiazole-4-carboxylic acid ethyl ester (1 g, 3.23 mmol) in THF and stirred the reaction mixture for an hour. After completion of reaction, the reaction mixture was quenched with 10% sodium carbonate solution at 273 K and extracted with ethyl acetate. Organic layers were collected, dried over sodium sulphate and concentrated. Crude mass was purified through silica gel column chromatography (60:120 mesh) using 40% ethyl acetate in petroleum ether to afford the title compound (93% yield). X-ray quality crystals were obtained by slow evaporation of ethyl acetate solution (m.p.: 423–426 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with O—H = 0.82 Å and C—H = 0.93 Å (CH) or 0.97 Å (CH2). The Uiso(H) values were set to 1.5Ueq(O) and 1.2Ueq(C).

Structure description top

Thiazole containing drugs have widespread use in a variety of medical conditions such as fungal and bacterial infections, gastric ulcers, cancer, etc (Bishayee et al., 1997). Thiazole derivatives are involved frequently as the subject of drug design and synthesis efforts and they are reported to possess several activities like antibacterial, antifungal, anti-inflammatory (Sharma et al., 2009), analgesic, antitubercular, central nervous system (CNS) stimmulant activity as well as anti-HIV activity (Bhattacharya et al., 2005). Crystal structures of some thiazole derivatives, viz., 3-(2-bromo-5-methoxyphenyl)-5-methyl-1-(4-phenyl-1,3-thiazol-2-yl) -1H-1,2,4-triazole (Yathirajan et al., 2006), 2-amino-4-(4-methoxyphenyl)-1,3-thiazole (Hökelek et al., 2006), 5-bromo-4-(3,4-dimethoxyphenyl)thiazol-2-amine (Ghabbour, Chia et al., 2012) and N-[4-(4-bromophenyl)thiazol-2-yl]-4-(piperidin-1-yl)butanamide (Ghabbour, Kadi et al., 2012) have been reported. In view of the importance of thiazoles, this paper reports the crystal structure of the title compound, (I), C16H13NOS.

In the title compound, (I), the dihedral angle between least-squares planes of the planar thiazole-phenyl unit (C2/C3/S1/C4/N1/C5–C10) and the outer phenyl ring (C11–C16) is 39.9 (5)° (Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987). O—H···N hydrogen bonds and weak C—H···O intermolecular interactions are observed which contribute to crystal packing forming a layer parallel to the ac plane (Fig. 2).

For pharmacological applications of thiazole derivatives, see: Bishayee et al. (1997); Bhattacharya et al. (2005); Sharma et al. (2009). For the preparation of the title compound, see: Miyaura et al. (1979); Finholt et al. (1947). For related structures, see: Ghabbour, Chia et al. (2012); Ghabbour, Kadi et al. (2012); Hökelek et al. (2006); Yathirajan et al. (2006). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing diagram viewed along the a axis. O—H···N hydrogen bonds are shown by dashed lines forming infinite chains along the c axis. H atoms not involved in the hydrogen bonds have been omitted.
[Figure 3] Fig. 3. Experimental preparation summary of the title compound, C16H13NOS.
[2-(Biphenyl-4-yl)-1,3-thiazol-4-yl]methanol top
Crystal data top
C16H13NOSF(000) = 560
Mr = 267.33Dx = 1.390 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 3467 reflections
a = 6.05424 (18) Åθ = 3.0–72.5°
b = 29.3096 (9) ŵ = 2.16 mm1
c = 7.2064 (2) ÅT = 173 K
β = 92.668 (3)°Chunk, colorless
V = 1277.37 (7) Å30.32 × 0.18 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur (Eos, Gemini)
diffractometer
2501 independent reflections
Radiation source: Enhance (Cu) X-ray Source2232 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 16.0416 pixels mm-1θmax = 72.6°, θmin = 3.0°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 2136
Tmin = 0.604, Tmax = 0.841l = 88
7600 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0662P)2 + 0.2333P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2501 reflectionsΔρmax = 0.30 e Å3
174 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0044 (7)
Crystal data top
C16H13NOSV = 1277.37 (7) Å3
Mr = 267.33Z = 4
Monoclinic, P21/cCu Kα radiation
a = 6.05424 (18) ŵ = 2.16 mm1
b = 29.3096 (9) ÅT = 173 K
c = 7.2064 (2) Å0.32 × 0.18 × 0.08 mm
β = 92.668 (3)°
Data collection top
Oxford Diffraction Xcalibur (Eos, Gemini)
diffractometer
2501 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
2232 reflections with I > 2σ(I)
Tmin = 0.604, Tmax = 0.841Rint = 0.050
7600 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.05Δρmax = 0.30 e Å3
2501 reflectionsΔρmin = 0.27 e Å3
174 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.63121 (7)0.695240 (15)0.03840 (6)0.03231 (18)
O10.0110 (2)0.78873 (4)0.02845 (18)0.0324 (3)
H10.03820.79070.13230.049*
N10.2361 (2)0.70633 (4)0.14310 (19)0.0244 (3)
C10.1660 (3)0.78956 (6)0.1071 (3)0.0318 (4)
H1A0.10650.79060.22970.038*
H1B0.25240.81700.09110.038*
C20.3140 (3)0.74885 (5)0.0952 (2)0.0263 (4)
C30.5237 (3)0.74927 (6)0.0367 (2)0.0303 (4)
H30.59860.77530.00080.036*
C40.3844 (3)0.67462 (6)0.1183 (2)0.0243 (3)
C50.3507 (3)0.62588 (5)0.1571 (2)0.0240 (3)
C60.1540 (3)0.61063 (5)0.2309 (2)0.0267 (4)
H60.04400.63150.25670.032*
C70.1218 (3)0.56472 (6)0.2657 (2)0.0276 (4)
H70.00980.55520.31490.033*
C80.2835 (3)0.53247 (5)0.2284 (2)0.0244 (3)
C90.4796 (3)0.54796 (6)0.1556 (2)0.0269 (4)
H90.59010.52710.13120.032*
C100.5133 (3)0.59363 (6)0.1191 (2)0.0268 (4)
H100.64460.60300.06910.032*
C110.2501 (3)0.48303 (5)0.2655 (2)0.0249 (3)
C120.0471 (3)0.46207 (6)0.2234 (2)0.0298 (4)
H120.06980.47920.17250.036*
C130.0174 (3)0.41583 (6)0.2567 (3)0.0353 (4)
H130.11820.40220.22630.042*
C140.1890 (3)0.39001 (6)0.3349 (3)0.0351 (4)
H140.16860.35910.35880.042*
C150.3913 (3)0.41044 (6)0.3774 (2)0.0328 (4)
H150.50690.39320.43030.039*
C160.4223 (3)0.45643 (6)0.3414 (2)0.0281 (4)
H160.55980.46970.36820.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0217 (3)0.0331 (3)0.0429 (3)0.00099 (15)0.00883 (18)0.00499 (17)
O10.0255 (6)0.0324 (7)0.0403 (7)0.0036 (5)0.0110 (5)0.0055 (5)
N10.0228 (7)0.0239 (7)0.0267 (7)0.0004 (5)0.0034 (5)0.0000 (5)
C10.0367 (10)0.0228 (8)0.0363 (9)0.0001 (7)0.0074 (7)0.0000 (7)
C20.0275 (8)0.0255 (8)0.0259 (8)0.0023 (6)0.0019 (6)0.0002 (6)
C30.0286 (9)0.0294 (9)0.0330 (8)0.0040 (7)0.0038 (7)0.0040 (6)
C40.0212 (8)0.0277 (8)0.0243 (8)0.0007 (6)0.0024 (6)0.0005 (6)
C50.0238 (8)0.0249 (8)0.0231 (7)0.0011 (6)0.0003 (6)0.0004 (6)
C60.0216 (8)0.0264 (8)0.0322 (8)0.0045 (6)0.0037 (6)0.0015 (6)
C70.0221 (8)0.0295 (8)0.0316 (8)0.0005 (6)0.0042 (6)0.0011 (6)
C80.0253 (8)0.0253 (8)0.0223 (7)0.0007 (6)0.0006 (6)0.0011 (6)
C90.0249 (8)0.0280 (8)0.0280 (8)0.0059 (6)0.0038 (6)0.0013 (6)
C100.0217 (8)0.0300 (8)0.0290 (8)0.0013 (6)0.0051 (6)0.0007 (6)
C110.0272 (8)0.0253 (8)0.0223 (7)0.0006 (6)0.0035 (6)0.0023 (6)
C120.0280 (9)0.0296 (8)0.0320 (8)0.0000 (7)0.0025 (7)0.0005 (7)
C130.0330 (9)0.0346 (9)0.0390 (10)0.0080 (7)0.0081 (8)0.0035 (7)
C140.0460 (11)0.0249 (8)0.0353 (9)0.0038 (7)0.0125 (8)0.0012 (7)
C150.0383 (10)0.0286 (9)0.0316 (9)0.0045 (7)0.0038 (7)0.0022 (7)
C160.0278 (8)0.0270 (8)0.0295 (8)0.0017 (6)0.0009 (7)0.0021 (6)
Geometric parameters (Å, º) top
S1—C31.7120 (18)C7—H70.9300
S1—C41.7350 (16)C8—C91.396 (2)
O1—C11.416 (2)C8—C111.489 (2)
O1—H10.8200C9—C101.381 (2)
N1—C41.310 (2)C9—H90.9300
N1—C21.382 (2)C10—H100.9300
C1—C21.497 (2)C11—C161.393 (2)
C1—H1A0.9700C11—C121.395 (2)
C1—H1B0.9700C12—C131.390 (3)
C2—C31.356 (2)C12—H120.9300
C3—H30.9300C13—C141.384 (3)
C4—C51.472 (2)C13—H130.9300
C5—C61.400 (2)C14—C151.385 (3)
C5—C101.400 (2)C14—H140.9300
C6—C71.384 (2)C15—C161.387 (2)
C6—H60.9300C15—H150.9300
C7—C81.396 (2)C16—H160.9300
C3—S1—C489.51 (8)C9—C8—C7117.93 (15)
C1—O1—H1109.5C9—C8—C11120.60 (15)
C4—N1—C2111.18 (14)C7—C8—C11121.47 (15)
O1—C1—C2112.47 (14)C10—C9—C8121.50 (15)
O1—C1—H1A109.1C10—C9—H9119.3
C2—C1—H1A109.1C8—C9—H9119.3
O1—C1—H1B109.1C9—C10—C5120.37 (16)
C2—C1—H1B109.1C9—C10—H10119.8
H1A—C1—H1B107.8C5—C10—H10119.8
C3—C2—N1114.92 (15)C16—C11—C12118.34 (15)
C3—C2—C1125.59 (15)C16—C11—C8120.65 (15)
N1—C2—C1119.48 (15)C12—C11—C8121.01 (15)
C2—C3—S1110.52 (13)C13—C12—C11120.78 (16)
C2—C3—H3124.7C13—C12—H12119.6
S1—C3—H3124.7C11—C12—H12119.6
N1—C4—C5124.12 (15)C14—C13—C12120.21 (17)
N1—C4—S1113.86 (12)C14—C13—H13119.9
C5—C4—S1122.01 (12)C12—C13—H13119.9
C6—C5—C10118.46 (15)C13—C14—C15119.53 (16)
C6—C5—C4120.64 (14)C13—C14—H14120.2
C10—C5—C4120.89 (15)C15—C14—H14120.2
C7—C6—C5120.57 (15)C14—C15—C16120.35 (17)
C7—C6—H6119.7C14—C15—H15119.8
C5—C6—H6119.7C16—C15—H15119.8
C6—C7—C8121.15 (16)C15—C16—C11120.78 (16)
C6—C7—H7119.4C15—C16—H16119.6
C8—C7—H7119.4C11—C16—H16119.6
C4—N1—C2—C31.0 (2)C6—C7—C8—C11179.99 (15)
C4—N1—C2—C1177.81 (14)C7—C8—C9—C100.8 (2)
O1—C1—C2—C3109.65 (19)C11—C8—C9—C10179.58 (14)
O1—C1—C2—N169.1 (2)C8—C9—C10—C50.9 (2)
N1—C2—C3—S10.46 (19)C6—C5—C10—C90.6 (2)
C1—C2—C3—S1178.31 (14)C4—C5—C10—C9179.82 (14)
C4—S1—C3—C20.15 (13)C9—C8—C11—C1640.4 (2)
C2—N1—C4—C5179.93 (14)C7—C8—C11—C16139.27 (17)
C2—N1—C4—S11.14 (17)C9—C8—C11—C12138.87 (17)
C3—S1—C4—N10.76 (13)C7—C8—C11—C1241.5 (2)
C3—S1—C4—C5179.58 (14)C16—C11—C12—C130.1 (2)
N1—C4—C5—C62.2 (2)C8—C11—C12—C13179.39 (15)
S1—C4—C5—C6176.53 (12)C11—C12—C13—C140.9 (3)
N1—C4—C5—C10177.08 (15)C12—C13—C14—C150.9 (3)
S1—C4—C5—C104.2 (2)C13—C14—C15—C160.2 (3)
C10—C5—C6—C70.1 (2)C14—C15—C16—C111.3 (3)
C4—C5—C6—C7179.41 (15)C12—C11—C16—C151.2 (2)
C5—C6—C7—C80.0 (3)C8—C11—C16—C15179.52 (15)
C6—C7—C8—C90.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.062.8618 (19)166
C3—H3···O1ii0.932.423.101 (2)131
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H13NOS
Mr267.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)6.05424 (18), 29.3096 (9), 7.2064 (2)
β (°) 92.668 (3)
V3)1277.37 (7)
Z4
Radiation typeCu Kα
µ (mm1)2.16
Crystal size (mm)0.32 × 0.18 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur (Eos, Gemini)
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.604, 0.841
No. of measured, independent and
observed [I > 2σ(I)] reflections
7600, 2501, 2232
Rint0.050
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.114, 1.05
No. of reflections2501
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.27

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.062.8618 (19)166
C3—H3···O1ii0.932.423.101 (2)131
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y, z.
 

Acknowledgements

MK thanks UOM for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBhattacharya, P., Leonard, J. T. & Roy, K. (2005). Bioorg. Med. Chem. 13, 1159–1165.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBishayee, A., Karmaker, R., Mandal, A., Kundu, S. N. & Chaterjee, M. (1997). Eur. J. Cancer Prev. 6, 58–70.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFinholt, A. E., Bond, A. C. & Schlesinger, H. I. (1947). J. Am. Chem. Soc. 69, 1199–1203.  CrossRef CAS Web of Science Google Scholar
First citationGhabbour, H. A., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o1631–o1632.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGhabbour, H. A., Kadi, A. A., El-Subbagh, H. I., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o1665.  CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Seferoğlu, Z. & Ertan, N. (2006). Acta Cryst. E62, o1609–o1611.  CSD CrossRef IUCr Journals Google Scholar
First citationMiyaura, N., Yamada, K. & Suzuki, A. (1979). Tetrahedron Lett. 20, 3437–3440.  CrossRef Web of Science Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSharma, R. N., Xavier, F. P., Vasu, K. K., Chaturvedi, S. C. & Pancholi, S. S. (2009). J. Enzyme Inhib. Med. Chem. 24, 890–897.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYathirajan, H. S., Vijaya Raj, K. K., Narayana, B., Sarojini, B. K. & Bolte, M. (2006). Acta Cryst. E62, o5013–o5014.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds