organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

O,O′-Di­methyl (cyclo­hexyl­amido)­thio­phosphate

aDepartment of Chemistry, Zanjan Branch, Islamic Azad University, Zanjan, Iran, bDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran, and cDepartment of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, Brno CZ-61137, Czech Republic
*Correspondence e-mail: fahimeh_sabbaghi@yahoo.com

(Received 5 August 2012; accepted 1 September 2012; online 8 September 2012)

The P atom in the title compound, C8H18NO2PS, is bonded in a distorted tetra­hedral PSO2N environment with bond angles in the range of 99.23 (5)–115.17 (4)°. The cyclo­hexane ring is disordered over two sets of sites with refined occupancies of 0.528 (5) and 0.472 (5). The ring in both disorder components adopts a chair conformation with the N—H group oriented equatorially. In the crystal, pairs of P=S⋯H—N hydrogen bonds form inversion dimers.

Related literature

For related structures, see: Chivers et al. (2003[Chivers, T., Krahn, M., Schatte, G. & Parvez, M. (2003). Inorg. Chem. 42, 3994-4005.]); Balazs et al. (1999[Balazs, G., Drake, J. E., Silvestru, C. & Haiduc, I. (1999). Inorg. Chim. Acta, 287, 61-71.]); García-Hernández et al. (2006[García-Hernández, Z., Flores-Parra, A., Grevy, J. M., Ramos-Organillo, Á. & Contreras, R. (2006). Polyhedron, 25, 1662-1672.]). For compounds with a P(S)(N)(O)2 skeleton, see: García-Hernández et al. (2006[García-Hernández, Z., Flores-Parra, A., Grevy, J. M., Ramos-Organillo, Á. & Contreras, R. (2006). Polyhedron, 25, 1662-1672.]). For the distorted tetra­hedral configuration of phospho­r­amidates and their chalco-derivatives, see: Rudd et al. (1996[Rudd, M. D., Lindeman, S. V. & Husebye, S. (1996). Acta Chem. Scand. 50, 759-774.]).

[Scheme 1]

Experimental

Crystal data
  • C8H18NO2PS

  • Mr = 223.26

  • Triclinic, [P \overline 1]

  • a = 6.5214 (4) Å

  • b = 9.2078 (6) Å

  • c = 10.5763 (7) Å

  • α = 67.447 (6)°

  • β = 80.212 (5)°

  • γ = 78.863 (5)°

  • V = 572.24 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 120 K

  • 0.50 × 0.50 × 0.30 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire2 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.942, Tmax = 1.000

  • 3413 measured reflections

  • 2017 independent reflections

  • 1731 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.069

  • S = 1.07

  • 2017 reflections

  • 170 parameters

  • 163 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯S1i 0.791 (16) 2.695 (17) 3.4633 (13) 164.3 (14)
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and enCIFer (Allen et al., 2004)[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.].

Supporting information


Comment top

The structure determination of the title compound (Fig. 1) was performed as a part of a project on the synthesis of a new phosphorus(V)-nitrogen compound belonging to the family of phosphoramidothioate with potential applications as S-donor ligands, similar to those observed for reported compounds with a PS bond (Chivers et al., 2003; Balazs et al., 1999; García-Hernández et al., 2006).

The PS (1.9351 (5) Å), P—O (1.5823 (10) and 1.5853 (9) Å) and P—N (1.6153 (12) Å) bond lengths are within the expected values for compounds with a P(S)(N)(O)2 skeleton (García-Hernández et al., 2006).

The P atom has a distorted tetrahedral configuration (Fig. 1) as it has been noted for phosphoramidates and their chalco-derivatives (Rudd et al., 1996). The bond angles at the P atom vary in the range 99.23 (5) [O1—P1—O2] to 115.17 (4)° [O1—P1—S1]. The C—O—P bond angles are 120.01 (9) [C1—O1—P1] and 119.12 (9)° [C2—O2—P1]. In the crystal, inversion dimers are formed by pairs of PS···H—N hydrogen bonds, Table 1 and Fig. 2.

Related literature top

For related structures, see: Chivers et al. (2003); Balazs et al. (1999); García-Hernández et al. (2006). For compounds with a P(S)(N)(O)2 skeleton, see: García-Hernández et al. (2006). For the distorted tetrahedral configuration of phosphoramidates and their chalco-derivatives, see: Rudd et al. (1996).

