organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

meso-(1S*,21R*)-25-Methyl-8,11,14-trioxa-22,24,25-tri­aza­tetra­cyclo­[19.3.1.02,7.015,20]penta­cosa-2,4,6,15(20),16,18-hexa­ene-23-thione chloro­form monosolvate

aDepartment of Chemistry, Vietnam National University, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam, bOrganic Chemistry Department, Russian Peoples Friendship University, Miklukho-Maklaya St. 6, Moscow, 117198, Russia, and cX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: thh1101@yahoo.com

(Received 17 August 2012; accepted 27 August 2012; online 5 September 2012)

The title compound crystallizes as a chloro­form solvate, C20H23N3O3S·CHCl3, with two crystallographically independent units. The independent units have distinctly different inter­action patterns between the aza­crown macrocycle and the chloro­form solvent mol­ecule. In one of them, the chloro­form mol­ecule forms C—H⋯N and Cl⋯H—C hydrogen bonds with the aza­crown macrocycle (as a proton donor and an acceptor, respectively), whereas in the other, one of the chloro­form mol­ecules is bound to the aza­crown macrocycle by an attractive Cl⋯O [3.080 (3) Å] inter­action. The aza­crown macrocycles of different units are structurally similar; the aza-14-crown-3-ether ring adopts a bowl conformation with dihedral angles between the planes of the fused benzene rings of 60.7 (1) and 68.0 (1)°. The triazinane­thione ring in both cases has a sofa conformation. The crystal packing is characterized by N—H⋯S, N—H⋯O, C—H⋯Cl and C—H⋯S hydrogen bonds.

Related literature

For general background, see: Hiraoka (1982[Hiraoka, M. (1982). In Crown Compounds. Their Characteristic and Application. Tokyo: Kodansha.]); Pedersen (1988[Pedersen, C. J. (1988). Angew. Chem. Int. Ed. Engl. 27, 1053-1083.]); Gokel & Murillo (1996[Gokel, G. W. & Murillo, O. (1996). Acc. Chem. Res. 29, 425-432.]); Bradshaw & Izatt (1997[Bradshaw, J. S. & Izatt, R. M. (1997). Acc. Chem. Res. 30, 338-345.]). For related compounds, see: Levov et al. (2006[Levov, A. N., Strokina, V. M., Komarova, A. I., Anh, L. T., Soldatenkov, A. T. & Khrustalev, V. N. (2006). Mendeleev Commun. 16, 35-37.], 2008[Levov, A. N., Komarova, A. I., Soldatenkov, A. T., Avramenko, G. V., Soldatova, S. A. & Khrustalev, V. N. (2008). Russ. J. Org. Chem. 44, 1665-1670.]); Anh et al. (2008[Anh, L. T., Levov, A. N., Soldatenkov, A. T., Gruzdev, R. D. & Hieu, T. H. (2008). Russ. J. Org. Chem. 44, 463-465.], 2012a[Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Soldatova, S. A. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o1386-o1387.],b[Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o1588-o1589.]); Hieu et al. (2009[Hieu, T. H., Anh, L. T., Levov, A. N., Nikitina, E. V. & Soldatenkov, A. T. (2009). Chem. Heterocycl. Compd, 45, 1406-1407.], 2011[Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Golovtsov, N. I. & Soldatova, S. A. (2011). Chem. Heterocycl. Compd, 47, 1307-1308.]); Khieu et al. (2011[Khieu, T. H., Soldatenkov, A. T., Anh, L. T., Levov, A. N., Smol'yakov, A. F., Khrustalev, V. N. & Antipin, M. Yu. (2011). Russ. J. Org. Chem. 47, 766-770.]).

[Scheme 1]

Experimental

Crystal data
  • C20H23N3O3S·CHCl3

  • Mr = 504.84

  • Monoclinic, P 21 /n

  • a = 17.8370 (5) Å

  • b = 13.9173 (4) Å

  • c = 19.0561 (6) Å

  • β = 99.222 (1)°

  • V = 4669.4 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.862, Tmax = 0.905

  • 52534 measured reflections

  • 11281 independent reflections

  • 8711 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.145

  • S = 1.00

  • 11281 reflections

  • 561 parameters

  • H-atom parameters constrained

  • Δρmax = 1.38 e Å−3

  • Δρmin = −1.05 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N22—H22N⋯O11i 0.90 2.32 3.183 (2) 161
N24—H24N⋯S1ii 0.90 2.55 3.445 (2) 173
N48—H48N⋯O37iii 0.90 2.38 3.273 (3) 172
N50—H50N⋯S2iv 0.90 2.55 3.445 (2) 172
C10—H10B⋯S2iv 0.99 2.80 3.747 (2) 160
C21—H21⋯Cl3i 1.00 2.66 3.395 (2) 130
C26—H26A⋯Cl2 0.98 2.78 3.514 (2) 133
C36—H36A⋯S1ii 0.99 2.78 3.729 (3) 160
C43—H43⋯Cl3v 0.95 2.83 3.690 (3) 151
C53—H53⋯N25 1.00 2.46 3.353 (3) 149
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+2, -z+1; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z; (v) x+1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Supramolecular chemistry of azacrown ethers draws a great attention of researchers during the last decades (Hiraoka, 1982; Pedersen, 1988; Gokel & Murillo, 1996; Bradshaw & Izatt, 1997). Recently, we have developed effective methods of synthesis of azacrown ethers containing piperidine (Levov et al., 2006, 2008; Anh et al., 2008, 2012a, 2012b), perhydropyrimidine (Hieu et al., 2011) and perhydrotriazine (Hieu et al., 2009; Khieu et al., 2011) subunits.

In an attempt to apply these for a synthesis of a macrocyclic ligand with an N-methylsubstituted perhydrotriazine moiety, we studied the multicomponent condensation of thiourea with 1,5-bis(2-formylphenoxy)-3-oxapentane and methylammonium acetate. The reaction has proceeded smoothly under mild conditions to give the expected azacrown moiety in a good yield (Figure 1).

Compound I crystallizes as a chloroform solvate, i. e., C20H23N3O3S.CHCl3, with two crystallographically independent units within the unit cell. These crystallographically independent units represent two different molecular I.CHCl3 associates distinguished by different interactions between I and CHCl3 counterparts. In one of the two associates, the chloroform molecule forms the two C53—H53···N25 (as a protonodonor) and Cl2···H26A—C26 (as a protonoacceptor) hydrogen bonds (Table 1, Figure 2a), whereas, in the other associate, the chloroform molecule is bound to the molecule I by the attractive Cl6···O37 (3.080 (3) Å) interaction (Figure 2b). The azacrown macrocycles of the different I.CHCl3 associates are structurally similar.

The aza-14-crown-3-ether ring adopts a bowl conformation. The configuration of the C7—O8—C9—C10 —O11—C12—C13—O14—C15 polyether chain is t–g(-)–t–t–g(+)–t (t = trans, 180°; g = gauche, ±60°). The dihedral angles between the planes of the benzene rings fused to the aza-14-crown-3-ether moiety are 60.69 (8) and 68.01 (5)° for two crystallographically independent molecules, respectively. The triazinanethione ring has a sofa conformation - the nitrogen atoms N22, N24, N48 and N50 have a trigonal-planar geometry (sums of the bond angles are 358.8, 360.0, 359.0 and 359.9°, respectively), while the nitrogen N25 and N51 atoms adopt a trigonal-pyramidal geometry (sums of the bond angles are 331.9 and 333.7°, respectively).

The molecule of I possesses two asymmetric centers at the C1 and C21 carbon atoms and represents a meso-form (an internal racemate).

In the crystal, the molecular I.CHCl3 associates are linked by the intermolecular N—H···S, N—H···O, C—H···Cl and C—H···S hydrogen bonds into a three-dimensional framework (Table 1).

Related literature top

For general background, see: Hiraoka (1982); Pedersen (1988); Gokel & Murillo (1996); Bradshaw & Izatt (1997). For related compounds, see: Levov et al. (2006, 2008); Anh et al. (2008, 2012a,b); Hieu et al. (2009, 2011); Khieu et al. (2011).

Experimental top

Methylamine ammonium acetate (4.0 g, 44 mmol) was added to a solution of 1,5-bis(2-formylphenoxy)-3-oxapentane (1.57 g, 5.0 mmol) and thiourea (0.38 g, 5.0 mmol) in a mixture of ethanol (30 ml) and acetic acid (1 ml). The reaction mixture was stirred at 293 K for 3 days. At the end of the reaction, the formed precipitate was filtered off, washed with ethanol and re-crystallized from ethanol and ethylacetate (4:1) to give 1.19 g of white crystals of I. Yield is 61.8%. M.p. = 417–419 K. IR (KBr), ν/cm-1: 1603, 3215, 3332. 1HNMR (DMSO-d6, 400 MHz, 300 K): δ = 1.53 (s, 3H, CH3), 3.63 and 3.92 (both m, 3H and 5H, respectively, OCH2CH2OCH2CH2O), 6.21 (s, 2H, H1 and H21), 6.87 (d, 2H, J = 8.0, H6 and H16), 6.91 (tt, 2H, J = 7.6 and 0.8, H4 and H18), 7.25–7.30 (m, 4H, Harom), 8.27 (s, 2H, NH). Anal. Calcd for C20H23N3O3S: C, 62.32; H, 6.01; N, 10.90. Found: C, 62.51; H, 6.15; N, 10.86.

Refinement top

There are two relatively high positive peaks of 1.38 and 1.24 e Å-3 near the Cl5 and Cl4 chlorine atoms of the solvate chloroform molecule that indicate a slight disorder of the solvate molecule. However, due to the low contribution of the second component it was neglected.

The hydrogen atoms of the amino groups were localized in the difference-Fourier map and included in the refinement with fixed positional and isotropic displacement parameters [Uĩso~(H) = 1.2U~eq~(N)]. Other hydrogen atoms were placed in calculated positions with C—H = 0.95–1.00 Å and refined in the riding model with fixed isotropic displacement parameters [Uĩso~(H) = 1.5U~eq~(C) for the methyl group and 1.2U~eq~(C) for the other groups].

Structure description top

Supramolecular chemistry of azacrown ethers draws a great attention of researchers during the last decades (Hiraoka, 1982; Pedersen, 1988; Gokel & Murillo, 1996; Bradshaw & Izatt, 1997). Recently, we have developed effective methods of synthesis of azacrown ethers containing piperidine (Levov et al., 2006, 2008; Anh et al., 2008, 2012a, 2012b), perhydropyrimidine (Hieu et al., 2011) and perhydrotriazine (Hieu et al., 2009; Khieu et al., 2011) subunits.

In an attempt to apply these for a synthesis of a macrocyclic ligand with an N-methylsubstituted perhydrotriazine moiety, we studied the multicomponent condensation of thiourea with 1,5-bis(2-formylphenoxy)-3-oxapentane and methylammonium acetate. The reaction has proceeded smoothly under mild conditions to give the expected azacrown moiety in a good yield (Figure 1).

Compound I crystallizes as a chloroform solvate, i. e., C20H23N3O3S.CHCl3, with two crystallographically independent units within the unit cell. These crystallographically independent units represent two different molecular I.CHCl3 associates distinguished by different interactions between I and CHCl3 counterparts. In one of the two associates, the chloroform molecule forms the two C53—H53···N25 (as a protonodonor) and Cl2···H26A—C26 (as a protonoacceptor) hydrogen bonds (Table 1, Figure 2a), whereas, in the other associate, the chloroform molecule is bound to the molecule I by the attractive Cl6···O37 (3.080 (3) Å) interaction (Figure 2b). The azacrown macrocycles of the different I.CHCl3 associates are structurally similar.

The aza-14-crown-3-ether ring adopts a bowl conformation. The configuration of the C7—O8—C9—C10 —O11—C12—C13—O14—C15 polyether chain is t–g(-)–t–t–g(+)–t (t = trans, 180°; g = gauche, ±60°). The dihedral angles between the planes of the benzene rings fused to the aza-14-crown-3-ether moiety are 60.69 (8) and 68.01 (5)° for two crystallographically independent molecules, respectively. The triazinanethione ring has a sofa conformation - the nitrogen atoms N22, N24, N48 and N50 have a trigonal-planar geometry (sums of the bond angles are 358.8, 360.0, 359.0 and 359.9°, respectively), while the nitrogen N25 and N51 atoms adopt a trigonal-pyramidal geometry (sums of the bond angles are 331.9 and 333.7°, respectively).

The molecule of I possesses two asymmetric centers at the C1 and C21 carbon atoms and represents a meso-form (an internal racemate).

In the crystal, the molecular I.CHCl3 associates are linked by the intermolecular N—H···S, N—H···O, C—H···Cl and C—H···S hydrogen bonds into a three-dimensional framework (Table 1).

For general background, see: Hiraoka (1982); Pedersen (1988); Gokel & Murillo (1996); Bradshaw & Izatt (1997). For related compounds, see: Levov et al. (2006, 2008); Anh et al. (2008, 2012a,b); Hieu et al. (2009, 2011); Khieu et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Multicomponent condensation of thiourea with 1,5-bis(2-formylphenoxy)-3-oxapentane and methylammonium acetate.
[Figure 2] Fig. 2. Molecular structure of I (first crystallographically independent I.CHCl3 unit is depicted). Displacement ellipsoids are shown at 50% probability level. Dashed lines indicate intermolecular hydrogen bonds and attractive O···Cl interaction. H atoms are presented as small spheres of arbitrary radius.
[Figure 3] Fig. 3. Molecular structure of I (second crystallographically independent I.CHCl3 unit is depicted). Displacement ellipsoids are shown at 50% probability level. Dashed lines indicate intermolecular hydrogen bonds and attractive O···Cl interaction. H atoms are presented as small spheres of arbitrary radius.
meso-(1S*,21R*)-25-Methyl-8,11,14-trioxa-22,24,25- triazatetracyclo[19.3.1.02,7.015,20]pentacosa-2,4,6,15(20),16,18- hexaene-23-thione chloroform monosolvate top
Crystal data top
C20H23N3O3S·CHCl3F(000) = 2096
Mr = 504.84Dx = 1.436 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8820 reflections
a = 17.8370 (5) Åθ = 2.3–31.3°
b = 13.9173 (4) ŵ = 0.51 mm1
c = 19.0561 (6) ÅT = 100 K
β = 99.222 (1)°Prism, colourless
V = 4669.4 (2) Å30.30 × 0.25 × 0.20 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
11281 independent reflections
Radiation source: fine-focus sealed tube8711 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
φ and ω scansθmax = 28.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 2323
Tmin = 0.862, Tmax = 0.905k = 1818
52534 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: difference Fourier map
wR(F2) = 0.145H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0795P)2 + 4P]
where P = (Fo2 + 2Fc2)/3
11281 reflections(Δ/σ)max = 0.001
561 parametersΔρmax = 1.38 e Å3
0 restraintsΔρmin = 1.05 e Å3
Crystal data top
C20H23N3O3S·CHCl3V = 4669.4 (2) Å3
Mr = 504.84Z = 8
Monoclinic, P21/nMo Kα radiation
a = 17.8370 (5) ŵ = 0.51 mm1
b = 13.9173 (4) ÅT = 100 K
c = 19.0561 (6) Å0.30 × 0.25 × 0.20 mm
β = 99.222 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
11281 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
8711 reflections with I > 2σ(I)
Tmin = 0.862, Tmax = 0.905Rint = 0.052
52534 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.00Δρmax = 1.38 e Å3
11281 reflectionsΔρmin = 1.05 e Å3
561 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.40501 (3)1.09117 (4)0.46981 (3)0.01438 (12)
C10.39732 (11)0.83090 (15)0.37434 (11)0.0123 (4)
H10.40350.84780.32460.015*
C20.44422 (12)0.74267 (15)0.39512 (12)0.0140 (4)
C30.48141 (12)0.72432 (16)0.46368 (12)0.0168 (4)
H30.47870.77000.50020.020*
C40.52264 (14)0.63971 (18)0.47951 (14)0.0228 (5)
H40.54860.62840.52630.027*
C50.52547 (14)0.57230 (17)0.42640 (14)0.0240 (5)
H50.55330.51450.43720.029*
C60.48805 (13)0.58815 (17)0.35750 (14)0.0211 (5)
H60.49030.54160.32140.025*
C70.44703 (12)0.67319 (16)0.34181 (12)0.0161 (4)
O80.40804 (9)0.69639 (12)0.27653 (8)0.0191 (3)
C90.40705 (13)0.62893 (17)0.21950 (12)0.0185 (5)
H9A0.38170.56870.23040.022*
H9B0.45960.61350.21260.022*
C100.36434 (13)0.67444 (18)0.15376 (12)0.0196 (5)
H10A0.38370.74020.14840.024*
H10B0.37190.63660.11150.024*
O110.28513 (9)0.67811 (12)0.15886 (8)0.0179 (3)
C120.24553 (14)0.75651 (17)0.12146 (12)0.0202 (5)
H12A0.22910.73880.07100.024*
H12B0.27940.81310.12320.024*
C130.17749 (13)0.78028 (17)0.15563 (12)0.0191 (5)
H13A0.14540.82890.12720.023*
H13B0.14660.72200.15940.023*
O140.20647 (9)0.81722 (12)0.22479 (9)0.0196 (3)
C150.15707 (12)0.84805 (16)0.26797 (12)0.0159 (4)
C160.07835 (13)0.83922 (17)0.25266 (13)0.0196 (5)
H160.05490.81260.20870.024*
C170.03439 (13)0.86984 (17)0.30238 (14)0.0213 (5)
H170.01930.86310.29230.026*
C180.06749 (13)0.91003 (16)0.36636 (13)0.0199 (5)
H180.03690.92970.40030.024*
C190.14625 (13)0.92140 (16)0.38051 (12)0.0161 (4)
H190.16910.95040.42380.019*
C200.19172 (12)0.89076 (15)0.33195 (11)0.0139 (4)
C210.27704 (12)0.89994 (15)0.34368 (11)0.0121 (4)
H210.29250.90990.29600.014*
N220.30377 (10)0.98427 (13)0.38774 (10)0.0135 (4)
H22N0.27651.03890.38530.016*
C230.37559 (12)0.99051 (15)0.42276 (11)0.0123 (4)
N240.42203 (10)0.91516 (13)0.41981 (10)0.0134 (4)
H24N0.46880.91690.44580.016*
N250.31621 (10)0.81396 (13)0.37458 (9)0.0117 (3)
C260.30034 (12)0.79035 (16)0.44608 (11)0.0153 (4)
H26A0.24530.78530.44480.023*
H26B0.32070.84110.47940.023*
H26C0.32440.72900.46160.023*
S20.59769 (3)0.40566 (4)0.02497 (3)0.01375 (12)
C270.59706 (11)0.65460 (15)0.13409 (11)0.0124 (4)
H270.58410.63340.18080.015*
C280.55282 (12)0.74494 (15)0.11245 (13)0.0157 (4)
C290.52331 (13)0.76760 (17)0.04246 (14)0.0212 (5)
H290.52880.72320.00580.025*
C300.48566 (15)0.85456 (19)0.02499 (16)0.0306 (6)
H300.46600.86920.02310.037*
C310.47739 (16)0.91880 (19)0.07820 (17)0.0341 (7)
H310.45160.97780.06650.041*
C320.50645 (14)0.89852 (18)0.14926 (16)0.0286 (6)
H320.50030.94320.18560.034*
C330.54468 (13)0.81189 (17)0.16622 (13)0.0197 (5)
O340.57591 (10)0.78517 (12)0.23351 (9)0.0225 (4)
C350.58146 (14)0.85641 (18)0.28819 (14)0.0245 (5)
H35A0.53020.87470.29710.029*
H35B0.60690.91460.27360.029*
C360.62663 (15)0.81447 (19)0.35413 (14)0.0268 (6)
H36A0.62160.85540.39560.032*
H36B0.60720.74960.36280.032*
O370.70496 (10)0.80853 (13)0.34550 (9)0.0231 (4)
C380.74684 (16)0.73886 (19)0.39038 (13)0.0272 (6)
H38A0.71450.68220.39530.033*
H38B0.76360.76640.43820.033*
C390.81451 (15)0.70940 (18)0.35800 (13)0.0256 (5)
H39A0.84200.76680.34490.031*
H39B0.84970.67050.39220.031*
O400.78678 (10)0.65387 (12)0.29591 (9)0.0222 (4)
C410.83531 (13)0.63239 (16)0.24964 (13)0.0188 (5)
C420.91393 (14)0.64661 (18)0.26350 (15)0.0267 (6)
H420.93730.67190.30800.032*
C430.95744 (14)0.62359 (19)0.21210 (17)0.0301 (6)
H431.01070.63440.22150.036*
C440.92544 (14)0.58514 (18)0.14725 (15)0.0259 (6)
H440.95620.57010.11240.031*
C450.84693 (13)0.56877 (16)0.13378 (13)0.0191 (5)
H450.82440.54120.08980.023*
C460.80152 (12)0.59253 (16)0.18437 (12)0.0151 (4)
C470.71614 (12)0.58252 (15)0.17053 (11)0.0125 (4)
H470.69920.56730.21680.015*
N480.69185 (10)0.50260 (13)0.12106 (10)0.0137 (4)
H48N0.72130.44970.12600.016*
C490.62317 (12)0.50040 (15)0.07968 (11)0.0119 (4)
N500.57641 (10)0.57561 (13)0.08247 (10)0.0134 (4)
H50N0.53090.57380.05420.016*
N510.67883 (10)0.67119 (13)0.14366 (9)0.0120 (3)
C520.70353 (12)0.70762 (16)0.07863 (11)0.0153 (4)
H52A0.75850.71900.08770.023*
H52B0.67710.76800.06440.023*
H52C0.69150.66020.04050.023*
Cl10.27961 (4)0.53821 (5)0.38281 (5)0.0428 (2)
Cl20.14136 (4)0.64065 (5)0.40015 (4)0.03496 (17)
Cl30.16124 (4)0.56818 (5)0.26278 (4)0.03620 (17)
C530.20805 (15)0.61681 (19)0.34302 (14)0.0251 (5)
H530.23220.67880.33240.030*
Cl40.88331 (5)0.85664 (6)0.13270 (5)0.0476 (2)
Cl50.75321 (6)0.96817 (6)0.06923 (4)0.0536 (2)
Cl60.75812 (5)0.88555 (5)0.21014 (4)0.03796 (18)
C540.8111 (2)0.9377 (2)0.14904 (15)0.0376 (7)
H540.83580.99760.17070.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0143 (2)0.0117 (2)0.0157 (3)0.00020 (19)0.00189 (19)0.00450 (19)
C10.0114 (9)0.0128 (10)0.0124 (10)0.0010 (8)0.0013 (8)0.0047 (8)
C20.0109 (9)0.0134 (10)0.0175 (10)0.0011 (8)0.0017 (8)0.0029 (8)
C30.0160 (10)0.0150 (10)0.0186 (11)0.0028 (8)0.0002 (8)0.0024 (8)
C40.0211 (11)0.0199 (12)0.0247 (12)0.0003 (9)0.0044 (9)0.0019 (9)
C50.0211 (12)0.0141 (11)0.0361 (14)0.0041 (9)0.0021 (10)0.0009 (10)
C60.0196 (11)0.0157 (11)0.0273 (13)0.0029 (9)0.0017 (9)0.0050 (9)
C70.0129 (10)0.0152 (10)0.0201 (11)0.0004 (8)0.0022 (8)0.0031 (8)
O80.0214 (8)0.0183 (8)0.0162 (8)0.0037 (6)0.0013 (6)0.0087 (6)
C90.0180 (11)0.0196 (11)0.0184 (11)0.0006 (9)0.0045 (9)0.0096 (9)
C100.0188 (11)0.0243 (12)0.0171 (11)0.0029 (9)0.0068 (9)0.0061 (9)
O110.0164 (8)0.0196 (8)0.0182 (8)0.0022 (6)0.0041 (6)0.0017 (6)
C120.0251 (12)0.0216 (12)0.0136 (11)0.0026 (9)0.0020 (9)0.0023 (9)
C130.0187 (11)0.0212 (11)0.0149 (11)0.0016 (9)0.0047 (9)0.0059 (9)
O140.0135 (7)0.0263 (9)0.0178 (8)0.0010 (7)0.0007 (6)0.0107 (7)
C150.0140 (10)0.0141 (10)0.0190 (11)0.0003 (8)0.0012 (8)0.0024 (8)
C160.0150 (11)0.0162 (11)0.0252 (12)0.0019 (9)0.0042 (9)0.0028 (9)
C170.0121 (10)0.0179 (11)0.0333 (13)0.0013 (9)0.0019 (9)0.0008 (10)
C180.0173 (11)0.0157 (11)0.0280 (13)0.0014 (9)0.0075 (9)0.0030 (9)
C190.0175 (11)0.0134 (10)0.0180 (11)0.0012 (8)0.0044 (8)0.0007 (8)
C200.0136 (10)0.0116 (10)0.0160 (10)0.0004 (8)0.0007 (8)0.0002 (8)
C210.0123 (10)0.0123 (10)0.0113 (9)0.0005 (8)0.0010 (7)0.0033 (8)
N220.0119 (8)0.0113 (8)0.0161 (9)0.0010 (7)0.0013 (7)0.0026 (7)
C230.0146 (10)0.0122 (10)0.0102 (9)0.0008 (8)0.0028 (8)0.0009 (7)
N240.0104 (8)0.0116 (8)0.0171 (9)0.0004 (7)0.0009 (7)0.0046 (7)
N250.0097 (8)0.0131 (8)0.0128 (8)0.0015 (7)0.0032 (7)0.0021 (7)
C260.0154 (10)0.0164 (10)0.0148 (10)0.0012 (8)0.0043 (8)0.0010 (8)
S20.0152 (2)0.0117 (2)0.0135 (2)0.00074 (19)0.00027 (19)0.00370 (19)
C270.0112 (9)0.0130 (10)0.0130 (10)0.0016 (8)0.0023 (8)0.0030 (8)
C280.0099 (9)0.0111 (10)0.0260 (12)0.0013 (8)0.0024 (8)0.0041 (8)
C290.0177 (11)0.0147 (11)0.0282 (13)0.0010 (9)0.0051 (9)0.0033 (9)
C300.0281 (13)0.0183 (12)0.0397 (16)0.0009 (10)0.0117 (12)0.0004 (11)
C310.0262 (14)0.0180 (13)0.0537 (19)0.0066 (10)0.0072 (13)0.0032 (12)
C320.0216 (12)0.0161 (12)0.0479 (17)0.0024 (10)0.0053 (11)0.0126 (11)
C330.0147 (10)0.0152 (11)0.0291 (13)0.0023 (9)0.0031 (9)0.0058 (9)
O340.0267 (9)0.0186 (8)0.0231 (9)0.0029 (7)0.0072 (7)0.0111 (7)
C350.0234 (12)0.0234 (12)0.0296 (13)0.0075 (10)0.0131 (10)0.0164 (10)
C360.0314 (14)0.0287 (13)0.0246 (13)0.0110 (11)0.0172 (11)0.0119 (10)
O370.0280 (9)0.0235 (9)0.0193 (9)0.0071 (7)0.0083 (7)0.0028 (7)
C380.0424 (15)0.0241 (13)0.0146 (11)0.0111 (11)0.0027 (10)0.0033 (9)
C390.0319 (14)0.0224 (12)0.0187 (12)0.0057 (10)0.0080 (10)0.0051 (9)
O400.0229 (8)0.0233 (9)0.0179 (8)0.0044 (7)0.0041 (7)0.0079 (7)
C410.0169 (11)0.0122 (10)0.0251 (12)0.0002 (8)0.0028 (9)0.0022 (9)
C420.0178 (12)0.0196 (12)0.0376 (15)0.0043 (9)0.0107 (10)0.0001 (10)
C430.0131 (11)0.0193 (12)0.0562 (18)0.0022 (9)0.0001 (11)0.0079 (12)
C440.0172 (11)0.0195 (12)0.0425 (16)0.0035 (9)0.0091 (11)0.0100 (11)
C450.0182 (11)0.0143 (10)0.0254 (12)0.0029 (9)0.0052 (9)0.0045 (9)
C460.0123 (10)0.0133 (10)0.0187 (11)0.0007 (8)0.0008 (8)0.0026 (8)
C470.0131 (10)0.0128 (10)0.0112 (9)0.0015 (8)0.0010 (8)0.0008 (7)
N480.0125 (8)0.0113 (8)0.0161 (9)0.0017 (7)0.0013 (7)0.0030 (7)
C490.0138 (10)0.0115 (10)0.0109 (9)0.0008 (8)0.0036 (8)0.0003 (7)
N500.0111 (8)0.0113 (8)0.0170 (9)0.0005 (7)0.0003 (7)0.0036 (7)
N510.0107 (8)0.0123 (8)0.0132 (8)0.0002 (7)0.0022 (7)0.0010 (7)
C520.0157 (10)0.0165 (10)0.0145 (10)0.0031 (8)0.0052 (8)0.0011 (8)
Cl10.0397 (4)0.0301 (4)0.0545 (5)0.0058 (3)0.0050 (3)0.0007 (3)
Cl20.0377 (4)0.0322 (4)0.0395 (4)0.0119 (3)0.0199 (3)0.0109 (3)
Cl30.0401 (4)0.0346 (4)0.0326 (4)0.0027 (3)0.0016 (3)0.0125 (3)
C530.0251 (12)0.0216 (12)0.0295 (13)0.0012 (10)0.0066 (10)0.0038 (10)
Cl40.0415 (4)0.0501 (5)0.0533 (5)0.0164 (4)0.0138 (4)0.0021 (4)
Cl50.0888 (7)0.0322 (4)0.0354 (4)0.0030 (4)0.0036 (4)0.0029 (3)
Cl60.0564 (5)0.0309 (4)0.0299 (4)0.0131 (3)0.0171 (3)0.0072 (3)
C540.061 (2)0.0286 (14)0.0242 (14)0.0185 (14)0.0108 (13)0.0036 (11)
Geometric parameters (Å, º) top
S1—C231.700 (2)C27—H271.0000
C1—N251.467 (3)C28—C291.389 (3)
C1—N241.482 (3)C28—C331.410 (3)
C1—C21.503 (3)C29—C301.398 (3)
C1—H11.0000C29—H290.9500
C2—C31.391 (3)C30—C311.377 (4)
C2—C71.409 (3)C30—H300.9500
C3—C41.395 (3)C31—C321.399 (4)
C3—H30.9500C31—H310.9500
C4—C51.387 (4)C32—C331.397 (3)
C4—H40.9500C32—H320.9500
C5—C61.392 (4)C33—O341.365 (3)
C5—H50.9500O34—C351.430 (3)
C6—C71.398 (3)C35—C361.498 (4)
C6—H60.9500C35—H35A0.9900
C7—O81.363 (3)C35—H35B0.9900
O8—C91.434 (3)C36—O371.435 (3)
C9—C101.498 (3)C36—H36A0.9900
C9—H9A0.9900C36—H36B0.9900
C9—H9B0.9900O37—C381.423 (3)
C10—O111.433 (3)C38—C391.498 (4)
C10—H10A0.9900C38—H38A0.9900
C10—H10B0.9900C38—H38B0.9900
O11—C121.427 (3)C39—O401.433 (3)
C12—C131.503 (3)C39—H39A0.9900
C12—H12A0.9900C39—H39B0.9900
C12—H12B0.9900O40—C411.364 (3)
C13—O141.432 (3)C41—C421.399 (3)
C13—H13A0.9900C41—C461.406 (3)
C13—H13B0.9900C42—C431.381 (4)
O14—C151.367 (3)C42—H420.9500
C15—C161.393 (3)C43—C441.383 (4)
C15—C201.407 (3)C43—H430.9500
C16—C171.390 (3)C44—C451.401 (3)
C16—H160.9500C44—H440.9500
C17—C181.385 (4)C45—C461.395 (3)
C17—H170.9500C45—H450.9500
C18—C191.396 (3)C46—C471.510 (3)
C18—H180.9500C47—N511.456 (3)
C19—C201.392 (3)C47—N481.477 (3)
C19—H190.9500C47—H471.0000
C20—C211.508 (3)N48—C491.347 (3)
C21—N251.461 (3)N48—H48N0.9000
C21—N221.477 (3)C49—N501.345 (3)
C21—H211.0000N50—H50N0.9000
N22—C231.349 (3)N51—C521.470 (3)
N22—H22N0.9000C52—H52A0.9800
C23—N241.343 (3)C52—H52B0.9800
N24—H24N0.9000C52—H52C0.9800
N25—C261.472 (3)Cl1—C531.758 (3)
C26—H26A0.9800Cl2—C531.768 (3)
C26—H26B0.9800Cl3—C531.756 (3)
C26—H26C0.9800C53—H531.0000
S2—C491.697 (2)Cl4—C541.777 (4)
C27—N511.459 (3)Cl5—C541.748 (3)
C27—N501.482 (3)Cl6—C541.769 (3)
C27—C281.506 (3)C54—H541.0000
N25—C1—N24109.05 (16)C29—C28—C33118.7 (2)
N25—C1—C2112.06 (17)C29—C28—C27123.6 (2)
N24—C1—C2113.05 (17)C33—C28—C27117.6 (2)
N25—C1—H1107.5C28—C29—C30121.2 (2)
N24—C1—H1107.5C28—C29—H29119.4
C2—C1—H1107.5C30—C29—H29119.4
C3—C2—C7119.0 (2)C31—C30—C29119.4 (3)
C3—C2—C1124.00 (19)C31—C30—H30120.3
C7—C2—C1116.96 (19)C29—C30—H30120.3
C2—C3—C4120.9 (2)C30—C31—C32121.0 (2)
C2—C3—H3119.5C30—C31—H31119.5
C4—C3—H3119.5C32—C31—H31119.5
C5—C4—C3119.5 (2)C33—C32—C31119.3 (2)
C5—C4—H4120.2C33—C32—H32120.4
C3—C4—H4120.2C31—C32—H32120.4
C4—C5—C6120.9 (2)O34—C33—C32124.2 (2)
C4—C5—H5119.6O34—C33—C28115.4 (2)
C6—C5—H5119.6C32—C33—C28120.4 (2)
C5—C6—C7119.4 (2)C33—O34—C35117.75 (19)
C5—C6—H6120.3O34—C35—C36107.8 (2)
C7—C6—H6120.3O34—C35—H35A110.1
O8—C7—C6124.6 (2)C36—C35—H35A110.1
O8—C7—C2115.06 (19)O34—C35—H35B110.1
C6—C7—C2120.3 (2)C36—C35—H35B110.1
C7—O8—C9118.62 (18)H35A—C35—H35B108.5
O8—C9—C10107.44 (19)O37—C36—C35109.2 (2)
O8—C9—H9A110.2O37—C36—H36A109.8
C10—C9—H9A110.2C35—C36—H36A109.8
O8—C9—H9B110.2O37—C36—H36B109.8
C10—C9—H9B110.2C35—C36—H36B109.8
H9A—C9—H9B108.5H36A—C36—H36B108.3
O11—C10—C9109.46 (18)C38—O37—C36113.41 (19)
O11—C10—H10A109.8O37—C38—C39108.6 (2)
C9—C10—H10A109.8O37—C38—H38A110.0
O11—C10—H10B109.8C39—C38—H38A110.0
C9—C10—H10B109.8O37—C38—H38B110.0
H10A—C10—H10B108.2C39—C38—H38B110.0
C12—O11—C10114.08 (18)H38A—C38—H38B108.4
O11—C12—C13108.74 (19)O40—C39—C38107.1 (2)
O11—C12—H12A109.9O40—C39—H39A110.3
C13—C12—H12A109.9C38—C39—H39A110.3
O11—C12—H12B109.9O40—C39—H39B110.3
C13—C12—H12B109.9C38—C39—H39B110.3
H12A—C12—H12B108.3H39A—C39—H39B108.6
O14—C13—C12106.28 (18)C41—O40—C39118.75 (19)
O14—C13—H13A110.5O40—C41—C42124.6 (2)
C12—C13—H13A110.5O40—C41—C46115.6 (2)
O14—C13—H13B110.5C42—C41—C46119.8 (2)
C12—C13—H13B110.5C43—C42—C41119.6 (2)
H13A—C13—H13B108.7C43—C42—H42120.2
C15—O14—C13119.62 (17)C41—C42—H42120.2
O14—C15—C16124.8 (2)C42—C43—C44121.7 (2)
O14—C15—C20114.71 (19)C42—C43—H43119.2
C16—C15—C20120.4 (2)C44—C43—H43119.2
C17—C16—C15119.3 (2)C43—C44—C45118.9 (2)
C17—C16—H16120.3C43—C44—H44120.5
C15—C16—H16120.3C45—C44—H44120.5
C18—C17—C16121.1 (2)C46—C45—C44120.6 (2)
C18—C17—H17119.5C46—C45—H45119.7
C16—C17—H17119.5C44—C45—H45119.7
C17—C18—C19119.3 (2)C45—C46—C41119.4 (2)
C17—C18—H18120.3C45—C46—C47122.6 (2)
C19—C18—H18120.3C41—C46—C47117.9 (2)
C20—C19—C18120.8 (2)N51—C47—N48110.06 (16)
C20—C19—H19119.6N51—C47—C46112.00 (17)
C18—C19—H19119.6N48—C47—C46111.42 (17)
C19—C20—C15118.9 (2)N51—C47—H47107.7
C19—C20—C21123.9 (2)N48—C47—H47107.7
C15—C20—C21117.19 (19)C46—C47—H47107.7
N25—C21—N22109.38 (16)C49—N48—C47122.48 (18)
N25—C21—C20113.35 (17)C49—N48—H48N120.2
N22—C21—C20112.20 (17)C47—N48—H48N116.3
N25—C21—H21107.2N50—C49—N48118.09 (19)
N22—C21—H21107.2N50—C49—S2121.49 (16)
C20—C21—H21107.2N48—C49—S2120.42 (16)
C23—N22—C21121.79 (18)C49—N50—C27120.93 (17)
C23—N22—H22N115.8C49—N50—H50N117.5
C21—N22—H22N121.2C27—N50—H50N121.5
N24—C23—N22118.18 (19)C47—N51—C27107.53 (16)
N24—C23—S1121.67 (16)C47—N51—C52114.02 (17)
N22—C23—S1120.15 (16)C27—N51—C52112.19 (17)
C23—N24—C1120.96 (17)N51—C52—H52A109.5
C23—N24—H24N118.7N51—C52—H52B109.5
C1—N24—H24N120.4H52A—C52—H52B109.5
C21—N25—C1105.98 (16)N51—C52—H52C109.5
C21—N25—C26113.91 (16)H52A—C52—H52C109.5
C1—N25—C26112.00 (17)H52B—C52—H52C109.5
N25—C26—H26A109.5Cl3—C53—Cl1110.29 (14)
N25—C26—H26B109.5Cl3—C53—Cl2109.61 (14)
H26A—C26—H26B109.5Cl1—C53—Cl2111.40 (15)
N25—C26—H26C109.5Cl3—C53—H53108.5
H26A—C26—H26C109.5Cl1—C53—H53108.5
H26B—C26—H26C109.5Cl2—C53—H53108.5
N51—C27—N50109.73 (16)Cl5—C54—Cl6111.66 (19)
N51—C27—C28111.81 (17)Cl5—C54—Cl4110.18 (16)
N50—C27—C28111.95 (17)Cl6—C54—Cl4109.46 (17)
N51—C27—H27107.7Cl5—C54—H54108.5
N50—C27—H27107.7Cl6—C54—H54108.5
C28—C27—H27107.7Cl4—C54—H54108.5
N25—C1—C2—C396.0 (2)N51—C27—C28—C2997.1 (2)
N24—C1—C2—C327.8 (3)N50—C27—C28—C2926.5 (3)
N25—C1—C2—C781.0 (2)N51—C27—C28—C3379.5 (2)
N24—C1—C2—C7155.28 (19)N50—C27—C28—C33156.93 (19)
C7—C2—C3—C41.6 (3)C33—C28—C29—C300.5 (3)
C1—C2—C3—C4178.5 (2)C27—C28—C29—C30177.0 (2)
C2—C3—C4—C51.1 (4)C28—C29—C30—C310.3 (4)
C3—C4—C5—C60.3 (4)C29—C30—C31—C320.4 (4)
C4—C5—C6—C70.1 (4)C30—C31—C32—C330.3 (4)
C5—C6—C7—O8179.8 (2)C31—C32—C33—O34179.3 (2)
C5—C6—C7—C20.6 (4)C31—C32—C33—C281.0 (4)
C3—C2—C7—O8178.99 (19)C29—C28—C33—O34179.2 (2)
C1—C2—C7—O81.9 (3)C27—C28—C33—O342.4 (3)
C3—C2—C7—C61.4 (3)C29—C28—C33—C321.1 (3)
C1—C2—C7—C6178.5 (2)C27—C28—C33—C32177.9 (2)
C6—C7—O8—C91.3 (3)C32—C33—O34—C3511.2 (3)
C2—C7—O8—C9179.07 (19)C28—C33—O34—C35169.1 (2)
C7—O8—C9—C10176.94 (19)C33—O34—C35—C36172.36 (19)
O8—C9—C10—O1171.7 (2)O34—C35—C36—O3772.6 (2)
C9—C10—O11—C12150.54 (19)C35—C36—O37—C38157.19 (19)
C10—O11—C12—C13154.40 (18)C36—O37—C38—C39156.84 (19)
O11—C12—C13—O1467.2 (2)O37—C38—C39—O4070.6 (2)
C12—C13—O14—C15177.99 (19)C38—C39—O40—C41168.6 (2)
C13—O14—C15—C165.8 (3)C39—O40—C41—C4211.1 (3)
C13—O14—C15—C20174.6 (2)C39—O40—C41—C46169.4 (2)
O14—C15—C16—C17177.3 (2)O40—C41—C42—C43179.0 (2)
C20—C15—C16—C172.3 (3)C46—C41—C42—C431.7 (4)
C15—C16—C17—C180.9 (4)C41—C42—C43—C441.1 (4)
C16—C17—C18—C191.1 (4)C42—C43—C44—C450.4 (4)
C17—C18—C19—C201.6 (3)C43—C44—C45—C461.2 (4)
C18—C19—C20—C150.1 (3)C44—C45—C46—C410.6 (3)
C18—C19—C20—C21179.6 (2)C44—C45—C46—C47175.8 (2)
O14—C15—C20—C19177.8 (2)O40—C41—C46—C45179.7 (2)
C16—C15—C20—C191.9 (3)C42—C41—C46—C450.8 (3)
O14—C15—C20—C211.9 (3)O40—C41—C46—C473.2 (3)
C16—C15—C20—C21178.4 (2)C42—C41—C46—C47177.4 (2)
C19—C20—C21—N2594.1 (2)C45—C46—C47—N5192.9 (2)
C15—C20—C21—N2585.6 (2)C41—C46—C47—N5183.6 (2)
C19—C20—C21—N2230.4 (3)C45—C46—C47—N4830.9 (3)
C15—C20—C21—N22149.90 (19)C41—C46—C47—N48152.65 (19)
N25—C21—N22—C2332.5 (3)N51—C47—N48—C4929.1 (3)
C20—C21—N22—C23159.19 (19)C46—C47—N48—C49153.96 (19)
C21—N22—C23—N243.5 (3)C47—N48—C49—N502.0 (3)
C21—N22—C23—S1177.20 (15)C47—N48—C49—S2178.82 (15)
N22—C23—N24—C15.2 (3)N48—C49—N50—C275.3 (3)
S1—C23—N24—C1175.49 (15)S2—C49—N50—C27175.63 (15)
N25—C1—N24—C2335.7 (3)N51—C27—N50—C4935.3 (3)
C2—C1—N24—C23161.11 (19)C28—C27—N50—C49160.02 (19)
N22—C21—N25—C160.5 (2)N48—C47—N51—C2757.0 (2)
C20—C21—N25—C1173.45 (17)C46—C47—N51—C27178.42 (17)
N22—C21—N25—C2663.1 (2)N48—C47—N51—C5268.0 (2)
C20—C21—N25—C2663.0 (2)C46—C47—N51—C5256.5 (2)
N24—C1—N25—C2162.2 (2)N50—C27—N51—C4760.2 (2)
C2—C1—N25—C21171.87 (17)C28—C27—N51—C47174.96 (17)
N24—C1—N25—C2662.6 (2)N50—C27—N51—C5266.0 (2)
C2—C1—N25—C2663.3 (2)C28—C27—N51—C5258.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N22—H22N···O11i0.902.323.183 (2)161
N24—H24N···S1ii0.902.553.445 (2)173
N48—H48N···O37iii0.902.383.273 (3)172
N50—H50N···S2iv0.902.553.445 (2)172
C10—H10B···S2iv0.992.803.747 (2)160
C21—H21···Cl3i1.002.663.395 (2)130
C26—H26A···Cl20.982.783.514 (2)133
C36—H36A···S1ii0.992.783.729 (3)160
C43—H43···Cl3v0.952.833.690 (3)151
C53—H53···N251.002.463.353 (3)149
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+2, z+1; (iii) x+3/2, y1/2, z+1/2; (iv) x+1, y+1, z; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC20H23N3O3S·CHCl3
Mr504.84
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)17.8370 (5), 13.9173 (4), 19.0561 (6)
β (°) 99.222 (1)
V3)4669.4 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.862, 0.905
No. of measured, independent and
observed [I > 2σ(I)] reflections
52534, 11281, 8711
Rint0.052
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.145, 1.00
No. of reflections11281
No. of parameters561
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.38, 1.05

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N22—H22N···O11i0.902.323.183 (2)161
N24—H24N···S1ii0.902.553.445 (2)173
N48—H48N···O37iii0.902.383.273 (3)172
N50—H50N···S2iv0.902.553.445 (2)172
C10—H10B···S2iv0.992.803.747 (2)160
C21—H21···Cl3i1.002.663.395 (2)130
C26—H26A···Cl20.982.783.514 (2)133
C36—H36A···S1ii0.992.783.729 (3)160
C43—H43···Cl3v0.952.833.690 (3)151
C53—H53···N251.002.463.353 (3)149
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+2, z+1; (iii) x+3/2, y1/2, z+1/2; (iv) x+1, y+1, z; (v) x+1, y, z.
 

Acknowledgements

We thank the Vietnam National University, Hanoi (grant No. QG.11.09) for the financial support of this work.

References

First citationAnh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o1588–o1589.  CSD CrossRef IUCr Journals Google Scholar
First citationAnh, L. T., Hieu, T. H., Soldatenkov, A. T., Soldatova, S. A. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o1386–o1387.  CSD CrossRef IUCr Journals Google Scholar
First citationAnh, L. T., Levov, A. N., Soldatenkov, A. T., Gruzdev, R. D. & Hieu, T. H. (2008). Russ. J. Org. Chem. 44, 463–465.  Google Scholar
First citationBradshaw, J. S. & Izatt, R. M. (1997). Acc. Chem. Res. 30, 338–345.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGokel, G. W. & Murillo, O. (1996). Acc. Chem. Res. 29, 425–432.  CrossRef CAS Web of Science Google Scholar
First citationHieu, T. H., Anh, L. T., Levov, A. N., Nikitina, E. V. & Soldatenkov, A. T. (2009). Chem. Heterocycl. Compd, 45, 1406–1407.  CrossRef CAS Google Scholar
First citationHieu, T. H., Anh, L. T., Soldatenkov, A. T., Golovtsov, N. I. & Soldatova, S. A. (2011). Chem. Heterocycl. Compd, 47, 1307–1308.  Google Scholar
First citationHiraoka, M. (1982). In Crown Compounds. Their Characteristic and Application. Tokyo: Kodansha.  Google Scholar
First citationKhieu, T. H., Soldatenkov, A. T., Anh, L. T., Levov, A. N., Smol'yakov, A. F., Khrustalev, V. N. & Antipin, M. Yu. (2011). Russ. J. Org. Chem. 47, 766–770.  Web of Science CrossRef CAS Google Scholar
First citationLevov, A. N., Komarova, A. I., Soldatenkov, A. T., Avramenko, G. V., Soldatova, S. A. & Khrustalev, V. N. (2008). Russ. J. Org. Chem. 44, 1665–1670.  Web of Science CrossRef CAS Google Scholar
First citationLevov, A. N., Strokina, V. M., Komarova, A. I., Anh, L. T., Soldatenkov, A. T. & Khrustalev, V. N. (2006). Mendeleev Commun. 16, 35–37.  Web of Science CSD CrossRef Google Scholar
First citationPedersen, C. J. (1988). Angew. Chem. Int. Ed. Engl. 27, 1053–1083.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds