metal-organic compounds
{4,4′-Dimethoxy-2,2′-[2,2-dimethylpropane-1,3-diylbis(nitrilomethanylylidene)]diphenolato}copper(II) monohydrate
aDepartment of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, I. R. of IRAN, bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, cDepartment of Chemistry, University of Isfahan, 81746-73441, Isfahan, Iran, and dDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: zsrkk@yahoo.com, dmntahir_uos@yahoo.com
The 21H24N2O4)]·H2O, comprises half of a Schiff base complex and a water molecule. The CuII atom, water molecule and one C atom of the central propylene segment are located on a twofold rotation axis. The geometry around the CuII atom is distorted square-planar, supported by the N2O2 donor atoms of the coordinating ligand. The dihedral angle between the symmetry-related benzene rings is 42.56 (19)°. In the crystal, O—H⋯O hydrogen bonds involving the water molecule make an R21(6) ring motif. Complex molecules are linked into a chain along the c axis via C—H⋯O interactions.
of the title compound, [Cu(CRelated literature
For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For applications of in coordination chemistry, see, for example: Granovski et al. (1993); Blower et al. (1998). For related structures, see, for example: Ghaemi et al. (2011); Kargar et al. (2011, 2012).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536812038135/kp2436sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812038135/kp2436Isup2.hkl
The title compound was synthesized by adding 5-methoxy-salicylaldehyde-2,2-dimethyl-1, 3-propanediamine (2 mmol) to a solution of CuCl2. 4H2O (2.1 mmol) in ethanol (30 mL). The mixture was refluxed with stirring for 30 min. The resultant solution was filtered. Dark-green single crystals of the title compound suitable for X-ray
were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.The H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 H-atoms, respectively, with Uiso (H) = k × Ueq(C), where k = 1.5 for CH3 H-atoms, and k = 1.2 for all other H-atoms.
Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with the ease of preparation and structural variations (Granovski et al., 1993; Blower et al., (1998). In continuation of our work on the crystal structures of Schiff base metal complexes (Kargar et al., 2012; Kargar et al., 2011; Ghaemi, et al., (2011), we determined the X-ray structure of the title compound.
The
of the title compound (Fig. 1) comprises a a half of Schiff base complex. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to the related structure (Kargar et al., 2012; Kargar et al., 2011; Ghaemi, et al., (2011). The geometry around CuII is a distorted square-planar which is supported by the N2O2 donor atoms of the coordinated Schiff base ligand (Table 1). The dihedral angle between the substituted benzene rings is 42.56 (19)°. Interamolecular O—H···O hydrogen bonds make R12(6) ring motif (Bernstein et al., 1995). The dihedral angle between the symmetry-related benzene rings is 45.54 (19)°. In the the molecules are linked together along the c axis, forming a chain through the intermolecular C—H···O interactions (Table 2, Fig. 2).For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For applications of
in coordination chemistry, see, for example: Granovski et al. (1993); Blower et al. (1998). For related structures, see, for example: Ghaemi, et al., (2011); Kargar et al. (2011, 2012).Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).[Cu(C21H24N2O4)]·H2O | F(000) = 940 |
Mr = 449.98 | Dx = 1.406 Mg m−3 |
Orthorhombic, Pbcn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2n 2ab | Cell parameters from 2169 reflections |
a = 20.567 (2) Å | θ = 2.5–27.4° |
b = 12.2647 (14) Å | µ = 1.06 mm−1 |
c = 8.4287 (7) Å | T = 291 K |
V = 2126.1 (4) Å3 | Block, dark-green |
Z = 4 | 0.21 × 0.14 × 0.08 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 2620 independent reflections |
Radiation source: fine-focus sealed tube | 1113 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.115 |
φ and ω scans | θmax = 28.3°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −27→27 |
Tmin = 0.256, Tmax = 0.535 | k = −16→16 |
17546 measured reflections | l = −10→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 0.98 | w = 1/[σ2(Fo2) + (0.0498P)2 + 0.1009P] where P = (Fo2 + 2Fc2)/3 |
2620 reflections | (Δ/σ)max < 0.001 |
134 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
[Cu(C21H24N2O4)]·H2O | V = 2126.1 (4) Å3 |
Mr = 449.98 | Z = 4 |
Orthorhombic, Pbcn | Mo Kα radiation |
a = 20.567 (2) Å | µ = 1.06 mm−1 |
b = 12.2647 (14) Å | T = 291 K |
c = 8.4287 (7) Å | 0.21 × 0.14 × 0.08 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 2620 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 1113 reflections with I > 2σ(I) |
Tmin = 0.256, Tmax = 0.535 | Rint = 0.115 |
17546 measured reflections |
R[F2 > 2σ(F2)] = 0.051 | 0 restraints |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 0.98 | Δρmax = 0.28 e Å−3 |
2620 reflections | Δρmin = −0.36 e Å−3 |
134 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1W | 0.5000 | 0.1449 (4) | −0.2500 | 0.136 (2) | |
H1W | 0.5199 | 0.1907 | −0.1831 | 0.205* | |
N1 | 0.44802 (15) | 0.5832 (3) | −0.1447 (3) | 0.0486 (8) | |
C1 | 0.37450 (19) | 0.3777 (3) | −0.1853 (4) | 0.0476 (10) | |
C2 | 0.3307 (2) | 0.2908 (3) | −0.2041 (5) | 0.0616 (12) | |
H1 | 0.3448 | 0.2271 | −0.2531 | 0.074* | |
C3 | 0.2675 (2) | 0.2974 (3) | −0.1520 (5) | 0.0642 (12) | |
H3 | 0.2395 | 0.2389 | −0.1682 | 0.077* | |
C4 | 0.24498 (19) | 0.3899 (3) | −0.0757 (5) | 0.0547 (11) | |
C5 | 0.28556 (19) | 0.4760 (3) | −0.0581 (5) | 0.0516 (10) | |
H5 | 0.2703 | 0.5388 | −0.0087 | 0.062* | |
C6 | 0.35058 (18) | 0.4730 (3) | −0.1130 (4) | 0.0459 (9) | |
C7 | 0.1550 (2) | 0.4783 (4) | 0.0455 (6) | 0.0796 (15) | |
H7A | 0.1793 | 0.4947 | 0.1399 | 0.119* | |
H7B | 0.1104 | 0.4650 | 0.0730 | 0.119* | |
H7C | 0.1575 | 0.5389 | −0.0264 | 0.119* | |
C8 | 0.38928 (18) | 0.5688 (3) | −0.0937 (4) | 0.0480 (10) | |
H8 | 0.3704 | 0.6265 | −0.0390 | 0.058* | |
C9 | 0.4810 (2) | 0.6853 (4) | −0.1061 (5) | 0.0596 (12) | |
H9A | 0.5197 | 0.6691 | −0.0450 | 0.072* | |
H9B | 0.4525 | 0.7290 | −0.0400 | 0.072* | |
C10 | 0.5000 | 0.7548 (5) | −0.2500 | 0.0626 (16) | |
C11 | 0.4427 (3) | 0.8223 (5) | −0.3009 (7) | 0.139 (3) | |
H11A | 0.4546 | 0.8661 | −0.3906 | 0.209* | |
H11B | 0.4295 | 0.8688 | −0.2150 | 0.209* | |
H11C | 0.4073 | 0.7751 | −0.3294 | 0.209* | |
Cu1 | 0.5000 | 0.47397 (6) | −0.2500 | 0.0496 (3) | |
O1 | 0.43439 (12) | 0.3654 (2) | −0.2370 (3) | 0.0530 (7) | |
O3 | 0.18104 (14) | 0.3856 (3) | −0.0270 (4) | 0.0734 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1W | 0.216 (7) | 0.081 (4) | 0.113 (5) | 0.000 | −0.022 (4) | 0.000 |
N1 | 0.045 (2) | 0.060 (2) | 0.041 (2) | −0.0107 (18) | 0.0028 (15) | −0.0045 (16) |
C1 | 0.048 (3) | 0.052 (3) | 0.043 (2) | −0.001 (2) | 0.0030 (19) | 0.0007 (19) |
C2 | 0.058 (3) | 0.049 (3) | 0.078 (3) | −0.002 (2) | 0.010 (2) | −0.009 (2) |
C3 | 0.054 (3) | 0.054 (3) | 0.085 (3) | −0.011 (2) | 0.010 (2) | −0.005 (2) |
C4 | 0.040 (2) | 0.059 (3) | 0.065 (3) | −0.001 (2) | 0.003 (2) | 0.004 (2) |
C5 | 0.046 (2) | 0.054 (3) | 0.054 (2) | 0.003 (2) | 0.005 (2) | −0.003 (2) |
C6 | 0.043 (2) | 0.048 (2) | 0.046 (2) | 0.000 (2) | −0.0001 (18) | 0.000 (2) |
C7 | 0.053 (3) | 0.091 (4) | 0.095 (4) | −0.008 (3) | 0.019 (3) | −0.006 (3) |
C8 | 0.048 (2) | 0.050 (3) | 0.046 (2) | 0.002 (2) | 0.002 (2) | −0.0086 (19) |
C9 | 0.056 (3) | 0.068 (3) | 0.054 (3) | −0.015 (2) | 0.003 (2) | −0.008 (2) |
C10 | 0.072 (4) | 0.054 (4) | 0.062 (4) | 0.000 | 0.006 (4) | 0.000 |
C11 | 0.178 (7) | 0.137 (5) | 0.102 (4) | 0.106 (5) | 0.047 (4) | 0.041 (4) |
Cu1 | 0.0406 (4) | 0.0587 (5) | 0.0494 (4) | 0.000 | 0.0029 (3) | 0.000 |
O1 | 0.0433 (15) | 0.0533 (17) | 0.0624 (18) | 0.0010 (12) | 0.0043 (15) | −0.0051 (14) |
O3 | 0.0435 (17) | 0.073 (2) | 0.104 (3) | −0.0068 (16) | 0.0141 (16) | −0.0039 (18) |
O1W—H1W | 0.8940 | C7—H7A | 0.9600 |
N1—C8 | 1.295 (4) | C7—H7B | 0.9600 |
N1—C9 | 1.460 (5) | C7—H7C | 0.9600 |
N1—Cu1 | 1.930 (3) | C8—H8 | 0.9300 |
C1—O1 | 1.315 (4) | C9—C10 | 1.533 (5) |
C1—C2 | 1.405 (5) | C9—H9A | 0.9691 |
C1—C6 | 1.407 (5) | C9—H9B | 0.9699 |
C2—C3 | 1.374 (5) | C10—C11i | 1.503 (6) |
C2—H1 | 0.9300 | C10—C11 | 1.503 (6) |
C3—C4 | 1.384 (5) | C10—C9i | 1.533 (5) |
C3—H3 | 0.9300 | C11—H11A | 0.9600 |
C4—C5 | 1.354 (5) | C11—H11B | 0.9600 |
C4—O3 | 1.379 (4) | C11—H11C | 0.9600 |
C5—C6 | 1.415 (5) | Cu1—O1 | 1.899 (3) |
C5—H5 | 0.9300 | Cu1—O1i | 1.899 (3) |
C6—C8 | 1.429 (5) | Cu1—N1i | 1.930 (3) |
C7—O3 | 1.398 (5) | ||
C8—N1—C9 | 118.5 (3) | N1—C8—H8 | 116.8 |
C8—N1—Cu1 | 125.1 (3) | C6—C8—H8 | 116.8 |
C9—N1—Cu1 | 116.1 (3) | N1—C9—C10 | 114.7 (3) |
O1—C1—C2 | 118.5 (4) | N1—C9—H9A | 108.9 |
O1—C1—C6 | 124.5 (4) | C10—C9—H9A | 108.9 |
C2—C1—C6 | 117.0 (4) | N1—C9—H9B | 108.8 |
C3—C2—C1 | 121.8 (4) | C10—C9—H9B | 107.6 |
C3—C2—H1 | 119.1 | H9A—C9—H9B | 107.7 |
C1—C2—H1 | 119.1 | C11i—C10—C11 | 113.1 (7) |
C2—C3—C4 | 120.8 (4) | C11i—C10—C9i | 109.4 (3) |
C2—C3—H3 | 119.6 | C11—C10—C9i | 106.3 (3) |
C4—C3—H3 | 119.6 | C11i—C10—C9 | 106.3 (3) |
C5—C4—O3 | 125.9 (4) | C11—C10—C9 | 109.4 (3) |
C5—C4—C3 | 119.0 (4) | C9i—C10—C9 | 112.5 (5) |
O3—C4—C3 | 115.2 (4) | C10—C11—H11A | 109.5 |
C4—C5—C6 | 121.7 (4) | C10—C11—H11B | 109.5 |
C4—C5—H5 | 119.1 | H11A—C11—H11B | 109.5 |
C6—C5—H5 | 119.1 | C10—C11—H11C | 109.5 |
C1—C6—C5 | 119.6 (4) | H11A—C11—H11C | 109.5 |
C1—C6—C8 | 122.5 (4) | H11B—C11—H11C | 109.5 |
C5—C6—C8 | 117.9 (4) | O1—Cu1—O1i | 90.97 (15) |
O3—C7—H7A | 109.5 | O1—Cu1—N1i | 155.08 (11) |
O3—C7—H7B | 109.5 | O1i—Cu1—N1i | 93.83 (12) |
H7A—C7—H7B | 109.5 | O1—Cu1—N1 | 93.83 (12) |
O3—C7—H7C | 109.5 | O1i—Cu1—N1 | 155.08 (11) |
H7A—C7—H7C | 109.5 | N1i—Cu1—N1 | 92.05 (18) |
H7B—C7—H7C | 109.5 | C1—O1—Cu1 | 127.2 (2) |
N1—C8—C6 | 126.5 (4) | C4—O3—C7 | 117.6 (3) |
O1—C1—C2—C3 | 179.5 (4) | Cu1—N1—C9—C10 | 68.1 (4) |
C6—C1—C2—C3 | −1.1 (6) | N1—C9—C10—C11i | −153.9 (4) |
C1—C2—C3—C4 | −1.3 (7) | N1—C9—C10—C11 | 83.7 (5) |
C2—C3—C4—C5 | 2.4 (7) | N1—C9—C10—C9i | −34.2 (2) |
C2—C3—C4—O3 | −179.0 (4) | C8—N1—Cu1—O1 | −0.3 (3) |
O3—C4—C5—C6 | −179.6 (4) | C9—N1—Cu1—O1 | 172.8 (3) |
C3—C4—C5—C6 | −1.2 (6) | C8—N1—Cu1—O1i | −100.9 (4) |
O1—C1—C6—C5 | −178.4 (3) | C9—N1—Cu1—O1i | 72.2 (4) |
C2—C1—C6—C5 | 2.2 (6) | C8—N1—Cu1—N1i | 155.4 (4) |
O1—C1—C6—C8 | 2.4 (6) | C9—N1—Cu1—N1i | −31.4 (2) |
C2—C1—C6—C8 | −177.0 (3) | C2—C1—O1—Cu1 | 171.9 (3) |
C4—C5—C6—C1 | −1.1 (6) | C6—C1—O1—Cu1 | −7.5 (5) |
C4—C5—C6—C8 | 178.1 (3) | O1i—Cu1—O1—C1 | 161.4 (3) |
C9—N1—C8—C6 | −176.9 (3) | N1i—Cu1—O1—C1 | −97.4 (4) |
Cu1—N1—C8—C6 | −3.9 (5) | N1—Cu1—O1—C1 | 5.9 (3) |
C1—C6—C8—N1 | 3.7 (6) | C5—C4—O3—C7 | 0.8 (6) |
C5—C6—C8—N1 | −175.6 (4) | C3—C4—O3—C7 | −177.7 (4) |
C8—N1—C9—C10 | −118.3 (4) |
Symmetry code: (i) −x+1, y, −z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O1i | 0.89 | 2.43 | 3.024 (5) | 124 |
C9—H9A···O1ii | 0.97 | 2.59 | 3.432 (5) | 145 |
Symmetry codes: (i) −x+1, y, −z−1/2; (ii) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C21H24N2O4)]·H2O |
Mr | 449.98 |
Crystal system, space group | Orthorhombic, Pbcn |
Temperature (K) | 291 |
a, b, c (Å) | 20.567 (2), 12.2647 (14), 8.4287 (7) |
V (Å3) | 2126.1 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.06 |
Crystal size (mm) | 0.21 × 0.14 × 0.08 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.256, 0.535 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17546, 2620, 1113 |
Rint | 0.115 |
(sin θ/λ)max (Å−1) | 0.666 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.140, 0.98 |
No. of reflections | 2620 |
No. of parameters | 134 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.36 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O1i | 0.89 | 2.43 | 3.024 (5) | 124 |
C9—H9A···O1ii | 0.97 | 2.59 | 3.432 (5) | 145 |
Symmetry codes: (i) −x+1, y, −z−1/2; (ii) −x+1, −y+1, −z. |
Acknowledgements
HK and FG thank PNU for the financial support. MNT thanks the University of Sargodha for the research facility.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Blower, P. J. (1998). Transition Met. Chem., 23, 109–112. CrossRef CAS Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ghaemi, A., Rayati, S., Elahi, E., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m1445–m1446. Web of Science CSD CrossRef IUCr Journals Google Scholar
Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69. Google Scholar
Kargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, m941. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kargar, H., Kia, R., Sharafi, Z. & Tahir, M. N. (2012). Acta Cryst. E68, m82. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with the ease of preparation and structural variations (Granovski et al., 1993; Blower et al., (1998). In continuation of our work on the crystal structures of Schiff base metal complexes (Kargar et al., 2012; Kargar et al., 2011; Ghaemi, et al., (2011), we determined the X-ray structure of the title compound.
The asymmetric unit of the title compound (Fig. 1) comprises a a half of Schiff base complex. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to the related structure (Kargar et al., 2012; Kargar et al., 2011; Ghaemi, et al., (2011). The geometry around CuII is a distorted square-planar which is supported by the N2O2 donor atoms of the coordinated Schiff base ligand (Table 1). The dihedral angle between the substituted benzene rings is 42.56 (19)°. Interamolecular O—H···O hydrogen bonds make R12(6) ring motif (Bernstein et al., 1995). The dihedral angle between the symmetry-related benzene rings is 45.54 (19)°. In the crystal structure the molecules are linked together along the c axis, forming a chain through the intermolecular C—H···O interactions (Table 2, Fig. 2).