Experimental top

To a solution of [CH3O]2P(S)Cl (1.7 mmol) in dry CH3CN (30 ml), a solution of cyclohexylamine (3.4 mmol) in the same solvent (5 ml) was added at ice bath temperature. After 4 h stirring, the solvent was removed and the product was washed with distilled water and recrystallized from methanol at room temperature. The single crystals, suitable for X-ray analysis were obtained from this solution after a few days at room temperature.

Refinement top

All carbon bound H atoms were placed at calculated positions and were refined as riding with their Uiso set to either 1.2Ueq or 1.5Ueq (methyl) of the respective carrier atoms; in addition, the methyl H atoms were allowed to rotate about the C—C bond. Nitrogen bound H atom was located in a difference Fourier map and refined isotropically. The disordered cyclohexyl group was modeled over two sites using similarity restraints on anisotropic displacement parameters. To maintain a correct hydrogen geometry, a dummy atom with zero occupancy was created and constrained to share the same site (EXYZ) and anisotropic displacement parameters (EADP) with a fully occupied carbon atom bound to N1.

Structure description top

The structure determination of the title compound (Fig. 1) was performed as a part of a project on the synthesis of a new phosphorus(V)-nitrogen compound belonging to the family of phosphoramidothioate with potential applications as S-donor ligands, similar to those observed for reported compounds with a PS bond (Chivers et al., 2003; Balazs et al., 1999; García-Hernández et al., 2006).

The PS (1.9351 (5) Å), P—O (1.5823 (10) and 1.5853 (9) Å) and P—N (1.6153 (12) Å) bond lengths are within the expected values for compounds with a P(S)(N)(O)2 skeleton (García-Hernández et al., 2006).

The P atom has a distorted tetrahedral configuration (Fig. 1) as it has been noted for phosphoramidates and their chalco-derivatives (Rudd et al., 1996). The bond angles at the P atom vary in the range 99.23 (5) [O1—P1—O2] to 115.17 (4)° [O1—P1—S1]. The C—O—P bond angles are 120.01 (9) [C1—O1—P1] and 119.12 (9)° [C2—O2—P1]. In the crystal, inversion dimers are formed by pairs of PS···H—N hydrogen bonds, Table 1 and Fig. 2.

For related structures, see: Chivers et al. (2003); Balazs et al. (1999); García-Hernández et al. (2006). For compounds with a P(S)(N)(O)2 skeleton, see: García-Hernández et al. (2006). For the distorted tetrahedral configuration of phosphoramidates and their chalco-derivatives, see: Rudd et al. (1996).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids shown at the 50% probability level and H atoms are drawn as small spheres of arbitrary radii. The minor component of disordered part has been omitted for clarity and only one orientation is shown for the disordered cyclohexyl group.
[Figure 2] Fig. 2. Pair of PS···H—N hydrogen bonds (shown as dotted lines) in the hydrogen-bonded dimer. The H atoms not involved in hydrogen bonding have been omitted for clarity.
O,O'-Dimethyl (cyclohexylamido)thiophosphate top
Crystal data top
C8H18NO2PSZ = 2
Mr = 223.26F(000) = 240
Triclinic, P1Dx = 1.296 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5214 (4) ÅCell parameters from 2495 reflections
b = 9.2078 (6) Åθ = 3.2–27.7°
c = 10.5763 (7) ŵ = 0.40 mm1
α = 67.447 (6)°T = 120 K
β = 80.212 (5)°Prism, colourless
γ = 78.863 (5)°0.50 × 0.50 × 0.30 mm
V = 572.24 (6) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
2017 independent reflections
Radiation source: Enhance (Mo) X-ray Source1731 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
Detector resolution: 8.4353 pixels mm-1θmax = 25.0°, θmin = 3.2°
ω scanh = 67
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 1010
Tmin = 0.942, Tmax = 1.000l = 1112
3413 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0424P)2]
where P = (Fo2 + 2Fc2)/3
2017 reflections(Δ/σ)max < 0.001
170 parametersΔρmax = 0.21 e Å3
163 restraintsΔρmin = 0.33 e Å3
Crystal data top
C8H18NO2PSγ = 78.863 (5)°
Mr = 223.26V = 572.24 (6) Å3
Triclinic, P1Z = 2
a = 6.5214 (4) ÅMo Kα radiation
b = 9.2078 (6) ŵ = 0.40 mm1
c = 10.5763 (7) ÅT = 120 K
α = 67.447 (6)°0.50 × 0.50 × 0.30 mm
β = 80.212 (5)°
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
2017 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1731 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 1.000Rint = 0.011
3413 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025163 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.21 e Å3
2017 reflectionsΔρmin = 0.33 e Å3
170 parameters
Special details top

Experimental. IR (KBr, cm-1): 3298, 2924, 2852, 1441, 1296, 1237, 1189, 1096, 1043, 926, 800, 644.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.70121 (6)0.24913 (4)0.59384 (4)0.02256 (13)
P10.79402 (5)0.18144 (4)0.39881 (4)0.01557 (12)
O10.71651 (15)0.27186 (11)0.31916 (10)0.0220 (3)
O21.03994 (14)0.21705 (11)0.36207 (10)0.0185 (2)
N10.7238 (2)0.00511 (14)0.31544 (13)0.0186 (3)
C10.7583 (3)0.44339 (18)0.36569 (19)0.0353 (4)
H1B0.67030.48160.32190.053*
H1C0.72600.48840.46590.053*
H1D0.90680.47630.34070.053*
C21.1800 (2)0.15705 (18)0.41653 (17)0.0270 (4)
H2A1.32600.19270.38840.041*
H2B1.15500.19710.51730.041*
H2C1.15410.04070.38090.041*
C3A0.7713 (2)0.08687 (16)0.16597 (15)0.0193 (3)
H3A0.84650.00610.12610.023*0.528 (5)
C4A0.5781 (5)0.1703 (6)0.0909 (3)0.0248 (9)0.528 (5)
H4A10.49710.24580.13320.030*0.528 (5)
H4A20.48730.09060.10200.030*0.528 (5)
C5A0.6336 (6)0.2606 (7)0.0631 (4)0.0305 (12)0.528 (5)
H5A10.70260.18410.10760.037*0.528 (5)
H5A20.50310.31610.10640.037*0.528 (5)
C6A0.7785 (8)0.3804 (5)0.0864 (4)0.0309 (11)0.528 (5)
H6A10.70430.46310.05010.037*0.528 (5)
H6A20.81680.43280.18650.037*0.528 (5)
C7A0.9772 (7)0.3018 (4)0.0158 (4)0.0251 (9)0.528 (5)
H7A11.06580.38350.02900.030*0.528 (5)
H7A21.05850.22600.05780.030*0.528 (5)
C8A0.9216 (7)0.2137 (5)0.1383 (4)0.0235 (9)0.528 (5)
H8A10.85220.29140.18140.028*0.528 (5)
H8A21.05240.15960.18180.028*0.528 (5)
H3B0.89630.02400.13260.023*0.472 (5)
C4B0.5791 (6)0.0888 (6)0.0963 (4)0.0202 (9)0.472 (5)
H4B10.55550.02140.11690.024*0.472 (5)
H4B20.45150.14420.13290.024*0.472 (5)
C5B0.6199 (7)0.1738 (6)0.0588 (4)0.0237 (10)0.472 (5)
H5B10.73650.11060.09640.028*0.472 (5)
H5B20.49290.18310.10250.028*0.472 (5)
C6B0.6762 (10)0.3388 (6)0.0932 (5)0.0257 (12)0.472 (5)
H6B10.71010.38880.19400.031*0.472 (5)
H6B20.55360.40570.06460.031*0.472 (5)
C7B0.8621 (10)0.3311 (6)0.0215 (5)0.0299 (11)0.472 (5)
H7B10.89080.44020.04260.036*0.472 (5)
H7B20.98800.27300.05690.036*0.472 (5)
C8B0.8214 (9)0.2479 (5)0.1350 (4)0.0250 (10)0.472 (5)
H8B10.94750.24030.17890.030*0.472 (5)
H8B20.70260.31000.17220.030*0.472 (5)
H1N0.634 (2)0.0509 (18)0.3521 (16)0.021 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0223 (2)0.0192 (2)0.0187 (2)0.00165 (15)0.00233 (15)0.00272 (16)
P10.0129 (2)0.0147 (2)0.0178 (2)0.00016 (14)0.00189 (15)0.00541 (16)
O10.0211 (5)0.0169 (5)0.0302 (6)0.0007 (4)0.0100 (5)0.0095 (5)
O20.0130 (5)0.0207 (5)0.0226 (6)0.0006 (4)0.0017 (4)0.0097 (4)
N10.0186 (6)0.0164 (7)0.0174 (7)0.0025 (5)0.0009 (5)0.0060 (5)
C10.0376 (10)0.0200 (9)0.0541 (12)0.0017 (7)0.0183 (9)0.0170 (8)
C20.0171 (8)0.0286 (9)0.0380 (10)0.0048 (6)0.0065 (7)0.0126 (8)
C3A0.0214 (8)0.0181 (8)0.0163 (8)0.0006 (6)0.0008 (6)0.0059 (6)
C4A0.0235 (16)0.030 (2)0.0192 (16)0.0038 (17)0.0037 (12)0.0069 (17)
C5A0.026 (2)0.044 (4)0.0176 (19)0.005 (3)0.0063 (15)0.005 (2)
C6A0.031 (3)0.026 (2)0.023 (2)0.0014 (19)0.0021 (18)0.0004 (16)
C7A0.027 (2)0.0221 (18)0.0242 (18)0.0088 (17)0.0028 (18)0.0068 (14)
C8A0.026 (2)0.021 (2)0.0226 (17)0.0055 (17)0.0026 (18)0.0059 (14)
C3B0.0214 (8)0.0181 (8)0.0163 (8)0.0006 (6)0.0008 (6)0.0059 (6)
C4B0.0229 (17)0.017 (2)0.0189 (18)0.0018 (18)0.0045 (13)0.0045 (17)
C5B0.031 (2)0.021 (2)0.0209 (18)0.0037 (18)0.0053 (14)0.0081 (18)
C6B0.038 (3)0.017 (3)0.018 (2)0.005 (2)0.003 (2)0.0017 (19)
C7B0.037 (3)0.024 (2)0.028 (2)0.015 (2)0.004 (2)0.0028 (18)
C8B0.031 (3)0.021 (2)0.0230 (19)0.007 (2)0.006 (2)0.0051 (16)
Geometric parameters (Å, º) top
S1—P11.9351 (5)C6A—C7A1.521 (5)
P1—O11.5823 (10)C6A—H6A10.9900
P1—O21.5853 (9)C6A—H6A20.9900
P1—N11.6153 (12)C7A—C8A1.531 (5)
O1—C11.4471 (18)C7A—H7A10.9900
O2—C21.4456 (17)C7A—H7A20.9900
N1—C3A1.4739 (18)C8A—H8A10.9900
N1—H1N0.791 (16)C8A—H8A20.9900
C1—H1B0.9800C4B—C5B1.523 (5)
C1—H1C0.9800C4B—H4B10.9900
C1—H1D0.9800C4B—H4B20.9900
C2—H2A0.9800C5B—C6B1.523 (5)
C2—H2B0.9800C5B—H5B10.9900
C2—H2C0.9800C5B—H5B20.9900
C3A—C4A1.519 (4)C6B—C7B1.513 (6)
C3A—C8A1.578 (4)C6B—H6B10.9900
C3A—H3A1.0000C6B—H6B20.9900
C4A—C5A1.533 (5)C7B—C8B1.534 (6)
C4A—H4A10.9900C7B—H7B10.9900
C4A—H4A20.9900C7B—H7B20.9900
C5A—C6A1.512 (6)C8B—H8B10.9900
C5A—H5A10.9900C8B—H8B20.9900
C5A—H5A20.9900
O1—P1—O299.23 (5)C5A—C6A—H6A1109.4
O1—P1—N1105.48 (6)C7A—C6A—H6A1109.4
O2—P1—N1107.01 (6)C5A—C6A—H6A2109.4
O1—P1—S1115.17 (4)C7A—C6A—H6A2109.4
O2—P1—S1114.80 (4)H6A1—C6A—H6A2108.0
N1—P1—S1113.73 (5)C6A—C7A—C8A110.4 (3)
C1—O1—P1120.01 (9)C6A—C7A—H7A1109.6
C2—O2—P1119.12 (9)C8A—C7A—H7A1109.6
C3A—N1—P1124.89 (10)C6A—C7A—H7A2109.6
C3A—N1—H1N115.6 (11)C8A—C7A—H7A2109.6
P1—N1—H1N117.5 (11)H7A1—C7A—H7A2108.1
O1—C1—H1B109.5C7A—C8A—C3A112.0 (3)
O1—C1—H1C109.5C7A—C8A—H8A1109.2
H1B—C1—H1C109.5C3A—C8A—H8A1109.2
O1—C1—H1D109.5C7A—C8A—H8A2109.2
H1B—C1—H1D109.5C3A—C8A—H8A2109.2
H1C—C1—H1D109.5H8A1—C8A—H8A2107.9
O2—C2—H2A109.5C5B—C4B—H4B1109.8
O2—C2—H2B109.5C5B—C4B—H4B2109.8
H2A—C2—H2B109.5H4B1—C4B—H4B2108.3
O2—C2—H2C109.5C6B—C5B—C4B111.1 (3)
H2A—C2—H2C109.5C6B—C5B—H5B1109.4
H2B—C2—H2C109.5C4B—C5B—H5B1109.4
N1—C3A—C4A113.92 (16)C6B—C5B—H5B2109.4
N1—C3A—C8A109.76 (17)C4B—C5B—H5B2109.4
C4A—C3A—C8A108.4 (2)H5B1—C5B—H5B2108.0
N1—C3A—H3A108.2C7B—C6B—C5B111.3 (4)
C4A—C3A—H3A108.2C7B—C6B—H6B1109.4
C8A—C3A—H3A108.2C5B—C6B—H6B1109.4
C3A—C4A—C5A112.6 (3)C7B—C6B—H6B2109.4
C3A—C4A—H4A1109.1C5B—C6B—H6B2109.4
C5A—C4A—H4A1109.1H6B1—C6B—H6B2108.0
C3A—C4A—H4A2109.1C6B—C7B—C8B111.5 (4)
C5A—C4A—H4A2109.1C6B—C7B—H7B1109.3
H4A1—C4A—H4A2107.8C8B—C7B—H7B1109.3
C6A—C5A—C4A111.4 (3)C6B—C7B—H7B2109.3
C6A—C5A—H5A1109.3C8B—C7B—H7B2109.3
C4A—C5A—H5A1109.3H7B1—C7B—H7B2108.0
C6A—C5A—H5A2109.3C7B—C8B—H8B1109.8
C4A—C5A—H5A2109.3C7B—C8B—H8B2109.8
H5A1—C5A—H5A2108.0H8B1—C8B—H8B2108.3
C5A—C6A—C7A111.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S1i0.791 (16)2.695 (17)3.4633 (13)164.3 (14)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC8H18NO2PS
Mr223.26
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)6.5214 (4), 9.2078 (6), 10.5763 (7)
α, β, γ (°)67.447 (6), 80.212 (5), 78.863 (5)
V3)572.24 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.50 × 0.50 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire2
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.942, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3413, 2017, 1731
Rint0.011
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.069, 1.07
No. of reflections2017
No. of parameters170
No. of restraints163
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.33

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S1i0.791 (16)2.695 (17)3.4633 (13)164.3 (14)
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

Support of this investigation by the Zanjan Branch, Islamic Azad University, is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBalazs, G., Drake, J. E., Silvestru, C. & Haiduc, I. (1999). Inorg. Chim. Acta, 287, 61–71.  Web of Science CSD CrossRef CAS Google Scholar
First citationChivers, T., Krahn, M., Schatte, G. & Parvez, M. (2003). Inorg. Chem. 42, 3994–4005.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGarcía-Hernández, Z., Flores-Parra, A., Grevy, J. M., Ramos-Organillo, Á. & Contreras, R. (2006). Polyhedron, 25, 1662–1672.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRudd, M. D., Lindeman, S. V. & Husebye, S. (1996). Acta Chem. Scand. 50, 759–774.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds