organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­phenyl (methyl­amido)­phosphate

aDepartment of Chemistry, Zanjan Branch, Islamic Azad University, Zanjan, Iran, bDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran, and cDepartment of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, Brno CZ-61137, Czech Republic
*Correspondence e-mail: fahimeh_sabbaghi@yahoo.com

(Received 8 August 2012; accepted 9 September 2012; online 15 September 2012)

The N—H bond in the title compound, C13H14NO3P, is syn-oriented relative to the P=O bond. The N atom deviates somewhat from planarity, the sum of the bond angles being 353.3°. The P atom has a distorted tetra­hedral coordination; its bond angles are in the range 93.96 (5)–116.83 (6)°. In the crystal, mol­ecules form centrosymmetric dimers through P=O⋯H—N hydrogen bonds.

Related literature

For general background, see: Pourayoubi et al. (2012[Pourayoubi, M., Nečas, M. & Negari, M. (2012). Acta Cryst. C68, o51-o56.]). For bond lengths and angles in a related structure, see: Sabbaghi et al. (2011[Sabbaghi, F., Pourayoubi, M., Negari, M. & Nečas, M. (2011). Acta Cryst. E67, o2512.]).

[Scheme 1]

Experimental

Crystal data
  • C13H14NO3P

  • Mr = 263.22

  • Monoclinic, P 21 /n

  • a = 9.7652 (5) Å

  • b = 13.6368 (6) Å

  • c = 10.3537 (5) Å

  • β = 114.217 (6)°

  • V = 1257.43 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 120 K

  • 0.50 × 0.50 × 0.40 mm

Data collection
  • Oxford Diffraction Xcalibur (Sapphire2) diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.939, Tmax = 1.000

  • 14649 measured reflections

  • 2212 independent reflections

  • 1871 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.079

  • S = 1.09

  • 2212 reflections

  • 168 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.788 (18) 2.141 (18) 2.9106 (17) 165.1 (18)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The single-crystal X-ray determination of the title compound, P(O)[OC6H5]2[NHCH3] (Fig. 1), was performed due to our interest on the synthesis and structure of phosphorus(V)-nitrogen compounds (Pourayoubi et al., 2012; Sabbaghi et al., 2011).

The PO (1.4632 (10) Å), P—O (1.5875 (10) and 1.5949 (10) Å), P—N (1.6148 (13) Å) and C—O (1.4037 (18) and 1.4108 (17) Å) bond lengths are within the expected values for analogous compounds with a P(O)(O)2(N) skeleton (Sabbaghi et al., 2011).

Angles around phosphorus [O1—P1—O3 116.83 (6)°, O1—P1—O2 114.42 (6)°, O3—P1—O2 93.96 (5)°, O1—P1—N1 112.78 (6)°, O3—P1—N1 106.80 (6)° and O2—P1—N1 110.45 (6)°] are characteristic for a distorted tetrahedral geometry.

The N1 atom deviates from P1C1H1N plane by 0.178 (9) Å.

Also, the sum of valence angles around N1 [353 (1)°] deviates from 360°, as a measure of its pyramidality.

The C—N—P angle (122.53 (10)°) and C—O—P (123.35 (9) and 121.01 (9)°) angles are standard for this family of compounds (Sabbaghi et al., 2011).

In the crystal, pairs of intermolecular PO···H—N hydrogen bonds form inversion dimers, Table 1 and Fig. 2.

Related literature top

For general background, see: Pourayoubi et al. (2012). For bond lengths and angles in a related structure, see: Sabbaghi et al. (2011).

Experimental top

A mixture of [CH3NH3]Cl (2 mmol) and N(C2H5)3 (4 mmol) in dry CH3CN (15 ml) was added to a solution of [C6H5O]2P(O)Cl (2 mmol) in the same solvent (20 ml) on ice bath. After stirring for 4 h, the solvent was removed and the product was washed with distilled water and recrystallized from CH3CN/n-C6H14 at room temperature. The single crystals suitable for X-ray analysis were obtained from this solution after a few days at room temperature.

Refinement top

All carbon-bound H atoms were placed at calculated positions and were refined as riding with their Uiso set to either 1.2Ueq or 1.5Ueq (methyl) of the respective carrier atoms; the methyl H atoms were allowed to rotate about the N—C bond. The nitrogen-bound H atom was located in a difference Fourier map and refined isotropically.

Structure description top

The single-crystal X-ray determination of the title compound, P(O)[OC6H5]2[NHCH3] (Fig. 1), was performed due to our interest on the synthesis and structure of phosphorus(V)-nitrogen compounds (Pourayoubi et al., 2012; Sabbaghi et al., 2011).

The PO (1.4632 (10) Å), P—O (1.5875 (10) and 1.5949 (10) Å), P—N (1.6148 (13) Å) and C—O (1.4037 (18) and 1.4108 (17) Å) bond lengths are within the expected values for analogous compounds with a P(O)(O)2(N) skeleton (Sabbaghi et al., 2011).

Angles around phosphorus [O1—P1—O3 116.83 (6)°, O1—P1—O2 114.42 (6)°, O3—P1—O2 93.96 (5)°, O1—P1—N1 112.78 (6)°, O3—P1—N1 106.80 (6)° and O2—P1—N1 110.45 (6)°] are characteristic for a distorted tetrahedral geometry.

The N1 atom deviates from P1C1H1N plane by 0.178 (9) Å.

Also, the sum of valence angles around N1 [353 (1)°] deviates from 360°, as a measure of its pyramidality.

The C—N—P angle (122.53 (10)°) and C—O—P (123.35 (9) and 121.01 (9)°) angles are standard for this family of compounds (Sabbaghi et al., 2011).

In the crystal, pairs of intermolecular PO···H—N hydrogen bonds form inversion dimers, Table 1 and Fig. 2.

For general background, see: Pourayoubi et al. (2012). For bond lengths and angles in a related structure, see: Sabbaghi et al. (2011).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids shown at the 50% probability level; H atoms are drawn as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The hydrogen-bonded inversion dimer (pair of PO···H—N hydrogen bonds is shown by dotted lines) in the crystal structure. The hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
Diphenyl (methylamido)phosphate top
Crystal data top
C13H14NO3PF(000) = 552
Mr = 263.22Dx = 1.390 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.7652 (5) ÅCell parameters from 7682 reflections
b = 13.6368 (6) Åθ = 2.8–27.1°
c = 10.3537 (5) ŵ = 0.22 mm1
β = 114.217 (6)°T = 120 K
V = 1257.43 (12) Å3Block, white
Z = 40.50 × 0.50 × 0.40 mm
Data collection top
Oxford Diffraction Xcalibur (Sapphire2)
diffractometer
2212 independent reflections
Radiation source: Enhance (Mo) X-ray Source1871 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 8.4353 pixels mm-1θmax = 25.0°, θmin = 2.8°
ω scanh = 1111
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 1216
Tmin = 0.939, Tmax = 1.000l = 1212
14649 measured reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.046P)2 + 0.1667P]
where P = (Fo2 + 2Fc2)/3
2212 reflections(Δ/σ)max = 0.001
168 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C13H14NO3PV = 1257.43 (12) Å3
Mr = 263.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.7652 (5) ŵ = 0.22 mm1
b = 13.6368 (6) ÅT = 120 K
c = 10.3537 (5) Å0.50 × 0.50 × 0.40 mm
β = 114.217 (6)°
Data collection top
Oxford Diffraction Xcalibur (Sapphire2)
diffractometer
2212 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1871 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 1.000Rint = 0.022
14649 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.23 e Å3
2212 reflectionsΔρmin = 0.29 e Å3
168 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.51390 (4)0.43348 (3)0.30989 (4)0.01769 (14)
O10.38345 (11)0.43725 (7)0.34520 (10)0.0208 (3)
O20.50768 (12)0.50885 (7)0.18982 (10)0.0223 (3)
O30.52841 (11)0.34002 (7)0.22495 (10)0.0211 (3)
N10.67107 (14)0.44375 (9)0.44729 (14)0.0207 (3)
H1N0.662 (2)0.4674 (13)0.513 (2)0.032 (5)*
C10.81454 (17)0.45739 (12)0.43646 (17)0.0273 (4)
H1A0.89610.43250.52250.041*
H1B0.83030.52730.42560.041*
H1C0.81330.42140.35400.041*
C20.47748 (15)0.60922 (11)0.19327 (15)0.0188 (3)
C30.51171 (16)0.66074 (11)0.31815 (15)0.0226 (3)
H30.55520.62850.40720.027*
C40.48104 (17)0.76048 (12)0.31004 (17)0.0257 (4)
H40.50300.79670.39460.031*
C50.41887 (17)0.80803 (12)0.18051 (17)0.0267 (4)
H50.39900.87640.17620.032*
C60.38592 (17)0.75473 (12)0.05730 (17)0.0269 (4)
H60.34340.78690.03180.032*
C70.41444 (16)0.65494 (11)0.06295 (15)0.0228 (3)
H70.39100.61850.02170.027*
C80.54261 (16)0.24509 (11)0.28322 (14)0.0195 (3)
C90.68401 (17)0.20402 (12)0.34803 (16)0.0249 (4)
H90.77070.24060.35830.030*
C100.69714 (18)0.10862 (12)0.39770 (16)0.0272 (4)
H100.79360.07950.44310.033*
C110.57023 (18)0.05567 (12)0.38137 (16)0.0264 (4)
H110.57970.00990.41490.032*
C120.42946 (17)0.09791 (12)0.31628 (16)0.0276 (4)
H120.34270.06130.30560.033*
C130.41468 (17)0.19365 (12)0.26646 (16)0.0248 (4)
H130.31840.22310.22170.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0214 (2)0.0152 (2)0.0177 (2)0.00056 (15)0.00922 (16)0.00031 (15)
O10.0221 (5)0.0185 (6)0.0227 (5)0.0005 (4)0.0100 (4)0.0020 (4)
O20.0332 (6)0.0155 (6)0.0210 (5)0.0015 (4)0.0141 (5)0.0010 (4)
O30.0301 (6)0.0149 (6)0.0202 (5)0.0020 (4)0.0122 (4)0.0002 (4)
N10.0217 (7)0.0224 (8)0.0202 (7)0.0009 (5)0.0109 (6)0.0024 (6)
C10.0225 (8)0.0297 (10)0.0317 (9)0.0026 (7)0.0130 (7)0.0037 (7)
C20.0188 (7)0.0150 (8)0.0248 (8)0.0001 (6)0.0112 (6)0.0010 (6)
C30.0255 (8)0.0215 (9)0.0203 (8)0.0002 (6)0.0089 (6)0.0012 (6)
C40.0296 (8)0.0205 (9)0.0288 (8)0.0019 (7)0.0138 (7)0.0039 (7)
C50.0276 (8)0.0169 (9)0.0375 (9)0.0032 (6)0.0155 (7)0.0031 (7)
C60.0260 (8)0.0256 (9)0.0275 (8)0.0041 (7)0.0095 (7)0.0088 (7)
C70.0238 (8)0.0244 (9)0.0202 (8)0.0000 (6)0.0089 (6)0.0004 (6)
C80.0278 (8)0.0143 (8)0.0184 (7)0.0001 (6)0.0116 (6)0.0021 (6)
C90.0241 (8)0.0215 (9)0.0306 (8)0.0022 (6)0.0127 (7)0.0000 (7)
C100.0273 (9)0.0221 (9)0.0318 (9)0.0053 (7)0.0117 (7)0.0036 (7)
C110.0380 (9)0.0184 (9)0.0254 (8)0.0003 (7)0.0156 (7)0.0006 (7)
C120.0293 (9)0.0259 (10)0.0294 (9)0.0079 (7)0.0138 (7)0.0029 (7)
C130.0220 (8)0.0253 (10)0.0255 (8)0.0002 (7)0.0083 (6)0.0019 (7)
Geometric parameters (Å, º) top
P1—O11.4632 (10)C5—C61.387 (2)
P1—O31.5875 (10)C5—H50.9500
P1—O21.5949 (10)C6—C71.385 (2)
P1—N11.6148 (13)C6—H60.9500
O2—C21.4037 (18)C7—H70.9500
O3—C81.4108 (17)C8—C131.380 (2)
N1—C11.4625 (18)C8—C91.382 (2)
N1—H1N0.788 (18)C9—C101.385 (2)
C1—H1A0.9800C9—H90.9500
C1—H1B0.9800C10—C111.383 (2)
C1—H1C0.9800C10—H100.9500
C2—C71.381 (2)C11—C121.384 (2)
C2—C31.387 (2)C11—H110.9500
C3—C41.388 (2)C12—C131.389 (2)
C3—H30.9500C12—H120.9500
C4—C51.386 (2)C13—H130.9500
C4—H40.9500
O1—P1—O3116.83 (6)C4—C5—H5120.4
O1—P1—O2114.42 (6)C6—C5—H5120.4
O3—P1—O293.96 (5)C7—C6—C5120.62 (14)
O1—P1—N1112.78 (6)C7—C6—H6119.7
O3—P1—N1106.80 (6)C5—C6—H6119.7
O2—P1—N1110.45 (6)C2—C7—C6119.08 (14)
C2—O2—P1123.35 (9)C2—C7—H7120.5
C8—O3—P1121.01 (9)C6—C7—H7120.5
C1—N1—P1122.53 (10)C13—C8—C9121.84 (14)
C1—N1—H1N117.4 (13)C13—C8—O3119.17 (13)
P1—N1—H1N113.4 (14)C9—C8—O3118.87 (13)
N1—C1—H1A109.5C8—C9—C10118.86 (14)
N1—C1—H1B109.5C8—C9—H9120.6
H1A—C1—H1B109.5C10—C9—H9120.6
N1—C1—H1C109.5C11—C10—C9120.19 (15)
H1A—C1—H1C109.5C11—C10—H10119.9
H1B—C1—H1C109.5C9—C10—H10119.9
C7—C2—C3121.52 (14)C10—C11—C12120.21 (15)
C7—C2—O2115.43 (13)C10—C11—H11119.9
C3—C2—O2123.03 (13)C12—C11—H11119.9
C2—C3—C4118.46 (14)C11—C12—C13120.20 (15)
C2—C3—H3120.8C11—C12—H12119.9
C4—C3—H3120.8C13—C12—H12119.9
C5—C4—C3121.02 (15)C8—C13—C12118.69 (14)
C5—C4—H4119.5C8—C13—H13120.7
C3—C4—H4119.5C12—C13—H13120.7
C4—C5—C6119.30 (15)
O1—P1—O2—C250.74 (12)C4—C5—C6—C70.1 (2)
O3—P1—O2—C2172.62 (10)C3—C2—C7—C60.5 (2)
N1—P1—O2—C277.81 (11)O2—C2—C7—C6177.80 (12)
O1—P1—O3—C861.57 (11)C5—C6—C7—C20.6 (2)
O2—P1—O3—C8178.47 (10)P1—O3—C8—C1385.76 (15)
N1—P1—O3—C865.73 (11)P1—O3—C8—C998.12 (14)
O1—P1—N1—C1170.21 (11)C13—C8—C9—C100.2 (2)
O3—P1—N1—C160.14 (13)O3—C8—C9—C10176.17 (13)
O2—P1—N1—C140.78 (14)C8—C9—C10—C110.5 (2)
P1—O2—C2—C7153.60 (11)C9—C10—C11—C120.5 (2)
P1—O2—C2—C328.15 (18)C10—C11—C12—C130.2 (2)
C7—C2—C3—C40.1 (2)C9—C8—C13—C120.1 (2)
O2—C2—C3—C4178.21 (13)O3—C8—C13—C12175.92 (13)
C2—C3—C4—C50.6 (2)C11—C12—C13—C80.0 (2)
C3—C4—C5—C60.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.788 (18)2.141 (18)2.9106 (17)165.1 (18)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H14NO3P
Mr263.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)9.7652 (5), 13.6368 (6), 10.3537 (5)
β (°) 114.217 (6)
V3)1257.43 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.50 × 0.50 × 0.40
Data collection
DiffractometerOxford Diffraction Xcalibur (Sapphire2)
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.939, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14649, 2212, 1871
Rint0.022
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.079, 1.09
No. of reflections2212
No. of parameters168
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.29

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.788 (18)2.141 (18)2.9106 (17)165.1 (18)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

Support of this investigation by the Zanjan Branch, Islamic Azad University, is gratefully acknowledged.

References

First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPourayoubi, M., Nečas, M. & Negari, M. (2012). Acta Cryst. C68, o51–o56.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSabbaghi, F., Pourayoubi, M., Negari, M. & Nečas, M. (2011). Acta Cryst. E67, o2512.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds