organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-N-(1-Eth­­oxy­ethyl­­idene)-2,6-bis­­(propan-2-yl)anilinium chloride hemihydrate

aDepartment of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4
*Correspondence e-mail: boere@uleth.ca

(Received 16 August 2012; accepted 31 August 2012; online 8 September 2012)

In the title compound, C16H26NO+·Cl·0.5H2O, the asymmetric unit consists of two independent cations, their respective chloride anions and a solvent water mol­ecule. Together they form a discrete crescent-shaped entity linked by hydrogen bonds from the central water atom to two Cl ions and from the latter to two protonated imine groups. The geometries of the two independent cations are essentially the same. The planar N=C(O)CH3 groups in each (r.m.s. deviations = 0.0011 and 0.0026 Å) form dihedral angles of 75.28 (5) and 79.10 (4)° with the benzene rings. In one cation, the methyl atoms of one of the isopropyl groups were modeled as disordered over two sets of sites, with refined occupancies of 0.589 (17) and 0.411 (17).

Related literature

For related structures, see: Shine et al. (2004[Shine, H. J., Zhao, B. J., Marx, J. N., Ould-Ely, T. & Whitmire, K. H. (2004). J. Org. Chem. 69, 9255-9261.]); Jazzar et al. (2007[Jazzar, R., Dewhurst, R. D., Bourg, J. B., Donnadieu, B., Canac, Y. & Bertrand, G. (2007). Angew. Chem. Int. Ed. 46, 2899-2902.]); Zhang et al. (2003[Zhang, F., Lerner, H.-W. & Bolte, M. (2003). Acta Cryst. E59, o1181-o1182.]). For hydrogen-bond details, see: Fuller (1959[Fuller, W. (1959). J. Phys. Chem. 63, 1705-1717.]). For standard geometric data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Orpen & Brammer (1989[Orpen, A. G. & Brammer, L. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For details of the synthesis, see: Boeré et al. (1998[Boeré, R. T., Klassen, V. & Wolmershauser, G. (1998). J. Chem. Soc. Dalton Trans. pp. 4147-4154.]).

[Scheme 1]

Experimental

Crystal data
  • C16H26NO+·Cl·0.5H2O

  • Mr = 292.84

  • Triclinic, [P \overline 1]

  • a = 11.2193 (7) Å

  • b = 12.9719 (8) Å

  • c = 12.9832 (8) Å

  • α = 82.637 (1)°

  • β = 69.831 (1)°

  • γ = 82.976 (1)°

  • V = 1752.83 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 173 K

  • 0.45 × 0.20 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.719, Tmax = 0.746

  • 25695 measured reflections

  • 8002 independent reflections

  • 6041 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.101

  • S = 1.04

  • 8002 reflections

  • 395 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Cl1 0.899 (18) 2.178 (19) 3.0737 (13) 173.7 (16)
O1S—H2S⋯Cl1 0.90 (3) 2.39 (3) 3.2684 (18) 167 (2)
O1S—H1S⋯Cl2 0.84 (3) 2.37 (3) 3.2026 (18) 176 (2)
N2—H2N⋯Cl2 0.94 (2) 2.06 (2) 3.0042 (13) 179.1 (17)

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The structure of the two independent cations in (I) is shown in Fig. 1. In one cation (b) the isopropyl group was refined with a two component disorder model (C31,C32, C31A & C32A). In the structure of 5-(2-((1-ethoxyethylidene)ammonio)-2-methylpropyl)thianthrenium diperchlorate (II) (Shine et al., 2004), which is the only other compound with an ethoxyiminium group that we could locate in the Cambridge Structural Database (Allen, 2002; WebCSD June 2012) (refcode: FARCAD), the geometry about the iminium bond is also Z.

The H-bonded cluster, shown in Fig. 2, is the asymmetric unit in the crystal. Both imino nitrogen atoms N1 and N2 are protonated and form strong hydrogen bonds (Table 1) with their respective chloride anions Cl1 and Cl2, within the s.u. of the expected N···Cl distance of 3.19 (7) Å (Fuller, 1959) but clearly on the short end of this scale. The N1···Cl1 bond is comparable in strength to that between N1 and Cl1 in the crystal structure of 2,6-di-isopropyl-N-((1-(2-methylprop-2-en-1-yl)cyclohexyl)methylidene)anilinium chloride chloroform solvate (III) (Refcode: GIBLAF) at 3.077 (4) Å (Jazzar et al., 2007); and shorter than N1···Br1 in 2-((2,6-diisopropylphenyl)iminio)propyl bromide (IV), (Refcode: OJIKX) at 3.196 (1) Å (Zhang et al., 2003). There are additional hydrogen bonds in structure (I) between the the two water hydrogen atoms and the chloride anions (Table 1 & Figure 2).

The iminium bond lengths N1C13, 1.2956 (18) Å and N2C33, 1.2945 (18) Å, fit well with standard values for CN of 1.287 (21) Å, whereas the standard value for C—N is 1.479 (36) Å, (Orpen et al., 1989). Comparative NC values occur in structures (II), 1.289 (5), (III), 1.289 (4) and (IV), 1.290 (2) Å. In (I), the O1—C13 bond length is 1.3068 (17) Å and O2—C33 is 1.3062 (17) Å, indicative of partial double bonds (standard bond lengths for C—O are 1.43 (1) Å, for CO, 1.23 (1) Å, and for Csp2—O, 1.354 (16) Å (Allen et al., 1987)).

Related literature top

For related structures, see: Shine et al. (2004); Jazzar et al. (2007); Zhang et al. (2003). For hydrogen-bond details, see: Fuller (1959). For standard geometric data, see: Allen et al. (1987); Orpen & Brammer (1989). For a description of the Cambridge Structural Database, see: Allen (2002). For details of the synthesis, see: Boeré et al. (1998).

Experimental top

The title compound (I) was obtained as a side product of the reaction of (2,6-diisopropylphenyl)phosphine with N-[2,6-bis(1-methylethyl)phenyl]-2,2-dimethylmethanimidoyl chloride (Boeré et al., 1998) in THF solution (24 h reflux). While the main product precipitated after cooling, the filtrate was evaporated and treated with ethanol. On cooling this mixture to 243 K for an extended period, crystals of (I) formed as colourless blocks. Presumably, (I) forms by the direct nucleophilic addition of ethanol to unreacted imidoyl chloride. It crystallizes as a hemi-hydrate.

Refinement top

During refinement, the methyl groups of one isopropyl group on each of the cations, specifically C8 & C9 and C31 & C32, evidenced large anisotropic displacements. Attempts to define a two-position disorder model for C8 & C9 failed, so these atoms have been treated by a straightforward anisotropic refinement. However, a very reasonable chemical model ensued from a two-position disorder model for C31 and C32 (refined occupancy ratio of 0.589 (17):0.411 (17)). Attempts to include C30 within the disorder model did not lead to a stable refinement, so the second methine carbon was geometrically defined by a dummy atom to ensure the generation of the disordered H atoms on this atom. Hydrogen atoms attached to carbon were treated as riding, with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl, C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C) for methine and C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms. The NH and OH hydrogen positions are freely refined with isotropic displacements.

Structure description top

The structure of the two independent cations in (I) is shown in Fig. 1. In one cation (b) the isopropyl group was refined with a two component disorder model (C31,C32, C31A & C32A). In the structure of 5-(2-((1-ethoxyethylidene)ammonio)-2-methylpropyl)thianthrenium diperchlorate (II) (Shine et al., 2004), which is the only other compound with an ethoxyiminium group that we could locate in the Cambridge Structural Database (Allen, 2002; WebCSD June 2012) (refcode: FARCAD), the geometry about the iminium bond is also Z.

The H-bonded cluster, shown in Fig. 2, is the asymmetric unit in the crystal. Both imino nitrogen atoms N1 and N2 are protonated and form strong hydrogen bonds (Table 1) with their respective chloride anions Cl1 and Cl2, within the s.u. of the expected N···Cl distance of 3.19 (7) Å (Fuller, 1959) but clearly on the short end of this scale. The N1···Cl1 bond is comparable in strength to that between N1 and Cl1 in the crystal structure of 2,6-di-isopropyl-N-((1-(2-methylprop-2-en-1-yl)cyclohexyl)methylidene)anilinium chloride chloroform solvate (III) (Refcode: GIBLAF) at 3.077 (4) Å (Jazzar et al., 2007); and shorter than N1···Br1 in 2-((2,6-diisopropylphenyl)iminio)propyl bromide (IV), (Refcode: OJIKX) at 3.196 (1) Å (Zhang et al., 2003). There are additional hydrogen bonds in structure (I) between the the two water hydrogen atoms and the chloride anions (Table 1 & Figure 2).

The iminium bond lengths N1C13, 1.2956 (18) Å and N2C33, 1.2945 (18) Å, fit well with standard values for CN of 1.287 (21) Å, whereas the standard value for C—N is 1.479 (36) Å, (Orpen et al., 1989). Comparative NC values occur in structures (II), 1.289 (5), (III), 1.289 (4) and (IV), 1.290 (2) Å. In (I), the O1—C13 bond length is 1.3068 (17) Å and O2—C33 is 1.3062 (17) Å, indicative of partial double bonds (standard bond lengths for C—O are 1.43 (1) Å, for CO, 1.23 (1) Å, and for Csp2—O, 1.354 (16) Å (Allen et al., 1987)).

For related structures, see: Shine et al. (2004); Jazzar et al. (2007); Zhang et al. (2003). For hydrogen-bond details, see: Fuller (1959). For standard geometric data, see: Allen et al. (1987); Orpen & Brammer (1989). For a description of the Cambridge Structural Database, see: Allen (2002). For details of the synthesis, see: Boeré et al. (1998).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The two independent cations of the title compound with ellipsoids drawn at the 50% probability level. H atoms bonded to C atoms are not shown. Atoms labeled C31/C32/C31A/C32A are the components of disorder.
[Figure 2] Fig. 2. The asymmetric unit of the title compound showing hydrogen bonds as dashed lines. Displacement ellipsoids are drawn at 30% probability level. Neither the disorder nor H atoms bonded to C atoms are shown.
(Z)-N-(1-Ethoxyethylidene)-2,6-bis(propan-2-yl)anilinium chloride hemihydrate top
Crystal data top
C16H26NO+·Cl·0.5H2OZ = 4
Mr = 292.84F(000) = 636
Triclinic, P1Dx = 1.110 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.2193 (7) ÅCell parameters from 9981 reflections
b = 12.9719 (8) Åθ = 2.4–27.5°
c = 12.9832 (8) ŵ = 0.22 mm1
α = 82.637 (1)°T = 173 K
β = 69.831 (1)°Block, colourless
γ = 82.976 (1)°0.45 × 0.20 × 0.10 mm
V = 1752.83 (19) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8002 independent reflections
Radiation source: fine-focus sealed tube, Bruker D86041 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 66.06 pixels mm-1θmax = 27.5°, θmin = 1.6°
φ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1616
Tmin = 0.719, Tmax = 0.746l = 1616
25695 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.4642P]
where P = (Fo2 + 2Fc2)/3
8002 reflections(Δ/σ)max = 0.001
395 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C16H26NO+·Cl·0.5H2Oγ = 82.976 (1)°
Mr = 292.84V = 1752.83 (19) Å3
Triclinic, P1Z = 4
a = 11.2193 (7) ÅMo Kα radiation
b = 12.9719 (8) ŵ = 0.22 mm1
c = 12.9832 (8) ÅT = 173 K
α = 82.637 (1)°0.45 × 0.20 × 0.10 mm
β = 69.831 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8002 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
6041 reflections with I > 2σ(I)
Tmin = 0.719, Tmax = 0.746Rint = 0.025
25695 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.26 e Å3
8002 reflectionsΔρmin = 0.37 e Å3
395 parameters
Special details top

Experimental. A crystal coated in Paratone (TM) oil was mounted on the end of a thin glass capillary and cooled in the gas stream of the diffractometer Kryoflex device.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.09534 (4)0.79658 (3)0.07415 (3)0.03838 (10)
O10.18322 (10)1.02081 (8)0.16965 (8)0.0346 (2)
N10.02336 (11)0.92678 (9)0.18958 (9)0.0265 (2)
H1N0.0157 (17)0.8872 (14)0.1610 (14)0.045 (5)*
C10.03941 (13)0.94616 (11)0.30409 (11)0.0269 (3)
C20.10664 (14)1.04286 (12)0.32881 (12)0.0318 (3)
C30.16881 (15)1.05703 (13)0.43971 (12)0.0378 (4)
H3A0.21551.12180.45970.045*
C40.16388 (15)0.97895 (13)0.52075 (12)0.0396 (4)
H4A0.20580.99080.59600.048*
C50.09862 (14)0.88350 (13)0.49387 (12)0.0353 (3)
H5A0.09710.83010.55090.042*
C60.03497 (13)0.86427 (11)0.38452 (11)0.0279 (3)
C70.11654 (17)1.13018 (12)0.24190 (13)0.0427 (4)
H7A0.06591.10550.16820.051*
C80.0590 (3)1.22705 (15)0.25371 (18)0.0764 (7)
H8A0.02951.20860.25050.115*
H8B0.10831.25420.32450.115*
H8C0.06121.28050.19360.115*
C90.2546 (2)1.15397 (19)0.24565 (16)0.0708 (7)
H9A0.28781.09010.23750.106*
H9B0.25851.20680.18550.106*
H9C0.30631.18030.31640.106*
C100.03973 (14)0.76086 (11)0.35270 (12)0.0328 (3)
H10A0.02970.74600.28260.039*
C110.18162 (16)0.76757 (13)0.33031 (15)0.0443 (4)
H11A0.21130.82690.27610.066*
H11B0.22940.70300.30150.066*
H11C0.19520.77710.39900.066*
C120.00771 (19)0.66928 (13)0.43852 (14)0.0477 (4)
H12A0.09930.66670.45450.072*
H12B0.00820.67850.50630.072*
H12C0.03760.60400.40970.072*
C130.12891 (13)0.96362 (10)0.12563 (11)0.0277 (3)
C140.18325 (15)0.94020 (12)0.00923 (12)0.0345 (3)
H14A0.12620.89830.00720.052*
H14B0.26680.90120.00350.052*
H14C0.19281.00560.03880.052*
C150.30280 (16)1.06551 (14)0.10098 (14)0.0464 (4)
H15A0.28961.11260.03880.056*
H15B0.36951.00940.07080.056*
C160.3416 (2)1.12490 (16)0.17405 (16)0.0605 (5)
H16A0.41821.16000.13040.091*
H16B0.35971.07660.23240.091*
H16C0.27241.17700.20720.091*
Cl20.40771 (4)0.73504 (4)0.03663 (4)0.05588 (14)
O20.74356 (9)0.55679 (8)0.19207 (8)0.0308 (2)
N20.56122 (11)0.62883 (10)0.17525 (10)0.0298 (3)
H2N0.5132 (18)0.6616 (15)0.1312 (16)0.056 (5)*
C210.49447 (13)0.61613 (11)0.29274 (11)0.0280 (3)
C220.50687 (13)0.68840 (12)0.35873 (12)0.0310 (3)
C230.43817 (14)0.67436 (13)0.47090 (12)0.0355 (3)
H23A0.44410.72160.51880.043*
C240.36165 (14)0.59286 (13)0.51361 (12)0.0371 (4)
H24A0.31660.58410.59050.045*
C250.34996 (14)0.52411 (12)0.44569 (12)0.0345 (3)
H25A0.29630.46880.47640.041*
C260.41570 (13)0.53450 (11)0.33257 (11)0.0296 (3)
C270.58849 (15)0.77944 (13)0.31014 (14)0.0393 (4)
H27A0.66270.75500.24680.047*
C280.5143 (2)0.86886 (15)0.2643 (2)0.0660 (6)
H28A0.48250.84340.21160.099*
H28B0.57040.92440.22700.099*
H28C0.44230.89630.32480.099*
C290.6417 (2)0.81701 (19)0.3904 (2)0.0745 (7)
H29A0.68760.75820.42000.112*
H29B0.57160.84650.45100.112*
H29C0.70020.87060.35200.112*
C330.67989 (13)0.59858 (11)0.12759 (11)0.0280 (3)
C340.73662 (15)0.61067 (12)0.00587 (11)0.0343 (3)
H34A0.67020.63750.02600.051*
H34B0.77440.54280.02090.051*
H34C0.80280.65970.01600.051*
C350.87984 (13)0.52399 (12)0.14489 (12)0.0333 (3)
H35A0.92280.57540.08420.040*
H35B0.89200.45520.11560.040*
C360.93303 (16)0.51755 (14)0.23654 (14)0.0438 (4)
H36A1.02460.49670.20890.066*
H36B0.89020.46590.29560.066*
H36C0.91910.58590.26530.066*
C300.40387 (15)0.45877 (12)0.25679 (12)0.0352 (3)
H30A0.45240.48320.17890.042*0.411 (17)
C310.4631 (17)0.3464 (9)0.2857 (13)0.070 (3)0.411 (17)
H31A0.46510.30000.23110.106*0.411 (17)
H31B0.41090.31860.35920.106*0.411 (17)
H31C0.55000.35090.28490.106*0.411 (17)
C320.2661 (14)0.4547 (10)0.2676 (11)0.048 (2)0.411 (17)
H32A0.23420.52180.23860.073*0.411 (17)
H32B0.21540.44030.34540.073*0.411 (17)
H32C0.25930.39920.22570.073*0.411 (17)
H30B0.41960.49800.18240.042*0.589 (17)
C31A0.5042 (6)0.3704 (6)0.2436 (6)0.0495 (13)0.589 (17)
H31D0.58820.39760.21870.074*0.589 (17)
H31E0.49960.32670.18900.074*0.589 (17)
H31F0.49080.32850.31450.074*0.589 (17)
C32A0.2725 (9)0.4191 (8)0.2905 (9)0.0563 (19)0.589 (17)
H32D0.26630.38380.23040.085*0.589 (17)
H32E0.20730.47800.30620.085*0.589 (17)
H32F0.25920.36990.35660.085*0.589 (17)
O1S0.16647 (17)0.64100 (12)0.01655 (15)0.0698 (5)
H1S0.230 (2)0.6630 (19)0.0241 (19)0.079 (8)*
H2S0.102 (3)0.691 (2)0.034 (2)0.100 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0419 (2)0.0331 (2)0.0441 (2)0.00507 (16)0.01803 (17)0.00555 (16)
O10.0375 (6)0.0351 (6)0.0301 (5)0.0114 (5)0.0076 (4)0.0014 (4)
N10.0308 (6)0.0248 (6)0.0243 (6)0.0013 (5)0.0092 (5)0.0049 (5)
C10.0260 (7)0.0314 (8)0.0234 (7)0.0030 (6)0.0072 (5)0.0050 (6)
C20.0349 (8)0.0327 (8)0.0286 (7)0.0021 (6)0.0121 (6)0.0067 (6)
C30.0396 (9)0.0393 (9)0.0329 (8)0.0082 (7)0.0107 (7)0.0122 (7)
C40.0389 (9)0.0507 (10)0.0248 (7)0.0021 (7)0.0051 (6)0.0090 (7)
C50.0355 (8)0.0424 (9)0.0259 (7)0.0043 (7)0.0090 (6)0.0016 (6)
C60.0258 (7)0.0308 (8)0.0283 (7)0.0040 (6)0.0099 (6)0.0027 (6)
C70.0603 (11)0.0339 (9)0.0311 (8)0.0143 (8)0.0161 (8)0.0078 (7)
C80.145 (2)0.0294 (10)0.0560 (12)0.0041 (12)0.0377 (14)0.0001 (9)
C90.0715 (14)0.0921 (17)0.0383 (10)0.0476 (12)0.0203 (10)0.0139 (10)
C100.0395 (8)0.0288 (8)0.0297 (7)0.0011 (6)0.0120 (6)0.0017 (6)
C110.0385 (9)0.0384 (9)0.0515 (10)0.0077 (7)0.0130 (8)0.0045 (8)
C120.0624 (12)0.0332 (9)0.0445 (10)0.0063 (8)0.0162 (9)0.0044 (7)
C130.0331 (7)0.0222 (7)0.0263 (7)0.0026 (6)0.0103 (6)0.0004 (5)
C140.0415 (8)0.0308 (8)0.0259 (7)0.0017 (6)0.0062 (6)0.0019 (6)
C150.0422 (10)0.0514 (11)0.0410 (9)0.0198 (8)0.0068 (7)0.0075 (8)
C160.0661 (13)0.0613 (13)0.0587 (12)0.0375 (11)0.0208 (10)0.0085 (10)
Cl20.0394 (2)0.0776 (3)0.0490 (3)0.0002 (2)0.0218 (2)0.0156 (2)
O20.0247 (5)0.0352 (6)0.0291 (5)0.0025 (4)0.0068 (4)0.0020 (4)
N20.0275 (6)0.0353 (7)0.0250 (6)0.0014 (5)0.0088 (5)0.0010 (5)
C210.0222 (7)0.0353 (8)0.0238 (7)0.0046 (6)0.0067 (5)0.0030 (6)
C220.0226 (7)0.0352 (8)0.0339 (8)0.0021 (6)0.0087 (6)0.0051 (6)
C230.0306 (8)0.0439 (9)0.0327 (8)0.0017 (7)0.0098 (6)0.0125 (7)
C240.0319 (8)0.0487 (10)0.0262 (7)0.0002 (7)0.0044 (6)0.0056 (7)
C250.0308 (8)0.0375 (8)0.0319 (8)0.0032 (6)0.0073 (6)0.0005 (6)
C260.0267 (7)0.0329 (8)0.0287 (7)0.0038 (6)0.0106 (6)0.0035 (6)
C270.0307 (8)0.0415 (9)0.0435 (9)0.0058 (7)0.0068 (7)0.0094 (7)
C280.0588 (13)0.0438 (11)0.0941 (17)0.0141 (9)0.0267 (12)0.0105 (11)
C290.0741 (15)0.0854 (17)0.0793 (15)0.0415 (13)0.0361 (13)0.0002 (13)
C330.0294 (7)0.0264 (7)0.0279 (7)0.0030 (6)0.0091 (6)0.0025 (6)
C340.0351 (8)0.0374 (8)0.0269 (7)0.0024 (7)0.0060 (6)0.0037 (6)
C350.0228 (7)0.0328 (8)0.0399 (8)0.0027 (6)0.0061 (6)0.0046 (7)
C360.0331 (8)0.0515 (10)0.0490 (10)0.0025 (7)0.0173 (7)0.0039 (8)
C300.0369 (8)0.0381 (9)0.0315 (8)0.0027 (7)0.0121 (7)0.0048 (6)
C310.103 (9)0.047 (5)0.090 (7)0.024 (5)0.069 (7)0.031 (5)
C320.053 (4)0.051 (6)0.055 (5)0.000 (5)0.031 (3)0.023 (4)
C30A0.0369 (8)0.0381 (9)0.0315 (8)0.0027 (7)0.0121 (7)0.0048 (6)
C31A0.052 (3)0.043 (3)0.056 (3)0.0078 (19)0.020 (2)0.020 (2)
C32A0.039 (2)0.062 (5)0.071 (5)0.003 (3)0.015 (3)0.027 (3)
O1S0.0513 (9)0.0430 (8)0.1182 (14)0.0026 (7)0.0256 (9)0.0280 (8)
Geometric parameters (Å, º) top
O1—C131.3068 (17)N2—H2N0.94 (2)
O1—C151.4711 (18)C21—C261.394 (2)
N1—C131.2956 (18)C21—C221.397 (2)
N1—C11.4490 (17)C22—C231.393 (2)
N1—H1N0.899 (18)C22—C271.519 (2)
C1—C21.397 (2)C23—C241.380 (2)
C1—C61.4000 (19)C23—H23A0.9500
C2—C31.392 (2)C24—C251.378 (2)
C2—C71.515 (2)C24—H24A0.9500
C3—C41.375 (2)C25—C261.395 (2)
C3—H3A0.9500C25—H25A0.9500
C4—C51.380 (2)C26—C301.523 (2)
C4—H4A0.9500C27—C291.520 (3)
C5—C61.391 (2)C27—C281.524 (3)
C5—H5A0.9500C27—H27A1.0000
C6—C101.517 (2)C28—H28A0.9800
C7—C91.528 (3)C28—H28B0.9800
C7—C81.528 (3)C28—H28C0.9800
C7—H7A1.0000C29—H29A0.9800
C8—H8A0.9800C29—H29B0.9800
C8—H8B0.9800C29—H29C0.9800
C8—H8C0.9800C33—C341.4813 (19)
C9—H9A0.9800C34—H34A0.9800
C9—H9B0.9800C34—H34B0.9800
C9—H9C0.9800C34—H34C0.9800
C10—C111.528 (2)C35—C361.494 (2)
C10—C121.530 (2)C35—H35A0.9900
C10—H10A1.0000C35—H35B0.9900
C11—H11A0.9800C36—H36A0.9800
C11—H11B0.9800C36—H36B0.9800
C11—H11C0.9800C36—H36C0.9800
C12—H12A0.9800C30—C321.510 (14)
C12—H12B0.9800C30—C311.582 (10)
C12—H12C0.9800C30—H30A1.0000
C13—C141.4781 (19)C31—H31A0.9800
C14—H14A0.9800C31—H31B0.9800
C14—H14B0.9800C31—H31C0.9800
C14—H14C0.9800C32—H32A0.9800
C15—C161.496 (3)C32—H32B0.9800
C15—H15A0.9900C32—H32C0.9800
C15—H15B0.9900C31A—H31D0.9800
C16—H16A0.9800C31A—H31E0.9800
C16—H16B0.9800C31A—H31F0.9800
C16—H16C0.9800C32A—H32D0.9800
O2—C331.3062 (17)C32A—H32E0.9800
O2—C351.4682 (16)C32A—H32F0.9800
N2—C331.2945 (18)O1S—H1S0.84 (3)
N2—C211.4467 (17)O1S—H2S0.90 (3)
C13—O1—C15119.20 (12)H16A—C16—H16C109.5
C13—N1—C1125.12 (12)H16B—C16—H16C109.5
C13—N1—H1N118.2 (11)C33—O2—C35120.00 (11)
C1—N1—H1N116.7 (11)C33—N2—C21124.87 (12)
C2—C1—C6123.22 (13)C33—N2—H2N118.7 (11)
C2—C1—N1118.87 (12)C21—N2—H2N116.4 (11)
C6—C1—N1117.81 (12)C26—C21—C22123.76 (13)
C3—C2—C1116.99 (13)C26—C21—N2117.26 (13)
C3—C2—C7119.52 (14)C22—C21—N2118.90 (13)
C1—C2—C7123.48 (13)C23—C22—C21116.73 (14)
C4—C3—C2121.16 (15)C23—C22—C27121.61 (14)
C4—C3—H3A119.4C21—C22—C27121.65 (13)
C2—C3—H3A119.4C24—C23—C22121.05 (14)
C3—C4—C5120.61 (14)C24—C23—H23A119.5
C3—C4—H4A119.7C22—C23—H23A119.5
C5—C4—H4A119.7C25—C24—C23120.62 (14)
C4—C5—C6121.00 (14)C25—C24—H24A119.7
C4—C5—H5A119.5C23—C24—H24A119.7
C6—C5—H5A119.5C24—C25—C26121.00 (14)
C5—C6—C1116.98 (13)C24—C25—H25A119.5
C5—C6—C10122.12 (13)C26—C25—H25A119.5
C1—C6—C10120.87 (12)C21—C26—C25116.80 (13)
C2—C7—C9110.52 (15)C21—C26—C30121.73 (13)
C2—C7—C8111.11 (14)C25—C26—C30121.46 (13)
C9—C7—C8112.05 (17)C22—C27—C29113.57 (15)
C2—C7—H7A107.7C22—C27—C28110.28 (13)
C9—C7—H7A107.7C29—C27—C28110.76 (17)
C8—C7—H7A107.7C22—C27—H27A107.3
C7—C8—H8A109.5C29—C27—H27A107.3
C7—C8—H8B109.5C28—C27—H27A107.3
H8A—C8—H8B109.5C27—C28—H28A109.5
C7—C8—H8C109.5C27—C28—H28B109.5
H8A—C8—H8C109.5H28A—C28—H28B109.5
H8B—C8—H8C109.5C27—C28—H28C109.5
C7—C9—H9A109.5H28A—C28—H28C109.5
C7—C9—H9B109.5H28B—C28—H28C109.5
H9A—C9—H9B109.5C27—C29—H29A109.5
C7—C9—H9C109.5C27—C29—H29B109.5
H9A—C9—H9C109.5H29A—C29—H29B109.5
H9B—C9—H9C109.5C27—C29—H29C109.5
C6—C10—C11110.72 (12)H29A—C29—H29C109.5
C6—C10—C12113.39 (13)H29B—C29—H29C109.5
C11—C10—C12109.74 (14)N2—C33—O2116.56 (12)
C6—C10—H10A107.6N2—C33—C34120.19 (13)
C11—C10—H10A107.6O2—C33—C34123.24 (13)
C12—C10—H10A107.6C33—C34—H34A109.5
C10—C11—H11A109.5C33—C34—H34B109.5
C10—C11—H11B109.5H34A—C34—H34B109.5
H11A—C11—H11B109.5C33—C34—H34C109.5
C10—C11—H11C109.5H34A—C34—H34C109.5
H11A—C11—H11C109.5H34B—C34—H34C109.5
H11B—C11—H11C109.5O2—C35—C36106.30 (12)
C10—C12—H12A109.5O2—C35—H35A110.5
C10—C12—H12B109.5C36—C35—H35A110.5
H12A—C12—H12B109.5O2—C35—H35B110.5
C10—C12—H12C109.5C36—C35—H35B110.5
H12A—C12—H12C109.5H35A—C35—H35B108.7
H12B—C12—H12C109.5C35—C36—H36A109.5
N1—C13—O1116.65 (12)C35—C36—H36B109.5
N1—C13—C14120.48 (13)H36A—C36—H36B109.5
O1—C13—C14122.86 (13)C35—C36—H36C109.5
C13—C14—H14A109.5H36A—C36—H36C109.5
C13—C14—H14B109.5H36B—C36—H36C109.5
H14A—C14—H14B109.5C32—C30—C26110.7 (5)
C13—C14—H14C109.5C32—C30—C31110.1 (5)
H14A—C14—H14C109.5C26—C30—C31109.7 (4)
H14B—C14—H14C109.5C32—C30—H30A108.8
O1—C15—C16106.63 (14)C26—C30—H30A108.8
O1—C15—H15A110.4C31—C30—H30A108.8
C16—C15—H15A110.4H31D—C31A—H31E109.5
O1—C15—H15B110.4H31D—C31A—H31F109.5
C16—C15—H15B110.4H31E—C31A—H31F109.5
H15A—C15—H15B108.6H32D—C32A—H32E109.5
C15—C16—H16A109.5H32D—C32A—H32F109.5
C15—C16—H16B109.5H32E—C32A—H32F109.5
H16A—C16—H16B109.5H1S—O1S—H2S107 (2)
C15—C16—H16C109.5
C13—N1—C1—C276.02 (18)C33—N2—C21—C26101.16 (17)
C13—N1—C1—C6107.32 (16)C33—N2—C21—C2282.07 (18)
C6—C1—C2—C31.6 (2)C26—C21—C22—C231.9 (2)
N1—C1—C2—C3178.04 (13)N2—C21—C22—C23178.40 (12)
C6—C1—C2—C7177.25 (14)C26—C21—C22—C27176.59 (14)
N1—C1—C2—C70.8 (2)N2—C21—C22—C270.1 (2)
C1—C2—C3—C40.1 (2)C21—C22—C23—C240.2 (2)
C7—C2—C3—C4178.82 (15)C27—C22—C23—C24178.27 (14)
C2—C3—C4—C51.1 (3)C22—C23—C24—C251.0 (2)
C3—C4—C5—C60.8 (2)C23—C24—C25—C260.5 (2)
C4—C5—C6—C10.6 (2)C22—C21—C26—C252.3 (2)
C4—C5—C6—C10178.73 (14)N2—C21—C26—C25178.85 (12)
C2—C1—C6—C51.9 (2)C22—C21—C26—C30178.97 (13)
N1—C1—C6—C5178.35 (12)N2—C21—C26—C302.38 (19)
C2—C1—C6—C10179.99 (13)C24—C25—C26—C211.0 (2)
N1—C1—C6—C103.51 (19)C24—C25—C26—C30179.78 (14)
C3—C2—C7—C962.8 (2)C23—C22—C27—C2929.2 (2)
C1—C2—C7—C9115.95 (17)C21—C22—C27—C29152.44 (16)
C3—C2—C7—C862.2 (2)C23—C22—C27—C2895.80 (19)
C1—C2—C7—C8119.01 (18)C21—C22—C27—C2882.57 (19)
C5—C6—C10—C1197.83 (16)C21—N2—C33—O22.4 (2)
C1—C6—C10—C1180.21 (17)C21—N2—C33—C34176.78 (13)
C5—C6—C10—C1226.0 (2)C35—O2—C33—N2177.72 (12)
C1—C6—C10—C12155.93 (14)C35—O2—C33—C343.2 (2)
C1—N1—C13—O11.5 (2)C33—O2—C35—C36159.67 (13)
C1—N1—C13—C14178.89 (13)C21—C26—C30—C32125.3 (5)
C15—O1—C13—N1179.54 (13)C25—C26—C30—C3256.0 (6)
C15—O1—C13—C140.8 (2)C21—C26—C30—C31112.9 (8)
C13—O1—C15—C16179.29 (14)C25—C26—C30—C3165.8 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl10.899 (18)2.178 (19)3.0737 (13)173.7 (16)
O1S—H2S···Cl10.90 (3)2.39 (3)3.2684 (18)167 (2)
O1S—H1S···Cl20.84 (3)2.37 (3)3.2026 (18)176 (2)
N2—H2N···Cl20.94 (2)2.06 (2)3.0042 (13)179.1 (17)

Experimental details

Crystal data
Chemical formulaC16H26NO+·Cl·0.5H2O
Mr292.84
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)11.2193 (7), 12.9719 (8), 12.9832 (8)
α, β, γ (°)82.637 (1), 69.831 (1), 82.976 (1)
V3)1752.83 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.45 × 0.20 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.719, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
25695, 8002, 6041
Rint0.025
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.101, 1.04
No. of reflections8002
No. of parameters395
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.37

Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl10.899 (18)2.178 (19)3.0737 (13)173.7 (16)
O1S—H2S···Cl10.90 (3)2.39 (3)3.2684 (18)167 (2)
O1S—H1S···Cl20.84 (3)2.37 (3)3.2026 (18)176 (2)
N2—H2N···Cl20.94 (2)2.06 (2)3.0042 (13)179.1 (17)
 

Acknowledgements

The Natural Sciences and Engineering Research Council of Canada (NSERC) is gratefully acknowledged for a Discovery Grant. The diffractometer was purchased with the help of NSERC and the University of Lethbridge.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBoeré, R. T., Klassen, V. & Wolmershauser, G. (1998). J. Chem. Soc. Dalton Trans. pp. 4147–4154.  Google Scholar
First citationBruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFuller, W. (1959). J. Phys. Chem. 63, 1705–1717.  CrossRef CAS Web of Science Google Scholar
First citationJazzar, R., Dewhurst, R. D., Bourg, J. B., Donnadieu, B., Canac, Y. & Bertrand, G. (2007). Angew. Chem. Int. Ed. 46, 2899–2902.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOrpen, A. G. & Brammer, L. (1989). J. Chem. Soc. Dalton Trans. pp. S1–83.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShine, H. J., Zhao, B. J., Marx, J. N., Ould-Ely, T. & Whitmire, K. H. (2004). J. Org. Chem. 69, 9255–9261.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, F., Lerner, H.-W. & Bolte, M. (2003). Acta Cryst. E59, o1181–o1182.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds