organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(4-Meth­­oxy­benzyl­­idene)-2-(2-methyl-4-nitro-1H-imidazol-1-yl)acetohydrazide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India, and dDepartment of Chemistry, Canara Engineering College, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 14 September 2012; accepted 18 September 2012; online 22 September 2012)

In the title compound, C14H15N5O4, the central –C=N—N—C(=O)—C– bridge is nearly planar [maximum deviation = 0.037 (1) Å] and forms dihedral angles of 7.37 (9) and 73.33 (5)°, respectively, with the benzene and imidazole rings. The dihedral angle between the benzene and imidazole rings is 66.08 (9)°. The meth­oxy and nitro groups are nearly coplanar with the benzene and imidazole rings, respectively, with a C—O—C—C torsion angle of 5.9 (2)° and an O—N—C—C angle of −0.2 (2)°. In the crystal, mol­ecules are linked by a pair of N—H⋯O hydrogen bonds with an R22(8) ring motif, forming an inversion dimer. The dimers are further inter­connected by C—H⋯O hydrogen bonds into a sheet parallel to the (111) plane. A C—H⋯π inter­action is also observed between the sheets.

Related literature

For applications and biological activities of imidazole derivatives, see: Frank & Kalluraya (2005[Frank, P. V. & Kalluraya, B. (2005). Indian J. Chem. Sect. B, 44, 1456-1459.]); Dobler (2003[Dobler, M. R. (2003). Tetrahedron Lett. 44, 7115-7117.]); Gauthier & Duceppe (1984[Gauthier, J. & Duceppe, J. S. (1984). J. Heterocycl. Chem. 21, 1081-1086.]); Khan & Nandan (1997[Khan, S. A. & Nandan, A. M. (1997). Indian J. Heterocycl. Chem. 7, 55-58.]); Khabnadideh et al. (2003[Khabnadideh, S., Rezaei, Z., Khalafi-Nezhad, A., Bahrinajafi, R., Mohamadi, R. & Farrokhroz, A. A. (2003). Bioorg. Med. Chem. Lett. 13, 2863-2865.]). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15N5O4

  • Mr = 317.31

  • Triclinic, [P \overline 1]

  • a = 4.3366 (1) Å

  • b = 12.9773 (3) Å

  • c = 13.2138 (3) Å

  • α = 84.919 (2)°

  • β = 87.353 (2)°

  • γ = 84.611 (1)°

  • V = 736.90 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.51 × 0.19 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.947, Tmax = 0.988

  • 15663 measured reflections

  • 4303 independent reflections

  • 3252 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.131

  • S = 1.03

  • 4303 reflections

  • 214 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N3/C11/C12/N4/C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O2i 0.88 (2) 2.06 (2) 2.9372 (17) 176 (2)
C11—H11A⋯O4ii 0.95 2.28 3.186 (2) 160
C14—H14A⋯O1iii 0.98 2.46 3.434 (2) 173
C14—H14CCg1iv 0.98 2.74 3.4747 (18) 133
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+3, -y+1, -z+1; (iii) x+1, y, z-1; (iv) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Various applications of imidazoles are listed in the literature with functions as widely divergent as dyestuffs, catalysts, polymerizing agents, drugs, herbicides and fungicides (Frank & Kalluraya, 2005). Imidazole derivatives show promising antiallergic (Gauthier & Duceppe, 1984), anti-inflammatory, analgesic (Khan & Nandan, 1997) and antibacterial (Khabnadideh et al., 2003) activities. Imidazole derivatives are also useful for the treatment of rheumatoid arthritis and inflammatory diseases (Dobler, 2003). In view of the apparent importance of imidazole derivatives as potential pharmacological agents, and in continuation of our research work in the field of biologically active imidazole derivatives, we report herein the crystal structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1. The benzene (C2–C7) and imidazole (N3/C11/C12/N4/C13) rings make a dihedral angle of 66.08 (9)° with each other. The —C8N1—N2—C9(O2)—C10— bridge is nearly planar [maximum deviation = 0.037 (1) Å at atom N2] and forms dihedral angles of 7.37 (9) and 73.33 (5)° with the benzene and imidazole rings, respectively. The methoxy (O1/C1) and nitro (O3/O4/N5) groups are coplanar with the benzene ring and the imidazole ring, respectively, as indicated by torsion angles C1—O1—C2—C3 [5.9 (2)°], O4—N5—C12—C11 [-0.2 (2)°] and O3—N5—C12—N4 [0.0 (2)°].

In the crystal (Fig. 2), molecules are linked by a pair of intermolecular N2—H1N2···O2 hydrogen bonds into an inversion dimer with an R22(8) ring motif (Bernstein et al., 1995). The dimers are further interconnected by C11—H11A···O4 and C14—H14A···O1 hydrogen bonds into a sheet structure parallel to the (111) plane. The crystal is further stabilized by a C—H···π interaction (Table 1), involving Cg1 which is the centroid of the N3/C11/C12/N4/C13 ring.

Related literature top

For applications and biological activities of imidazole derivatives, see: Frank & Kalluraya (2005); Dobler (2003); Gauthier & Duceppe (1984); Khan & Nandan (1997); Khabnadideh et al. (2003). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized by refluxing a mixture of 2-(2-methyl-4-nitro-1H-imidazol-1-yl)acetohydrazide (0.1 mol) and 1-(4-methoxyphenyl)ethanone (0.1 mol) in glacial acetic acid for 1 h. On cooling the reaction mixture to room temperature and evaporation of the solvent under reduced pressure, the solid that separated out was filtered, washed with water and dried. Yellow plate-shaped crystals were grown from ethanol-dioxane mixture by slow evaporation method (m.p. 505 K).

Refinement top

The N-bound H atom was located in a difference Fourier map and refined freely [N2—H1N2 = 0.88 (2) Å]. The remaining H atoms were positioned geometrically (C—H = 0.95, 0.98 and 0.99 Å) and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl group.

Structure description top

Various applications of imidazoles are listed in the literature with functions as widely divergent as dyestuffs, catalysts, polymerizing agents, drugs, herbicides and fungicides (Frank & Kalluraya, 2005). Imidazole derivatives show promising antiallergic (Gauthier & Duceppe, 1984), anti-inflammatory, analgesic (Khan & Nandan, 1997) and antibacterial (Khabnadideh et al., 2003) activities. Imidazole derivatives are also useful for the treatment of rheumatoid arthritis and inflammatory diseases (Dobler, 2003). In view of the apparent importance of imidazole derivatives as potential pharmacological agents, and in continuation of our research work in the field of biologically active imidazole derivatives, we report herein the crystal structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1. The benzene (C2–C7) and imidazole (N3/C11/C12/N4/C13) rings make a dihedral angle of 66.08 (9)° with each other. The —C8N1—N2—C9(O2)—C10— bridge is nearly planar [maximum deviation = 0.037 (1) Å at atom N2] and forms dihedral angles of 7.37 (9) and 73.33 (5)° with the benzene and imidazole rings, respectively. The methoxy (O1/C1) and nitro (O3/O4/N5) groups are coplanar with the benzene ring and the imidazole ring, respectively, as indicated by torsion angles C1—O1—C2—C3 [5.9 (2)°], O4—N5—C12—C11 [-0.2 (2)°] and O3—N5—C12—N4 [0.0 (2)°].

In the crystal (Fig. 2), molecules are linked by a pair of intermolecular N2—H1N2···O2 hydrogen bonds into an inversion dimer with an R22(8) ring motif (Bernstein et al., 1995). The dimers are further interconnected by C11—H11A···O4 and C14—H14A···O1 hydrogen bonds into a sheet structure parallel to the (111) plane. The crystal is further stabilized by a C—H···π interaction (Table 1), involving Cg1 which is the centroid of the N3/C11/C12/N4/C13 ring.

For applications and biological activities of imidazole derivatives, see: Frank & Kalluraya (2005); Dobler (2003); Gauthier & Duceppe (1984); Khan & Nandan (1997); Khabnadideh et al. (2003). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the [101] axis. The dashed lines represent the hydrogen bonds. For clarity sake, hydrogen atoms not involved in hydrogen bonding have been omitted.
(E)-N'-(4-Methoxybenzylidene)-2-(2-methyl-4-nitro-1H- imidazol-1-yl)acetohydrazide top
Crystal data top
C14H15N5O4Z = 2
Mr = 317.31F(000) = 332
Triclinic, P1Dx = 1.430 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.3366 (1) ÅCell parameters from 5229 reflections
b = 12.9773 (3) Åθ = 2.3–30.0°
c = 13.2138 (3) ŵ = 0.11 mm1
α = 84.919 (2)°T = 100 K
β = 87.353 (2)°Plate, yellow
γ = 84.611 (1)°0.51 × 0.19 × 0.11 mm
V = 736.90 (3) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4303 independent reflections
Radiation source: fine-focus sealed tube3252 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 30.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 66
Tmin = 0.947, Tmax = 0.988k = 1818
15663 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0518P)2 + 0.496P]
where P = (Fo2 + 2Fc2)/3
4303 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C14H15N5O4γ = 84.611 (1)°
Mr = 317.31V = 736.90 (3) Å3
Triclinic, P1Z = 2
a = 4.3366 (1) ÅMo Kα radiation
b = 12.9773 (3) ŵ = 0.11 mm1
c = 13.2138 (3) ÅT = 100 K
α = 84.919 (2)°0.51 × 0.19 × 0.11 mm
β = 87.353 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4303 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3252 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.988Rint = 0.035
15663 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.34 e Å3
4303 reflectionsΔρmin = 0.31 e Å3
214 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4105 (3)0.76565 (9)1.00477 (9)0.0228 (3)
O21.0816 (3)0.88398 (8)0.42690 (8)0.0168 (2)
O31.4713 (3)0.47331 (9)0.20227 (9)0.0237 (3)
O41.5848 (3)0.44149 (9)0.36131 (9)0.0256 (3)
N10.5223 (3)0.85992 (9)0.62488 (10)0.0157 (3)
N20.7370 (3)0.90552 (10)0.55866 (10)0.0151 (3)
N30.9336 (3)0.68443 (9)0.40406 (10)0.0156 (3)
N41.0435 (3)0.63333 (9)0.24863 (10)0.0164 (3)
N51.4374 (3)0.49076 (9)0.29156 (10)0.0175 (3)
C10.4567 (4)0.65710 (13)1.02022 (13)0.0243 (4)
H1A0.60640.64581.07710.036*
H1B0.25900.61711.03570.036*
H1C0.53610.63440.95840.036*
C20.2144 (4)0.79626 (12)0.92693 (12)0.0178 (3)
C30.0763 (4)0.73140 (12)0.85563 (12)0.0181 (3)
H3A0.11780.66050.85930.022*
C40.1213 (4)0.77065 (11)0.77954 (12)0.0164 (3)
H4A0.21390.72610.73110.020*
C50.1872 (4)0.87453 (11)0.77251 (11)0.0149 (3)
C60.0467 (4)0.93826 (12)0.84475 (12)0.0193 (3)
H6A0.08931.00900.84150.023*
C70.1527 (4)0.90054 (12)0.92063 (12)0.0204 (3)
H7A0.24770.94530.96850.025*
C80.4071 (4)0.91518 (11)0.69559 (12)0.0155 (3)
H8A0.46580.98360.69790.019*
C90.8830 (4)0.84969 (11)0.48733 (11)0.0141 (3)
C100.7805 (4)0.74033 (11)0.48597 (12)0.0172 (3)
H10A0.82650.70060.55180.021*
H10B0.55340.74520.47820.021*
C111.1547 (4)0.60235 (11)0.41596 (12)0.0162 (3)
H11A1.24470.57220.47710.019*
C121.2159 (4)0.57381 (11)0.31963 (12)0.0156 (3)
C130.8741 (4)0.70062 (11)0.30221 (12)0.0156 (3)
C140.6539 (4)0.78659 (12)0.26004 (13)0.0197 (3)
H14A0.62000.77730.18870.030*
H14B0.74030.85310.26450.030*
H14C0.45630.78610.29910.030*
H1N20.792 (5)0.9681 (18)0.5660 (16)0.031 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0275 (7)0.0223 (6)0.0192 (6)0.0081 (5)0.0062 (5)0.0019 (4)
O20.0186 (6)0.0126 (5)0.0197 (5)0.0047 (4)0.0036 (4)0.0028 (4)
O30.0346 (7)0.0162 (5)0.0199 (6)0.0018 (5)0.0016 (5)0.0055 (4)
O40.0341 (7)0.0176 (5)0.0242 (6)0.0067 (5)0.0071 (5)0.0021 (5)
N10.0165 (6)0.0127 (5)0.0178 (6)0.0019 (5)0.0009 (5)0.0012 (5)
N20.0173 (7)0.0104 (5)0.0181 (6)0.0040 (5)0.0031 (5)0.0033 (5)
N30.0200 (7)0.0099 (5)0.0174 (6)0.0032 (5)0.0016 (5)0.0034 (4)
N40.0195 (7)0.0113 (5)0.0185 (6)0.0022 (5)0.0003 (5)0.0023 (5)
N50.0228 (7)0.0096 (5)0.0204 (7)0.0017 (5)0.0009 (5)0.0025 (5)
C10.0275 (9)0.0232 (8)0.0224 (8)0.0092 (7)0.0021 (7)0.0024 (6)
C20.0183 (8)0.0197 (7)0.0155 (7)0.0027 (6)0.0003 (6)0.0007 (6)
C30.0219 (8)0.0135 (6)0.0191 (7)0.0031 (6)0.0011 (6)0.0009 (5)
C40.0175 (8)0.0140 (6)0.0179 (7)0.0000 (6)0.0002 (6)0.0034 (5)
C50.0151 (7)0.0128 (6)0.0168 (7)0.0007 (6)0.0005 (6)0.0020 (5)
C60.0232 (8)0.0131 (6)0.0221 (8)0.0024 (6)0.0008 (7)0.0045 (6)
C70.0231 (8)0.0182 (7)0.0204 (8)0.0022 (6)0.0040 (7)0.0065 (6)
C80.0173 (7)0.0112 (6)0.0182 (7)0.0009 (6)0.0017 (6)0.0021 (5)
C90.0153 (7)0.0111 (6)0.0163 (7)0.0014 (5)0.0019 (6)0.0022 (5)
C100.0223 (8)0.0128 (6)0.0173 (7)0.0046 (6)0.0050 (6)0.0047 (5)
C110.0205 (8)0.0101 (6)0.0185 (7)0.0034 (6)0.0003 (6)0.0015 (5)
C120.0178 (8)0.0102 (6)0.0190 (7)0.0023 (6)0.0009 (6)0.0017 (5)
C130.0188 (8)0.0096 (6)0.0191 (7)0.0035 (6)0.0002 (6)0.0029 (5)
C140.0229 (8)0.0130 (6)0.0229 (8)0.0016 (6)0.0023 (7)0.0025 (6)
Geometric parameters (Å, º) top
O1—C21.3599 (19)C3—C41.384 (2)
O1—C11.437 (2)C3—H3A0.9500
O2—C91.2340 (18)C4—C51.398 (2)
O3—N51.2206 (17)C4—H4A0.9500
O4—N51.2410 (18)C5—C61.399 (2)
N1—C81.2825 (19)C5—C81.460 (2)
N1—N21.3853 (17)C6—C71.380 (2)
N2—C91.3394 (19)C6—H6A0.9500
N2—H1N20.88 (2)C7—H7A0.9500
N3—C111.368 (2)C8—H8A0.9500
N3—C131.376 (2)C9—C101.5284 (19)
N3—C101.4565 (19)C10—H10A0.9900
N4—C131.3208 (19)C10—H10B0.9900
N4—C121.365 (2)C11—C121.364 (2)
N5—C121.4371 (19)C11—H11A0.9500
C1—H1A0.9800C13—C141.485 (2)
C1—H1B0.9800C14—H14A0.9800
C1—H1C0.9800C14—H14B0.9800
C2—C31.396 (2)C14—H14C0.9800
C2—C71.399 (2)
C2—O1—C1117.64 (13)C5—C6—H6A119.3
C8—N1—N2115.67 (12)C6—C7—C2119.82 (14)
C9—N2—N1118.95 (12)C6—C7—H7A120.1
C9—N2—H1N2119.3 (14)C2—C7—H7A120.1
N1—N2—H1N2121.5 (14)N1—C8—C5121.01 (13)
C11—N3—C13107.62 (12)N1—C8—H8A119.5
C11—N3—C10125.49 (13)C5—C8—H8A119.5
C13—N3—C10126.83 (13)O2—C9—N2122.86 (13)
C13—N4—C12103.74 (13)O2—C9—C10122.67 (13)
O3—N5—O4124.20 (14)N2—C9—C10114.47 (13)
O3—N5—C12119.08 (13)N3—C10—C9112.56 (12)
O4—N5—C12116.72 (13)N3—C10—H10A109.1
O1—C1—H1A109.5C9—C10—H10A109.1
O1—C1—H1B109.5N3—C10—H10B109.1
H1A—C1—H1B109.5C9—C10—H10B109.1
O1—C1—H1C109.5H10A—C10—H10B107.8
H1A—C1—H1C109.5C12—C11—N3103.93 (14)
H1B—C1—H1C109.5C12—C11—H11A128.0
O1—C2—C3124.58 (14)N3—C11—H11A128.0
O1—C2—C7115.76 (14)C11—C12—N4113.11 (14)
C3—C2—C7119.66 (14)C11—C12—N5125.50 (14)
C4—C3—C2119.79 (14)N4—C12—N5121.40 (13)
C4—C3—H3A120.1N4—C13—N3111.59 (14)
C2—C3—H3A120.1N4—C13—C14125.55 (14)
C3—C4—C5121.31 (14)N3—C13—C14122.82 (13)
C3—C4—H4A119.3C13—C14—H14A109.5
C5—C4—H4A119.3C13—C14—H14B109.5
C4—C5—C6118.03 (14)H14A—C14—H14B109.5
C4—C5—C8121.61 (13)C13—C14—H14C109.5
C6—C5—C8120.30 (13)H14A—C14—H14C109.5
C7—C6—C5121.39 (14)H14B—C14—H14C109.5
C7—C6—H6A119.3
C8—N1—N2—C9175.35 (14)C13—N3—C10—C974.30 (19)
C1—O1—C2—C35.9 (2)O2—C9—C10—N32.2 (2)
C1—O1—C2—C7174.01 (15)N2—C9—C10—N3177.07 (14)
O1—C2—C3—C4179.73 (15)C13—N3—C11—C120.07 (16)
C7—C2—C3—C40.2 (3)C10—N3—C11—C12177.30 (13)
C2—C3—C4—C50.2 (2)N3—C11—C12—N40.37 (17)
C3—C4—C5—C60.2 (2)N3—C11—C12—N5179.33 (13)
C3—C4—C5—C8176.91 (15)C13—N4—C12—C110.52 (17)
C4—C5—C6—C70.3 (2)C13—N4—C12—N5179.19 (13)
C8—C5—C6—C7177.45 (16)O3—N5—C12—C11179.70 (15)
C5—C6—C7—C20.8 (3)O4—N5—C12—C110.2 (2)
O1—C2—C7—C6179.25 (16)O3—N5—C12—N40.0 (2)
C3—C2—C7—C60.7 (3)O4—N5—C12—N4179.49 (14)
N2—N1—C8—C5177.68 (14)C12—N4—C13—N30.46 (16)
C4—C5—C8—N17.6 (2)C12—N4—C13—C14177.23 (15)
C6—C5—C8—N1175.37 (15)C11—N3—C13—N40.26 (17)
N1—N2—C9—O2178.50 (14)C10—N3—C13—N4176.93 (13)
N1—N2—C9—C102.3 (2)C11—N3—C13—C14177.51 (14)
C11—N3—C10—C9108.99 (16)C10—N3—C13—C145.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N3/C11/C12/N4/C13 ring.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O2i0.88 (2)2.06 (2)2.9372 (17)176 (2)
C11—H11A···O4ii0.952.283.186 (2)160
C14—H14A···O1iii0.982.463.434 (2)173
C14—H14C···Cg1iv0.982.743.4747 (18)133
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+3, y+1, z+1; (iii) x+1, y, z1; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC14H15N5O4
Mr317.31
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)4.3366 (1), 12.9773 (3), 13.2138 (3)
α, β, γ (°)84.919 (2), 87.353 (2), 84.611 (1)
V3)736.90 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.51 × 0.19 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.947, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
15663, 4303, 3252
Rint0.035
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.131, 1.03
No. of reflections4303
No. of parameters214
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.31

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N3/C11/C12/N4/C13 ring.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O2i0.88 (2)2.06 (2)2.9372 (17)176 (2)
C11—H11A···O4ii0.952.283.186 (2)160
C14—H14A···O1iii0.982.463.434 (2)173
C14—H14C···Cg1iv0.982.743.4747 (18)133
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+3, y+1, z+1; (iii) x+1, y, z1; (iv) x1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: F-8816-2012.

Acknowledgements

HKF and TSC thank Universiti Sains Malaysia (USM) for a Research University Grant (1001/PFIZIK/811160). TSC thanks the Malaysian government and USM for the award of a research fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDobler, M. R. (2003). Tetrahedron Lett. 44, 7115–7117.  Web of Science CrossRef CAS Google Scholar
First citationFrank, P. V. & Kalluraya, B. (2005). Indian J. Chem. Sect. B, 44, 1456–1459.  Google Scholar
First citationGauthier, J. & Duceppe, J. S. (1984). J. Heterocycl. Chem. 21, 1081–1086.  CrossRef CAS Google Scholar
First citationKhabnadideh, S., Rezaei, Z., Khalafi-Nezhad, A., Bahrinajafi, R., Mohamadi, R. & Farrokhroz, A. A. (2003). Bioorg. Med. Chem. Lett. 13, 2863–2865.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, S. A. & Nandan, A. M. (1997). Indian J. Heterocycl. Chem. 7, 55–58.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds