metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[hexa­aqua­bis­­(μ4-pyrimidine-4,6-di­carboxyl­ato)tetra­lithium]

aInstitute of Nuclear Chemistry and Technology, ul.Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: j.leciejewicz@ichtj.waw.pl

(Received 26 July 2012; accepted 10 September 2012; online 15 September 2012)

The asymmetric unit of the title compound, [Li4(C6H2N2O4)2(H2O)6]n, comprises two Li+ ions bridged by a completely deprotonated pyrimidine-3,6-dicarboxyl­ate ligand and coordinated by two water mol­ecules; the asymmetric units related by an inversion operation create a structural unit which forms part of a two-dimensional polymeric structure parallel to (10-1). One of the Li+ ions shows a distorted tetra­hedral arrangement involving two symmetry-related coordinating water mol­ecules and two carboxyl­ate O atoms. The other Li+ ion is in distorted trigonal–bipyramidal geometry defined by N and O atoms of the ligands and a water mol­ecule. Water O atoms are proton donors to carboxyl­ate O atoms forming hydrogen bonds.

Related literature

For the crystal structures of pyrimidine-3,6-dicarb­oxy­lic acid dihydrate and two K+ complexes with pyrimidine-3,6-dicarboxyl­ate and aqua ligands, see: Beobide et al. (2007[Beobide, G., Castillo, O., Luque, A., Garcia-Couceiro, U., Garcia-Teran, J. P. & Roman, P. (2007). Dalton Trans. pp. 2668-2680.]). For the structures of Li+ complexes with a pyrimidine-2-carboxyl­ato ligand, see: Starosta & Leciejewicz (2011[Starosta, W. & Leciejewicz, J. (2011). Acta Cryst. E67, m818.]) and with a pyrimidine-4-carboxyl­ate ligand, see: Starosta & Leciejewicz (2012[Starosta, W. & Leciejewicz, J. (2012). Acta Cryst. E68, m1065-m1066.]).

[Scheme 1]

Experimental

Crystal data
  • [Li4(C6H2N2O4)2(H2O)6]

  • Mr = 234.02

  • Monoclinic, P 21 /n

  • a = 6.7014 (13) Å

  • b = 11.755 (2) Å

  • c = 12.251 (3) Å

  • β = 98.38 (3)°

  • V = 954.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 K

  • 0.48 × 0.20 × 0.13 mm

Data collection
  • Kuma KM-4 four-cricle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.960, Tmax = 0.988

  • 3009 measured reflections

  • 2792 independent reflections

  • 2094 reflections with I > 2σ(I)

  • Rint = 0.023

  • 3 standard reflections every 200 reflections intensity decay: 0.4%

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.126

  • S = 0.95

  • 2792 reflections

  • 178 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected bond lengths (Å)

Li1—O5 2.081 (3)
Li1—O3i 2.100 (2)
Li1—N3i 2.153 (2)
Li1—O1 2.030 (2)
Li1—N1 2.156 (2)
Li2—O4ii 1.967 (2)
Li2—O7 1.898 (3)
Li2—O6 1.990 (3)
Li2—O3 1.949 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H71⋯O6iii 0.85 (3) 2.19 (3) 3.0409 (18) 175 (2)
O7—H72⋯O1iv 0.96 (3) 1.75 (3) 2.6920 (15) 168 (2)
O6—H62⋯O2v 0.91 (3) 1.85 (3) 2.7518 (15) 172 (2)
O6—H61⋯O5vi 0.88 (3) 1.98 (3) 2.7889 (16) 151 (2)
O5—H51⋯O2vii 0.87 (3) 1.89 (3) 2.7594 (14) 172 (3)
O5—H52⋯O4viii 0.85 (3) 2.02 (3) 2.8670 (14) 178 (2)
Symmetry codes: (iii) -x+2, -y+1, -z+1; (iv) -x+1, -y+2, -z+1; (v) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, z-{\script{1\over 2}}]; (viii) -x, -y+2, -z+1.

Data collection: KM-4 Software (Kuma, 1996[Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001[Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The asymmetric unit of the title compound contains two symmetry independent LiI ions, one with distorted trigonal bipyramidal, the other with distorted tetrahedral coordination geometry, a deprotonated ligand molecule acting in µ4 bridging mode and two independent water molecules coordinated to metal ions. The structural unit is built of asymmetric units related by an inversion centre. The ligand N1,O1 bonding group chelates the Li1 ion leaving the carboxylato O2 atom coordination inactive while its carboxylato O3 and O4 atoms bridge, related by an inversion centre, Li2 and Li2ii ions. The latter are also coordinated by O4ii and O3ii atoms donated by the adjacent one related by the same inversion center ligand forming a dimeric bonding loop which constitutes a core of a centrosymmetric structural unit composed of the Li1 ion, the ligand, the dimeric loop, the ligandii and the Li1ii ion (Fig. 1). Symmetry code; i -x + 1/2, y + 1/2, -z + 1/2; ii -x + 1, -y + 1,-z + 1; iii x + 1/2, -y + 1/2, z + 1/2; iv -x + 1/2, y - 1/2, -z + 1/2; v x - 1/2, -y + 1/2, z - 1/2. The plane of the loop [r.m.s. 0.2647 (5) Å] makes a dihedral angle of 24.0 (2)° with the ligand ring plane. This unit, terminated on both sides by Li1 and Li1ii ions linked to adjacent units via N3i,O3i and N3iii,O3iii bonding groups and via N3,O3 and N3ii,O3ii bonding groups to Li1v and Liivions in adjacent units, generate a two-dimensional layer with Li1 ions as its nodes (Fig. 2). The arrangement of the layers in the unit cell is shown in Fig. 3. The coordination polyhedron of the Li1 ion, composed of the bridging N1,O1 and N3i),O3(i) bonding groups and the aqua O5 atom is a distorted trigonal bipyramid. Its equatorial plane is formed by N1, N3i and O5 atoms. The Li1 ion is 0.0908 (2) Å out of this plane, O1 and O3i atoms are at apical positions. The Li2 ion chelated by carboxylato O3,O4ii atoms and aqua O6 with inversion related atoms shows a distorted tetrahedral coordination geometry. The Li—O and Li—N bond lengths (Table 1) fit well to those observed in the structures of Li complexes with other pyrimidine carboxylate ligands (Starosta & Leciejewicz, 2011, 2012). The pyrimidine ring is planar with r.m.s. of 0.0121 (2) A°, C7/O1/O2 and C8/O3/O4 carboxylate groups make with it dihedral angles of 4.0 (1)° and 24.0 (2)°, respectively. Bond distances and bond angles are close to those observed in the structure of the parent acid and its two potassium complexes (Beobide et al., 2007). A network of hydrogen bonds (Table 2), in which coordinated water molecules act as donors and carboxylato O atoms are acceptors maintains the stability of the structure.

Related literature top

For the crystal structures of pyrimidine-3,6-dicarboxylic acid dihydrate and two KI complexes with pyrimidine-3,6-dicarboxylate and aqua ligands, see: Beobide et al. (2007). For the structures of Li complexes with a pyrimidine-2-carboxylato ligand, see: Starosta & Leciejewicz, (2011) and with a pyrimidine-4-carboxylate ligand, see: Starosta & Leciejewicz (2012)

Experimental top

1 mmol of pyrimidine-3,6-dicarboxylic acid dihydrate and 2 mmol s of lithium hydroxide were dissolved in 50 mL of hot, doubly distilled water and boiled under reflux with stirring for six hours. Left to crystallize at room temperature, colourless single-crystal blocks deposited after a week. They were washed with cold methanol and dried in the air.

Refinement top

Hydrogen atoms attached to water molecules were located in a difference map and refined isotropically, while two H atoms attached to pyrimidine C atoms were located at a calculated positions and treated as riding on the parent atoms with C—H=0.93 Å and Uiso(H)=1.2Ueq(C).

Structure description top

The asymmetric unit of the title compound contains two symmetry independent LiI ions, one with distorted trigonal bipyramidal, the other with distorted tetrahedral coordination geometry, a deprotonated ligand molecule acting in µ4 bridging mode and two independent water molecules coordinated to metal ions. The structural unit is built of asymmetric units related by an inversion centre. The ligand N1,O1 bonding group chelates the Li1 ion leaving the carboxylato O2 atom coordination inactive while its carboxylato O3 and O4 atoms bridge, related by an inversion centre, Li2 and Li2ii ions. The latter are also coordinated by O4ii and O3ii atoms donated by the adjacent one related by the same inversion center ligand forming a dimeric bonding loop which constitutes a core of a centrosymmetric structural unit composed of the Li1 ion, the ligand, the dimeric loop, the ligandii and the Li1ii ion (Fig. 1). Symmetry code; i -x + 1/2, y + 1/2, -z + 1/2; ii -x + 1, -y + 1,-z + 1; iii x + 1/2, -y + 1/2, z + 1/2; iv -x + 1/2, y - 1/2, -z + 1/2; v x - 1/2, -y + 1/2, z - 1/2. The plane of the loop [r.m.s. 0.2647 (5) Å] makes a dihedral angle of 24.0 (2)° with the ligand ring plane. This unit, terminated on both sides by Li1 and Li1ii ions linked to adjacent units via N3i,O3i and N3iii,O3iii bonding groups and via N3,O3 and N3ii,O3ii bonding groups to Li1v and Liivions in adjacent units, generate a two-dimensional layer with Li1 ions as its nodes (Fig. 2). The arrangement of the layers in the unit cell is shown in Fig. 3. The coordination polyhedron of the Li1 ion, composed of the bridging N1,O1 and N3i),O3(i) bonding groups and the aqua O5 atom is a distorted trigonal bipyramid. Its equatorial plane is formed by N1, N3i and O5 atoms. The Li1 ion is 0.0908 (2) Å out of this plane, O1 and O3i atoms are at apical positions. The Li2 ion chelated by carboxylato O3,O4ii atoms and aqua O6 with inversion related atoms shows a distorted tetrahedral coordination geometry. The Li—O and Li—N bond lengths (Table 1) fit well to those observed in the structures of Li complexes with other pyrimidine carboxylate ligands (Starosta & Leciejewicz, 2011, 2012). The pyrimidine ring is planar with r.m.s. of 0.0121 (2) A°, C7/O1/O2 and C8/O3/O4 carboxylate groups make with it dihedral angles of 4.0 (1)° and 24.0 (2)°, respectively. Bond distances and bond angles are close to those observed in the structure of the parent acid and its two potassium complexes (Beobide et al., 2007). A network of hydrogen bonds (Table 2), in which coordinated water molecules act as donors and carboxylato O atoms are acceptors maintains the stability of the structure.

For the crystal structures of pyrimidine-3,6-dicarboxylic acid dihydrate and two KI complexes with pyrimidine-3,6-dicarboxylate and aqua ligands, see: Beobide et al. (2007). For the structures of Li complexes with a pyrimidine-2-carboxylato ligand, see: Starosta & Leciejewicz, (2011) and with a pyrimidine-4-carboxylate ligand, see: Starosta & Leciejewicz (2012)

Computing details top

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A structural unit of the title compound with atom labelling scheme and 50% probability displacement ellipsoids. Symmetry code: i -x + 1/2, y + 1/2, -z + 1/2; ii -x + 1, -y + 1,-z + 1; iii x + 1/2, -y + 1/2, z + 1/2.
[Figure 2] Fig. 2. The orientation of a fragment of a single molecular layer in the unit cell of the title structure.
[Figure 3] Fig. 3. The arrangement of molecular layers in the structure of a LiI complex with pyrimidine-4-carboxylate and aqua molecules.
Poly[hexaaqua(µ4-pyrimidine-4,6-dicarboxylato)tetralithium] top
Crystal data top
[Li4(C6H2N2O4)2(H2O)6]F(000) = 480
Mr = 234.02Dx = 1.628 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 6.7014 (13) Åθ = 6–15°
b = 11.755 (2) ŵ = 0.15 mm1
c = 12.251 (3) ÅT = 293 K
β = 98.38 (3)°Blocks, colourless
V = 954.8 (3) Å30.48 × 0.20 × 0.13 mm
Z = 4
Data collection top
Kuma KM-4 four-cricle
diffractometer
2094 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 30.1°, θmin = 2.4°
profile data from ω/2θ scansh = 90
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 016
Tmin = 0.960, Tmax = 0.988l = 1717
3009 measured reflections3 standard reflections every 200 reflections
2792 independent reflections intensity decay: 0.4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0949P)2 + 0.1908P]
where P = (Fo2 + 2Fc2)/3
2792 reflections(Δ/σ)max = 0.001
178 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Li4(C6H2N2O4)2(H2O)6]V = 954.8 (3) Å3
Mr = 234.02Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.7014 (13) ŵ = 0.15 mm1
b = 11.755 (2) ÅT = 293 K
c = 12.251 (3) Å0.48 × 0.20 × 0.13 mm
β = 98.38 (3)°
Data collection top
Kuma KM-4 four-cricle
diffractometer
2094 reflections with I > 2σ(I)
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
Rint = 0.023
Tmin = 0.960, Tmax = 0.9883 standard reflections every 200 reflections
3009 measured reflections intensity decay: 0.4%
2792 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.47 e Å3
2792 reflectionsΔρmin = 0.41 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.24613 (17)1.10050 (8)0.59876 (7)0.0279 (2)
O30.44978 (14)0.61780 (7)0.39479 (7)0.0225 (2)
O40.34896 (15)0.65464 (8)0.55698 (7)0.0244 (2)
N30.26576 (17)0.80458 (9)0.30736 (8)0.0208 (2)
O10.16917 (19)1.18808 (8)0.43666 (8)0.0321 (2)
C80.37372 (17)0.67999 (9)0.46084 (9)0.0174 (2)
N10.18480 (16)1.00000 (8)0.32426 (8)0.0205 (2)
C70.21347 (17)1.10298 (9)0.49612 (9)0.0181 (2)
O60.82841 (18)0.51649 (10)0.29471 (8)0.0315 (2)
C40.30347 (16)0.79650 (9)0.41748 (9)0.0162 (2)
C60.22823 (16)0.99180 (9)0.43410 (9)0.0157 (2)
O70.85977 (18)0.58692 (9)0.52784 (9)0.0345 (3)
C50.28409 (18)0.88905 (9)0.48558 (9)0.0172 (2)
H50.30740.88250.56200.021*
C20.2031 (2)0.90580 (10)0.26635 (9)0.0235 (3)
H20.16910.91090.19020.028*
Li10.0920 (4)1.16918 (19)0.27116 (17)0.0257 (5)
Li20.6732 (4)0.51046 (19)0.4213 (2)0.0259 (4)
H710.951 (5)0.556 (2)0.574 (2)0.070 (8)*
H720.848 (4)0.668 (2)0.530 (2)0.056 (7)*
H620.789 (4)0.481 (2)0.229 (2)0.058 (7)*
H610.832 (4)0.589 (2)0.279 (2)0.055 (7)*
O50.19709 (17)1.23656 (9)0.26248 (8)0.0291 (2)
H510.223 (4)1.284 (2)0.207 (2)0.066 (7)*
H520.239 (4)1.268 (2)0.317 (2)0.055 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0469 (6)0.0212 (4)0.0151 (4)0.0015 (4)0.0028 (4)0.0020 (3)
O30.0321 (5)0.0169 (4)0.0189 (4)0.0065 (3)0.0052 (3)0.0018 (3)
O40.0391 (5)0.0177 (4)0.0176 (4)0.0048 (3)0.0080 (3)0.0036 (3)
N30.0309 (5)0.0173 (4)0.0140 (4)0.0046 (4)0.0021 (4)0.0008 (3)
O10.0598 (7)0.0139 (4)0.0214 (4)0.0058 (4)0.0022 (4)0.0013 (3)
C80.0217 (5)0.0126 (4)0.0174 (5)0.0013 (4)0.0013 (4)0.0006 (4)
N10.0310 (5)0.0162 (4)0.0143 (4)0.0049 (4)0.0029 (4)0.0017 (3)
C70.0229 (5)0.0142 (5)0.0175 (5)0.0005 (4)0.0037 (4)0.0018 (4)
O60.0486 (6)0.0248 (5)0.0221 (5)0.0005 (4)0.0090 (4)0.0011 (4)
C40.0205 (5)0.0134 (4)0.0149 (5)0.0018 (4)0.0031 (4)0.0011 (3)
C60.0200 (5)0.0134 (5)0.0142 (5)0.0007 (4)0.0040 (4)0.0001 (4)
O70.0406 (6)0.0243 (5)0.0359 (6)0.0057 (4)0.0034 (4)0.0093 (4)
C50.0249 (5)0.0147 (5)0.0123 (4)0.0024 (4)0.0035 (4)0.0007 (4)
C20.0374 (7)0.0195 (5)0.0128 (5)0.0065 (5)0.0013 (4)0.0002 (4)
Li10.0381 (12)0.0196 (10)0.0195 (10)0.0007 (8)0.0042 (9)0.0028 (8)
Li20.0334 (11)0.0186 (10)0.0261 (10)0.0034 (8)0.0053 (8)0.0000 (8)
O50.0445 (6)0.0217 (4)0.0228 (4)0.0065 (4)0.0102 (4)0.0028 (4)
Geometric parameters (Å, º) top
O2—C71.2449 (14)C8—Li2ii2.707 (3)
O3—C81.2527 (14)N1—C21.3305 (15)
Li1—O52.081 (3)N1—C61.3382 (14)
Li1—O3i2.100 (2)C7—C61.5222 (15)
Li1—N3i2.153 (2)O6—H620.91 (3)
Li1—O12.030 (2)O6—H610.88 (3)
Li1—N12.156 (2)C4—C51.3886 (15)
Li2—O4ii1.967 (2)C6—C51.3885 (15)
Li2—O71.898 (3)O7—H710.85 (3)
Li2—O61.990 (3)O7—H720.96 (3)
Li2—O31.949 (2)C5—H50.9300
O3—Li1iii2.100 (2)C2—H20.9300
O4—C81.2492 (14)Li1—Li2i3.313 (3)
O4—Li2ii1.968 (2)Li2—C8ii2.707 (3)
N3—C21.3352 (15)Li2—Li2ii3.237 (5)
N3—C41.3393 (14)Li2—Li1iii3.313 (3)
N3—Li1iii2.153 (2)O5—H510.87 (3)
O1—C71.2476 (14)O5—H520.85 (3)
C8—C41.5187 (15)
C8—O3—Li2130.20 (11)O1—Li1—O3i167.65 (14)
C8—O3—Li1iii116.62 (10)O5—Li1—O3i93.91 (10)
Li2—O3—Li1iii109.76 (11)O1—Li1—N177.25 (8)
C8—O4—Li2ii112.72 (10)O5—Li1—N1126.29 (12)
C2—N3—C4116.43 (10)O3i—Li1—N191.07 (10)
C2—N3—Li1iii128.76 (10)O1—Li1—N3i107.48 (11)
C4—N3—Li1iii111.52 (9)O5—Li1—N3i99.51 (10)
C7—O1—Li1119.98 (10)O3i—Li1—N3i77.60 (8)
O4—C8—O3126.32 (11)N1—Li1—N3i133.62 (12)
O4—C8—C4117.91 (10)O1—Li1—Li2i143.55 (11)
O3—C8—C4115.77 (10)O5—Li1—Li2i77.24 (9)
O4—C8—Li2ii42.09 (7)O3i—Li1—Li2i33.61 (6)
O3—C8—Li2ii87.24 (8)N1—Li1—Li2i78.26 (8)
C4—C8—Li2ii151.42 (9)N3i—Li1—Li2i108.96 (9)
C2—N1—C6116.92 (10)O7—Li2—O3102.77 (12)
C2—N1—Li1130.69 (10)O7—Li2—O4ii115.41 (13)
C6—N1—Li1112.39 (9)O3—Li2—O4ii126.15 (14)
O1—C7—O2126.90 (11)O7—Li2—O698.77 (12)
O1—C7—C6115.10 (10)O3—Li2—O6108.87 (12)
O2—C7—C6118.00 (10)O4ii—Li2—O6101.48 (11)
Li2—O6—H62124.0 (15)O7—Li2—C8ii98.08 (10)
Li2—O6—H61104.1 (16)O3—Li2—C8ii118.56 (11)
H62—O6—H61105 (2)O4ii—Li2—C8ii25.19 (5)
N3—C4—C5121.96 (10)O6—Li2—C8ii124.03 (11)
N3—C4—C8114.82 (9)O7—Li2—Li2ii94.80 (12)
C5—C4—C8123.20 (10)O3—Li2—Li2ii63.13 (9)
N1—C6—C5121.62 (10)O4ii—Li2—Li2ii76.67 (10)
N1—C6—C7114.81 (9)O6—Li2—Li2ii165.63 (16)
C5—C6—C7123.56 (10)C8ii—Li2—Li2ii58.00 (7)
Li2—O7—H71126.2 (19)O7—Li2—Li1iii117.02 (11)
Li2—O7—H72116.1 (14)O3—Li2—Li1iii36.62 (6)
H71—O7—H72118 (2)O4ii—Li2—Li1iii127.50 (11)
C4—C5—C6116.82 (10)O6—Li2—Li1iii73.31 (8)
C4—C5—H5121.6C8ii—Li2—Li1iii138.88 (10)
C6—C5—H5121.6Li2ii—Li2—Li1iii96.31 (11)
N1—C2—N3126.12 (10)Li1—O5—H51111.2 (18)
N1—C2—H2116.9Li1—O5—H52122.7 (17)
N3—C2—H2116.9H51—O5—H52106 (2)
O1—Li1—O596.27 (11)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H71···O6iv0.85 (3)2.19 (3)3.0409 (18)175 (2)
O7—H72···O1v0.96 (3)1.75 (3)2.6920 (15)168 (2)
O6—H62···O2vi0.91 (3)1.85 (3)2.7518 (15)172 (2)
O6—H61···O5iii0.88 (3)1.98 (3)2.7889 (16)151 (2)
O5—H51···O2vii0.87 (3)1.89 (3)2.7594 (14)172 (3)
O5—H52···O4viii0.85 (3)2.02 (3)2.8670 (14)178 (2)
Symmetry codes: (iii) x+1/2, y1/2, z+1/2; (iv) x+2, y+1, z+1; (v) x+1, y+2, z+1; (vi) x+1/2, y+3/2, z1/2; (vii) x1/2, y+5/2, z1/2; (viii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Li4(C6H2N2O4)2(H2O)6]
Mr234.02
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.7014 (13), 11.755 (2), 12.251 (3)
β (°) 98.38 (3)
V3)954.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.48 × 0.20 × 0.13
Data collection
DiffractometerKuma KM-4 four-cricle
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.960, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
3009, 2792, 2094
Rint0.023
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.126, 0.95
No. of reflections2792
No. of parameters178
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.41

Computer programs: KM-4 Software (Kuma, 1996), DATAPROC (Kuma, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Li1—O52.081 (3)Li2—O4ii1.967 (2)
Li1—O3i2.100 (2)Li2—O71.898 (3)
Li1—N3i2.153 (2)Li2—O61.990 (3)
Li1—O12.030 (2)Li2—O31.949 (2)
Li1—N12.156 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H71···O6iii0.85 (3)2.19 (3)3.0409 (18)175 (2)
O7—H72···O1iv0.96 (3)1.75 (3)2.6920 (15)168 (2)
O6—H62···O2v0.91 (3)1.85 (3)2.7518 (15)172 (2)
O6—H61···O5vi0.88 (3)1.98 (3)2.7889 (16)151 (2)
O5—H51···O2vii0.87 (3)1.89 (3)2.7594 (14)172 (3)
O5—H52···O4viii0.85 (3)2.02 (3)2.8670 (14)178 (2)
Symmetry codes: (iii) x+2, y+1, z+1; (iv) x+1, y+2, z+1; (v) x+1/2, y+3/2, z1/2; (vi) x+1/2, y1/2, z+1/2; (vii) x1/2, y+5/2, z1/2; (viii) x, y+2, z+1.
 

References

First citationBeobide, G., Castillo, O., Luque, A., Garcia-Couceiro, U., Garcia-Teran, J. P. & Roman, P. (2007). Dalton Trans. pp. 2668–2680.  Google Scholar
First citationKuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationKuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2011). Acta Cryst. E67, m818.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2012). Acta Cryst. E68, m1065–m1066.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds