organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Nitro­anilinium p-toluene­sulfonate

aDepartment of Physics, MNM Jain Engineering College, Chennai 600 097, India, bDepartment of Physics, Presidency College, Chennai 600 005, India, and cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, mohan66@hotmail.com

(Received 24 September 2012; accepted 26 September 2012; online 29 September 2012)

In the cation of the title salt, C6H7N2O2+·C7H7O3S, the benzene ring makes a dihedral angle of 10.2 (2)° with the nitro group. In the crystal, the cations and anions are linked by weak N—H⋯O hydrogen bonds, forming a layer parallel to the ac plane. A weak C—H⋯O inter­action and ππ inter­actions [centroid–centroid distances of 3.738 (3) and 3.748 (3) Å] also observed within the layer.

Related literature

For related structures of 4-toluene­sulfonate salts, see: Koshima et al. (2004[Koshima, H., Miyamoto, H., Yagi, I. & Uosaki, K. (2004). Cryst. Growth Des. 4, 807-811.]); Biradha & Mahata (2005[Biradha, K. & Mahata, G. (2005). Cryst. Growth Des. 5, 49-51.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7N2O2+·C7H7O3S

  • Mr = 310.32

  • Monoclinic, P 21 /n

  • a = 6.216 (5) Å

  • b = 30.674 (4) Å

  • c = 7.405 (5) Å

  • β = 97.048 (5)°

  • V = 1401.2 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 295 K

  • 0.30 × 0.24 × 0.20 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.928, Tmax = 0.951

  • 13942 measured reflections

  • 3509 independent reflections

  • 3232 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.134

  • S = 1.22

  • 3509 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H14B⋯O3 0.89 2.09 2.856 (3) 144
N2—H14A⋯O2i 0.89 2.07 2.961 (3) 175
N2—H14B⋯O1ii 0.89 2.33 2.801 (3) 113
N2—H14C⋯O2iii 0.89 1.96 2.834 (3) 167
C12—H12⋯O3iv 0.93 2.59 3.193 (3) 123
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x, y, z-1; (iv) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The asymmetric unit of the title compound (Fig. 1) contains one C6H7N2O2+ cation and one C7H7O3S- anion. The bond lengths and angles in both anion and cation are within normal range (Allen et al., 1987) and those in the anion are comparable to those in other 4-toluenesulfonate salts (Koshima et al., 2004; Biradha & Mahata, 2005). The crystal structure exhibit weak intermolecular N—H···O and C—H···O hydrogen bonds (Table 1 & Fig. 2) and ππ interactions. [Cg1···Cg2 (x, y, 1 + z) distance of 3.748 (3) Å; Cg2···Cg1 (x, y, -1 + z) distance of 3.748 (3) Å; Cg1···Cg2 (1/2 + x, 1/2 - y, 1/2 + z) distance of 3.738 (3) Å; Cg1 and Cg2 are the centroids of the rings (C1–C6) and (C8–C13), respectively.]

Related literature top

For related structures of 4-toluenesulfonate salts, see: Koshima et al. (2004); Biradha & Mahata (2005). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was formed from a mixture of 4-nitroaniline (2.15 g, 1 mmol) and p-toluenesulfonic acid (2.52 g, 1 mmol) in ethanol, which was stirred two hours at room temperature, giving a clear solution. After slow evaporation of ethanol for few days, single crystals suitable for X-ray diffraction were obtained.

Refinement top

H atoms were positioned geometrically and refined using riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H, C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3, and N—H = 0.89 Å and Uiso(H) = 1.5Ueq(N).

Structure description top

The asymmetric unit of the title compound (Fig. 1) contains one C6H7N2O2+ cation and one C7H7O3S- anion. The bond lengths and angles in both anion and cation are within normal range (Allen et al., 1987) and those in the anion are comparable to those in other 4-toluenesulfonate salts (Koshima et al., 2004; Biradha & Mahata, 2005). The crystal structure exhibit weak intermolecular N—H···O and C—H···O hydrogen bonds (Table 1 & Fig. 2) and ππ interactions. [Cg1···Cg2 (x, y, 1 + z) distance of 3.748 (3) Å; Cg2···Cg1 (x, y, -1 + z) distance of 3.748 (3) Å; Cg1···Cg2 (1/2 + x, 1/2 - y, 1/2 + z) distance of 3.738 (3) Å; Cg1 and Cg2 are the centroids of the rings (C1–C6) and (C8–C13), respectively.]

For related structures of 4-toluenesulfonate salts, see: Koshima et al. (2004); Biradha & Mahata (2005). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A packing diagram of the title compound, viewed down the a axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
4-Nitroanilinium p-toluenesulfonate top
Crystal data top
C6H7N2O2+·C7H7O3SF(000) = 648
Mr = 310.32Dx = 1.471 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4052 reflections
a = 6.216 (5) Åθ = 1.8–28.3°
b = 30.674 (4) ŵ = 0.26 mm1
c = 7.405 (5) ÅT = 295 K
β = 97.048 (5)°Block, colourless
V = 1401.2 (15) Å30.30 × 0.24 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
3509 independent reflections
Radiation source: fine-focus sealed tube3232 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and φ scansθmax = 28.4°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.928, Tmax = 0.951k = 4135
13942 measured reflectionsl = 98
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + (0.0471P)2 + 0.984P]
where P = (Fo2 + 2Fc2)/3
3509 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
C6H7N2O2+·C7H7O3SV = 1401.2 (15) Å3
Mr = 310.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.216 (5) ŵ = 0.26 mm1
b = 30.674 (4) ÅT = 295 K
c = 7.405 (5) Å0.30 × 0.24 × 0.20 mm
β = 97.048 (5)°
Data collection top
Bruker Kappa APEXII
diffractometer
3509 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3232 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.951Rint = 0.024
13942 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.22Δρmax = 0.28 e Å3
3509 reflectionsΔρmin = 0.54 e Å3
192 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4464 (3)0.15687 (6)1.0932 (3)0.0291 (4)
C20.3478 (4)0.11695 (7)1.0557 (3)0.0413 (5)
H20.20320.11561.00560.050*
C30.4649 (5)0.07893 (8)1.0928 (4)0.0526 (6)
H30.39740.05221.06760.063*
C40.6802 (5)0.07991 (9)1.1666 (4)0.0513 (6)
C50.7754 (4)0.11997 (9)1.2045 (4)0.0508 (6)
H50.91980.12121.25500.061*
C60.6614 (3)0.15854 (8)1.1694 (3)0.0410 (5)
H60.72860.18521.19660.049*
C70.8092 (6)0.03827 (11)1.2035 (5)0.0829 (11)
H7A0.85060.02721.09140.124*
H7B0.72200.01701.25580.124*
H7C0.93690.04421.28660.124*
C80.4640 (3)0.17612 (6)0.6035 (2)0.0287 (4)
C90.3447 (4)0.13903 (8)0.5530 (3)0.0415 (5)
H90.20150.14130.50020.050*
C100.4402 (4)0.09860 (8)0.5817 (4)0.0480 (6)
H100.36270.07320.55040.058*
C110.6539 (4)0.09694 (7)0.6584 (3)0.0411 (5)
C120.7739 (4)0.13364 (7)0.7077 (3)0.0400 (5)
H120.91770.13130.75900.048*
C130.6768 (3)0.17402 (7)0.6797 (3)0.0345 (4)
H130.75430.19940.71180.041*
N20.3582 (3)0.21852 (6)0.5788 (2)0.0328 (4)
H14A0.45350.23950.61330.049*
H14B0.24900.21980.64590.049*
H14C0.30740.22210.46200.049*
N10.7608 (5)0.05441 (7)0.6924 (4)0.0669 (7)
O10.4582 (3)0.23868 (5)1.0129 (3)0.0461 (4)
O20.1910 (3)0.21560 (5)1.20530 (19)0.0384 (3)
O30.1435 (2)0.19798 (5)0.8876 (2)0.0379 (3)
O40.9550 (4)0.05402 (8)0.7374 (5)0.1119 (12)
O50.6501 (5)0.02194 (7)0.6748 (5)0.1009 (10)
S10.30084 (7)0.205912 (15)1.04561 (6)0.02737 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0279 (9)0.0332 (9)0.0263 (8)0.0032 (7)0.0039 (7)0.0001 (7)
C20.0390 (11)0.0364 (11)0.0463 (12)0.0012 (9)0.0033 (9)0.0008 (9)
C30.0632 (16)0.0345 (11)0.0586 (15)0.0043 (11)0.0014 (12)0.0016 (10)
C40.0590 (15)0.0487 (14)0.0465 (13)0.0220 (11)0.0077 (11)0.0053 (11)
C50.0343 (11)0.0656 (16)0.0509 (14)0.0147 (11)0.0004 (10)0.0083 (12)
C60.0308 (10)0.0471 (12)0.0436 (12)0.0005 (9)0.0018 (9)0.0015 (9)
C70.091 (3)0.066 (2)0.091 (3)0.0408 (19)0.009 (2)0.0157 (18)
C80.0280 (9)0.0348 (9)0.0230 (8)0.0016 (7)0.0020 (7)0.0026 (7)
C90.0308 (10)0.0482 (12)0.0434 (12)0.0059 (9)0.0039 (9)0.0025 (10)
C100.0478 (13)0.0388 (12)0.0562 (14)0.0112 (10)0.0016 (11)0.0054 (10)
C110.0472 (12)0.0325 (10)0.0434 (12)0.0047 (9)0.0053 (10)0.0030 (9)
C120.0336 (10)0.0402 (11)0.0444 (12)0.0040 (8)0.0032 (9)0.0009 (9)
C130.0300 (9)0.0341 (10)0.0374 (10)0.0007 (8)0.0041 (8)0.0003 (8)
N20.0288 (8)0.0389 (9)0.0303 (8)0.0044 (7)0.0026 (6)0.0028 (7)
N10.0780 (18)0.0361 (11)0.0860 (19)0.0084 (11)0.0073 (14)0.0039 (11)
O10.0391 (8)0.0369 (8)0.0628 (11)0.0085 (6)0.0081 (7)0.0031 (7)
O20.0421 (8)0.0455 (8)0.0283 (7)0.0105 (6)0.0072 (6)0.0024 (6)
O30.0338 (7)0.0469 (8)0.0307 (7)0.0050 (6)0.0053 (6)0.0016 (6)
O40.0718 (17)0.0540 (14)0.203 (4)0.0273 (12)0.0121 (19)0.0111 (17)
O50.107 (2)0.0358 (11)0.156 (3)0.0028 (12)0.0016 (19)0.0068 (14)
S10.0253 (2)0.0303 (2)0.0264 (2)0.00042 (16)0.00236 (16)0.00106 (16)
Geometric parameters (Å, º) top
C1—C21.382 (3)C9—C101.380 (3)
C1—C61.387 (3)C9—H90.9300
C1—S11.768 (2)C10—C111.380 (4)
C2—C31.384 (3)C10—H100.9300
C2—H20.9300C11—C121.375 (3)
C3—C41.383 (4)C11—N11.472 (3)
C3—H30.9300C12—C131.382 (3)
C4—C51.377 (4)C12—H120.9300
C4—C71.515 (4)C13—H130.9300
C5—C61.387 (3)N2—H14A0.8900
C5—H50.9300N2—H14B0.8900
C6—H60.9300N2—H14C0.8900
C7—H7A0.9600N1—O51.209 (3)
C7—H7B0.9600N1—O41.212 (4)
C7—H7C0.9600O1—S11.4436 (16)
C8—C131.374 (3)O2—S11.4665 (16)
C8—C91.385 (3)O3—S11.4507 (16)
C8—N21.459 (2)
C2—C1—C6119.73 (19)C8—C9—H9120.3
C2—C1—S1120.68 (16)C9—C10—C11118.1 (2)
C6—C1—S1119.59 (16)C9—C10—H10121.0
C1—C2—C3119.8 (2)C11—C10—H10121.0
C1—C2—H2120.1C12—C11—C10122.9 (2)
C3—C2—H2120.1C12—C11—N1117.5 (2)
C4—C3—C2121.3 (2)C10—C11—N1119.7 (2)
C4—C3—H3119.3C11—C12—C13118.8 (2)
C2—C3—H3119.3C11—C12—H12120.6
C5—C4—C3118.1 (2)C13—C12—H12120.6
C5—C4—C7120.7 (3)C8—C13—C12118.96 (19)
C3—C4—C7121.2 (3)C8—C13—H13120.5
C4—C5—C6121.7 (2)C12—C13—H13120.5
C4—C5—H5119.1C8—N2—H14A109.5
C6—C5—H5119.1C8—N2—H14B109.5
C1—C6—C5119.3 (2)H14A—N2—H14B109.5
C1—C6—H6120.3C8—N2—H14C109.5
C5—C6—H6120.3H14A—N2—H14C109.5
C4—C7—H7A109.5H14B—N2—H14C109.5
C4—C7—H7B109.5O5—N1—O4123.8 (3)
H7A—C7—H7B109.5O5—N1—C11118.2 (3)
C4—C7—H7C109.5O4—N1—C11118.0 (2)
H7A—C7—H7C109.5O1—S1—O3112.65 (11)
H7B—C7—H7C109.5O1—S1—O2112.71 (10)
C13—C8—C9121.95 (19)O3—S1—O2110.50 (11)
C13—C8—N2119.34 (17)O1—S1—C1106.57 (10)
C9—C8—N2118.70 (18)O3—S1—C1107.22 (9)
C10—C9—C8119.4 (2)O2—S1—C1106.79 (9)
C10—C9—H9120.3
C6—C1—C2—C30.6 (3)C10—C11—C12—C130.0 (4)
S1—C1—C2—C3179.55 (19)N1—C11—C12—C13179.1 (2)
C1—C2—C3—C40.2 (4)C9—C8—C13—C120.5 (3)
C2—C3—C4—C50.8 (4)N2—C8—C13—C12178.06 (18)
C2—C3—C4—C7178.8 (3)C11—C12—C13—C80.0 (3)
C3—C4—C5—C60.5 (4)C12—C11—N1—O5169.4 (3)
C7—C4—C5—C6179.0 (3)C10—C11—N1—O59.8 (4)
C2—C1—C6—C50.8 (3)C12—C11—N1—O410.3 (4)
S1—C1—C6—C5179.28 (18)C10—C11—N1—O4170.6 (3)
C4—C5—C6—C10.3 (4)C2—C1—S1—O1152.38 (18)
C13—C8—C9—C100.9 (3)C6—C1—S1—O127.7 (2)
N2—C8—C9—C10177.6 (2)C2—C1—S1—O331.5 (2)
C8—C9—C10—C110.8 (4)C6—C1—S1—O3148.59 (17)
C9—C10—C11—C120.4 (4)C2—C1—S1—O286.92 (19)
C9—C10—C11—N1179.5 (2)C6—C1—S1—O292.96 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H14B···O30.892.092.856 (3)144
N2—H14A···O2i0.892.072.961 (3)175
N2—H14B···O1ii0.892.332.801 (3)113
N2—H14C···O2iii0.891.962.834 (3)167
C12—H12···O3iv0.932.593.193 (3)123
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x1/2, y+1/2, z1/2; (iii) x, y, z1; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC6H7N2O2+·C7H7O3S
Mr310.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)6.216 (5), 30.674 (4), 7.405 (5)
β (°) 97.048 (5)
V3)1401.2 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.30 × 0.24 × 0.20
Data collection
DiffractometerBruker Kappa APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.928, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
13942, 3509, 3232
Rint0.024
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.134, 1.22
No. of reflections3509
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.54

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H14B···O30.892.092.856 (3)144
N2—H14A···O2i0.892.072.961 (3)175
N2—H14B···O1ii0.892.332.801 (3)113
N2—H14C···O2iii0.891.962.834 (3)167
C12—H12···O3iv0.932.593.193 (3)123
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x1/2, y+1/2, z1/2; (iii) x, y, z1; (iv) x+1, y, z.
 

Acknowledgements

The authors wish to acknowledge the SAIF, IIT Madras, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBiradha, K. & Mahata, G. (2005). Cryst. Growth Des. 5, 49–51.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKoshima, H., Miyamoto, H., Yagi, I. & Uosaki, K. (2004). Cryst. Growth Des. 4, 807–811.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds