organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A triclinic polymorph of 4-cyano­pyridinium hydrogen chloranilate

aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

(Received 21 August 2012; accepted 29 August 2012; online 1 September 2012)

The asymmetric unit of the triclinic polymorph of the title compound (systematic name: 4-cyano­pyridinium 2,5-dichloro-4-hy­droxy-3,6-dioxocyclo­hexa-1,4-dien-1-olate), C6H5N2+·C6HCl2O4, consists of two crystallographically independent cation–anion units, in each of which the cation and the anion are linked by an N—H⋯O hydrogen bond. In the units, the dihedral angles between the cation and anion rings are 78.43 (11) and 80.71 (11)°. In the crystal, each unit independently forms a chain through N—H⋯O and O—H⋯N hydrogen bonds; one chain runs along the c axis while the other runs along [011]. Weak C—H⋯O, C—H⋯N and C—H⋯Cl inter­actions are observed between the chains.

Related literature

For the monoclinic polymorph, see: Tomura & Yamashita (2008[Tomura, M. & Yamashita, Y. (2008). X-Ray Struct. Anal. Online, 24, x31-x32.]); Gotoh et al. (2008[Gotoh, K., Nagoshi, H. & Ishida, H. (2008). Acta Cryst. E64, o1260.]). For hydrogen-bonding patterns in chloranilic acid–organic base (1/1) systems, see: Ishida & Kashino (2002[Ishida, H. & Kashino, S. (2002). Z. Naturforsch. Teil A, 57, 829-836.]). For 35Cl nuclear quadrupole resonance studies on proton transfer in chloranilic acid–organic base systems, see: Nihei et al. (2000[Nihei, T., Ishimaru, S., Ishida, H., Ishihara, H. & Ikeda, R. (2000). Chem. Phys. Lett. 329, 7-14.]).

[Scheme 1]

Experimental

Crystal data
  • C6H5N2+·C6HCl2O4

  • Mr = 313.10

  • Triclinic, [P \overline 1]

  • a = 9.3918 (7) Å

  • b = 10.6652 (7) Å

  • c = 13.9135 (8) Å

  • α = 111.8033 (18)°

  • β = 106.258 (3)°

  • γ = 90.416 (3)°

  • V = 1232.50 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 180 K

  • 0.36 × 0.31 × 0.09 mm

Data collection
  • Rigaku R-AXIS RAPID II diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.866, Tmax = 0.953

  • 21354 measured reflections

  • 7135 independent reflections

  • 4934 reflections with I > 2σ(I)

  • Rint = 0.108

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.164

  • S = 0.99

  • 7135 reflections

  • 377 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.95 (4) 1.67 (4) 2.602 (2) 170 (3)
N3—H3⋯O6 0.90 (4) 1.84 (4) 2.719 (3) 166 (3)
O4—H4⋯N2i 0.80 (4) 1.99 (4) 2.741 (3) 155 (4)
O8—H8⋯N4ii 0.93 (5) 2.07 (5) 2.875 (3) 144 (4)
C13—H13⋯N4iii 0.95 2.55 3.407 (3) 150
C14—H14⋯O3iv 0.95 2.42 3.209 (3) 141
C16—H16⋯Cl3v 0.95 2.71 3.431 (3) 133
C17—H17⋯O1vi 0.95 2.30 3.194 (3) 157
C19—H19⋯O2 0.95 2.25 3.192 (3) 170
C20—H20⋯Cl1 0.95 2.83 3.626 (3) 142
C23—H23⋯O5vii 0.95 2.14 3.040 (3) 158
Symmetry codes: (i) x, y, z-1; (ii) x, y+1, z+1; (iii) -x, -y+1, -z; (iv) -x+1, -y+2, -z+1; (v) -x+1, -y+1, -z+1; (vi) -x+1, -y+1, -z; (vii) -x, -y+1, -z+1.

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004[Rigaku/MSC. (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC. (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound was accidentally obtained in the preparation of the monoclinic polymorph of 4-cyanopyridinium chloranilate, C6H5N2+.C6HCl2O4-, which is an interesting model compound for investigating proton transfer in the hydrogen bond systems (Nihei et al., 2000). The structure of the monoclinic polymorph has been reported by Tomura & Yamashita (2008) and Gotoh et al. (2008).

The asymmetric unit of the triclinic polymorph of the title compound consists of two crystallographically independent cation–anion units, in each of which the cation and the anion are held together by N—H···O hydrogen bond. The dihedral angle between the N1/C13–C17 pyridine ring and the C1–C6 of the acid ring is 78.43 (11)° in one unit, while the angle between the N3/C19–C23 and C7–C12 rings is 80.71 (11)° in the other unit.

In the crystal structure of the monoclinic polymorph, the acid molecule (A) and the base molecule (B) afford an centrosymmetric 2:2 (B:A:A:B) aggregate (Ishida & Kashino, 2002) through O—H···O and N···H···O hydrogen bonds and the H atom in the N···H···O hydrogen bond is disordered over two positions (Gotoh et al., 2008). In contrast to the monoclinic form, the present triclinic polymorph shows two crystallographically independent 1:1 (A:B) units of the acid and base molecules. Each unit independently forms a hydrogen-bonded (–A:B:A:B–) chain; one chain formed by N1—H1···O2 and O4—H4···N2i (symmetry code in Table 1) hydrogen bonds runs along the c axis, while the other chain formed by N3—H3···O6 and O8—H8···N4ii (symmetry code in Table 1) hydrogen bonds runs along the [011] direction. No H atom disorder is observed in these hydrogen bonds. Between the chains, C—H···O, C—H···N and C—H···Cl interactions (Table 1) are observed.

Related literature top

For the monoclinic polymorph, see: Tomura & Yamashita (2008); Gotoh et al. (2008). For hydrogen-bonding patterns in chloranilic acid–organic base (1/1) systems, see: Ishida & Kashino (2002). For 35Cl nuclear quadrupole resonance studies on proton transfer in chloranilic acid–organic base systems, see: Nihei et al. (2000).

Experimental top

Single crystals were obtained by slow evaporation from an acetonitrile solution (130 ml) of chloranilic acid (0.60 g) and 4-cyanopyridine (0.30 g) at room temperature.

Refinement top

C-bound H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C). The O– and N-bound H atoms were found in a difference Fourier map and refined freely. The refined distances are O—H = 0.80 (4) and 0.93 (5) Å, and N—H = 0.90 (4) and 0.95 (4) Å.

Structure description top

The title compound was accidentally obtained in the preparation of the monoclinic polymorph of 4-cyanopyridinium chloranilate, C6H5N2+.C6HCl2O4-, which is an interesting model compound for investigating proton transfer in the hydrogen bond systems (Nihei et al., 2000). The structure of the monoclinic polymorph has been reported by Tomura & Yamashita (2008) and Gotoh et al. (2008).

The asymmetric unit of the triclinic polymorph of the title compound consists of two crystallographically independent cation–anion units, in each of which the cation and the anion are held together by N—H···O hydrogen bond. The dihedral angle between the N1/C13–C17 pyridine ring and the C1–C6 of the acid ring is 78.43 (11)° in one unit, while the angle between the N3/C19–C23 and C7–C12 rings is 80.71 (11)° in the other unit.

In the crystal structure of the monoclinic polymorph, the acid molecule (A) and the base molecule (B) afford an centrosymmetric 2:2 (B:A:A:B) aggregate (Ishida & Kashino, 2002) through O—H···O and N···H···O hydrogen bonds and the H atom in the N···H···O hydrogen bond is disordered over two positions (Gotoh et al., 2008). In contrast to the monoclinic form, the present triclinic polymorph shows two crystallographically independent 1:1 (A:B) units of the acid and base molecules. Each unit independently forms a hydrogen-bonded (–A:B:A:B–) chain; one chain formed by N1—H1···O2 and O4—H4···N2i (symmetry code in Table 1) hydrogen bonds runs along the c axis, while the other chain formed by N3—H3···O6 and O8—H8···N4ii (symmetry code in Table 1) hydrogen bonds runs along the [011] direction. No H atom disorder is observed in these hydrogen bonds. Between the chains, C—H···O, C—H···N and C—H···Cl interactions (Table 1) are observed.

For the monoclinic polymorph, see: Tomura & Yamashita (2008); Gotoh et al. (2008). For hydrogen-bonding patterns in chloranilic acid–organic base (1/1) systems, see: Ishida & Kashino (2002). For 35Cl nuclear quadrupole resonance studies on proton transfer in chloranilic acid–organic base systems, see: Nihei et al. (2000).

Computing details top

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2004); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with the atom-labeling. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. The dashed lines indicate the N—H···O hydrogen bonds.
[Figure 2] Fig. 2. A packing diagram of the title compound, showing two crystallographically independent chains formed by N—H···O and O—H···N hydrogen bonds (dashed lines). H atoms not involved in the hydrogen bonds have been omitted. [Symmetry codes: (i) x, y, z - 1; (ii) x, y + 1, z + 1; (viii) x, y, z + 1; (ix) x, y - 1, z - 1.]
4-Cyanopyridinium 2,5-dichloro-4-hydroxy-3,6-dioxocyclohexa-1,4-dien-1-olate top
Crystal data top
C6H5N2+·C6HCl2O4Z = 4
Mr = 313.10F(000) = 632.00
Triclinic, P1Dx = 1.687 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 9.3918 (7) ÅCell parameters from 17217 reflections
b = 10.6652 (7) Åθ = 3.1–30.1°
c = 13.9135 (8) ŵ = 0.54 mm1
α = 111.8033 (18)°T = 180 K
β = 106.258 (3)°Platelet, brown
γ = 90.416 (3)°0.36 × 0.31 × 0.09 mm
V = 1232.50 (14) Å3
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
4934 reflections with I > 2σ(I)
ω scansRint = 0.108
Absorption correction: numerical
(NUMABS; Higashi, 1999)
θmax = 30.0°
Tmin = 0.866, Tmax = 0.953h = 1313
21354 measured reflectionsk = 1414
7135 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0762P)2]
where P = (Fo2 + 2Fc2)/3
7135 reflections(Δ/σ)max = 0.001
377 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
C6H5N2+·C6HCl2O4γ = 90.416 (3)°
Mr = 313.10V = 1232.50 (14) Å3
Triclinic, P1Z = 4
a = 9.3918 (7) ÅMo Kα radiation
b = 10.6652 (7) ŵ = 0.54 mm1
c = 13.9135 (8) ÅT = 180 K
α = 111.8033 (18)°0.36 × 0.31 × 0.09 mm
β = 106.258 (3)°
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
7135 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
4934 reflections with I > 2σ(I)
Tmin = 0.866, Tmax = 0.953Rint = 0.108
21354 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.89 e Å3
7135 reflectionsΔρmin = 0.83 e Å3
377 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.29193 (7)0.49544 (6)0.10659 (5)0.04057 (16)
Cl20.68163 (7)1.06889 (5)0.18401 (5)0.03666 (15)
Cl30.21149 (7)0.59716 (6)0.62343 (5)0.03851 (16)
Cl40.16421 (7)0.85552 (7)0.30375 (5)0.04279 (17)
O10.51735 (19)0.64141 (17)0.15370 (13)0.0396 (4)
O20.32328 (17)0.66708 (16)0.12870 (12)0.0346 (3)
O30.48242 (18)0.91360 (17)0.24401 (13)0.0363 (4)
O40.67459 (19)0.88479 (17)0.03878 (14)0.0343 (4)
O50.01092 (19)0.79448 (17)0.65480 (13)0.0384 (4)
O60.19311 (18)0.52007 (16)0.38448 (13)0.0364 (4)
O70.04975 (18)0.65162 (17)0.26162 (13)0.0370 (4)
O80.16121 (19)0.90831 (17)0.53085 (14)0.0376 (4)
N10.4187 (2)0.7224 (2)0.33632 (16)0.0344 (4)
N20.6554 (2)0.7841 (2)0.74522 (17)0.0424 (5)
N30.0861 (2)0.3707 (2)0.16703 (16)0.0341 (4)
N40.1526 (2)0.0443 (2)0.24595 (17)0.0413 (5)
C10.4981 (2)0.7009 (2)0.06484 (17)0.0298 (4)
C20.3989 (2)0.6506 (2)0.02287 (17)0.0302 (4)
C30.3974 (2)0.7129 (2)0.08301 (17)0.0296 (4)
C40.4895 (2)0.8540 (2)0.15269 (17)0.0289 (4)
C50.5819 (2)0.9100 (2)0.10598 (17)0.0296 (4)
C60.5880 (2)0.8389 (2)0.00544 (17)0.0292 (4)
C70.0119 (2)0.7548 (2)0.56596 (17)0.0301 (4)
C80.1100 (2)0.6605 (2)0.53026 (18)0.0306 (4)
C90.1187 (2)0.6129 (2)0.42538 (17)0.0292 (4)
C100.0303 (2)0.6811 (2)0.35009 (17)0.0305 (4)
C110.0679 (2)0.7803 (2)0.38836 (18)0.0319 (4)
C120.0762 (2)0.8166 (2)0.48929 (18)0.0301 (4)
C130.3814 (3)0.8248 (2)0.41276 (19)0.0354 (5)
H130.31730.88510.39230.042*
C140.4348 (3)0.8434 (2)0.52031 (19)0.0338 (5)
H140.40810.91500.57500.041*
C150.5302 (3)0.7526 (2)0.54595 (18)0.0321 (4)
C160.5662 (3)0.6461 (2)0.46590 (19)0.0378 (5)
H160.62980.58410.48390.045*
C170.5075 (3)0.6327 (2)0.3596 (2)0.0381 (5)
H170.52960.56030.30300.046*
C180.5972 (3)0.7707 (2)0.65759 (19)0.0357 (5)
C190.1208 (3)0.4009 (2)0.09031 (19)0.0359 (5)
H190.18780.47980.11030.043*
C200.0589 (3)0.3172 (2)0.01748 (18)0.0342 (5)
H200.08240.33720.07280.041*
C210.0390 (2)0.2024 (2)0.04369 (17)0.0303 (4)
C220.0737 (3)0.1742 (2)0.03736 (19)0.0355 (5)
H220.14090.09650.02000.043*
C230.0083 (3)0.2619 (2)0.14348 (19)0.0363 (5)
H230.03040.24480.20040.044*
C240.1034 (3)0.1137 (2)0.15641 (18)0.0340 (5)
H10.384 (3)0.713 (3)0.263 (3)0.063 (9)*
H30.121 (3)0.432 (3)0.236 (3)0.056 (9)*
H40.665 (4)0.833 (4)0.100 (3)0.068 (11)*
H80.140 (4)0.918 (4)0.603 (4)0.097 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0498 (4)0.0352 (3)0.0327 (3)0.0051 (3)0.0117 (3)0.0097 (2)
Cl20.0453 (3)0.0310 (3)0.0314 (3)0.0010 (2)0.0092 (2)0.0116 (2)
Cl30.0490 (3)0.0387 (3)0.0311 (3)0.0160 (3)0.0107 (3)0.0180 (2)
Cl40.0500 (4)0.0509 (4)0.0361 (3)0.0186 (3)0.0126 (3)0.0265 (3)
O10.0532 (10)0.0367 (9)0.0316 (8)0.0031 (8)0.0210 (8)0.0102 (7)
O20.0398 (9)0.0382 (8)0.0290 (8)0.0011 (7)0.0142 (7)0.0139 (7)
O30.0433 (9)0.0379 (8)0.0292 (8)0.0064 (7)0.0169 (7)0.0104 (7)
O40.0431 (9)0.0355 (8)0.0282 (8)0.0033 (7)0.0172 (7)0.0119 (7)
O50.0533 (10)0.0417 (9)0.0305 (8)0.0177 (8)0.0226 (8)0.0181 (7)
O60.0396 (9)0.0368 (8)0.0322 (8)0.0112 (7)0.0112 (7)0.0123 (7)
O70.0490 (10)0.0388 (9)0.0289 (8)0.0111 (7)0.0183 (7)0.0145 (7)
O80.0428 (9)0.0399 (9)0.0348 (9)0.0173 (7)0.0156 (8)0.0168 (8)
N10.0418 (11)0.0349 (9)0.0277 (9)0.0021 (8)0.0118 (8)0.0127 (8)
N20.0492 (12)0.0501 (12)0.0346 (10)0.0079 (10)0.0168 (10)0.0210 (10)
N30.0393 (10)0.0356 (10)0.0286 (9)0.0110 (8)0.0114 (9)0.0127 (9)
N40.0495 (12)0.0425 (11)0.0331 (10)0.0096 (9)0.0152 (10)0.0139 (9)
C10.0364 (11)0.0292 (10)0.0274 (10)0.0085 (9)0.0120 (9)0.0132 (9)
C20.0349 (11)0.0279 (10)0.0267 (10)0.0035 (9)0.0089 (9)0.0099 (9)
C30.0318 (11)0.0303 (10)0.0281 (10)0.0046 (8)0.0080 (9)0.0135 (9)
C40.0317 (10)0.0310 (10)0.0277 (10)0.0094 (9)0.0111 (9)0.0138 (9)
C50.0326 (11)0.0284 (10)0.0286 (10)0.0042 (8)0.0088 (9)0.0123 (9)
C60.0316 (10)0.0303 (10)0.0288 (10)0.0059 (8)0.0093 (9)0.0148 (9)
C70.0332 (11)0.0297 (10)0.0286 (10)0.0038 (9)0.0080 (9)0.0138 (9)
C80.0345 (11)0.0304 (10)0.0289 (10)0.0070 (9)0.0073 (9)0.0153 (9)
C90.0299 (10)0.0291 (10)0.0288 (10)0.0049 (8)0.0084 (9)0.0118 (9)
C100.0331 (11)0.0312 (10)0.0278 (10)0.0026 (9)0.0081 (9)0.0129 (9)
C110.0346 (11)0.0355 (11)0.0291 (10)0.0064 (9)0.0078 (9)0.0177 (9)
C120.0315 (11)0.0293 (10)0.0315 (11)0.0068 (9)0.0113 (9)0.0127 (9)
C130.0405 (12)0.0333 (11)0.0360 (12)0.0060 (10)0.0126 (10)0.0166 (10)
C140.0408 (12)0.0313 (10)0.0313 (10)0.0069 (9)0.0149 (10)0.0114 (9)
C150.0367 (11)0.0345 (11)0.0284 (10)0.0023 (9)0.0116 (9)0.0147 (9)
C160.0463 (13)0.0356 (11)0.0362 (12)0.0108 (10)0.0175 (11)0.0155 (10)
C170.0472 (13)0.0363 (12)0.0346 (11)0.0093 (10)0.0193 (11)0.0128 (10)
C180.0407 (12)0.0390 (12)0.0338 (11)0.0078 (10)0.0166 (10)0.0173 (10)
C190.0383 (12)0.0352 (11)0.0371 (12)0.0039 (9)0.0138 (10)0.0158 (10)
C200.0409 (12)0.0360 (11)0.0313 (11)0.0061 (10)0.0159 (10)0.0156 (10)
C210.0354 (11)0.0322 (10)0.0276 (10)0.0093 (9)0.0133 (9)0.0136 (9)
C220.0435 (13)0.0348 (11)0.0346 (11)0.0047 (10)0.0162 (10)0.0172 (10)
C230.0465 (13)0.0400 (12)0.0311 (11)0.0113 (10)0.0170 (10)0.0194 (10)
C240.0373 (12)0.0378 (11)0.0317 (11)0.0083 (10)0.0140 (10)0.0160 (10)
Geometric parameters (Å, º) top
Cl1—C21.730 (2)C4—C51.460 (3)
Cl2—C51.722 (2)C5—C61.339 (3)
Cl3—C81.736 (2)C7—C81.416 (3)
Cl4—C111.721 (2)C7—C121.514 (3)
O1—C11.228 (3)C8—C91.382 (3)
O2—C31.265 (2)C9—C101.551 (3)
O3—C41.213 (2)C10—C111.457 (3)
O4—C61.333 (2)C11—C121.336 (3)
O4—H40.80 (4)C13—C141.374 (3)
O5—C71.231 (2)C13—H130.9500
O6—C91.267 (3)C14—C151.399 (3)
O7—C101.219 (2)C14—H140.9500
O8—C121.334 (3)C15—C161.386 (3)
O8—H80.93 (4)C15—C181.440 (3)
N1—C131.341 (3)C16—C171.377 (3)
N1—C171.344 (3)C16—H160.9500
N1—H10.95 (3)C17—H170.9500
N2—C181.141 (3)C19—C201.376 (3)
N3—C231.334 (3)C19—H190.9500
N3—C191.341 (3)C20—C211.393 (3)
N3—H30.90 (3)C20—H200.9500
N4—C241.141 (3)C21—C221.387 (3)
C1—C21.424 (3)C21—C241.442 (3)
C1—C61.512 (3)C22—C231.375 (3)
C2—C31.377 (3)C22—H220.9500
C3—C41.543 (3)C23—H230.9500
C6—O4—H4111 (2)C12—C11—C10120.14 (19)
C12—O8—H8105 (2)C12—C11—Cl4121.12 (18)
C13—N1—C17122.6 (2)C10—C11—Cl4118.65 (16)
C13—N1—H1120 (2)O8—C12—C11123.68 (19)
C17—N1—H1118 (2)O8—C12—C7114.58 (18)
C23—N3—C19122.6 (2)C11—C12—C7121.7 (2)
C23—N3—H3119.4 (19)N1—C13—C14120.7 (2)
C19—N3—H3118 (2)N1—C13—H13119.6
O1—C1—C2125.5 (2)C14—C13—H13119.6
O1—C1—C6116.86 (18)C13—C14—C15117.2 (2)
C2—C1—C6117.66 (19)C13—C14—H14121.4
C3—C2—C1122.6 (2)C15—C14—H14121.4
C3—C2—Cl1120.10 (16)C16—C15—C14121.4 (2)
C1—C2—Cl1116.92 (17)C16—C15—C18118.3 (2)
O2—C3—C2126.0 (2)C14—C15—C18120.2 (2)
O2—C3—C4115.97 (19)C17—C16—C15118.3 (2)
C2—C3—C4117.96 (18)C17—C16—H16120.9
O3—C4—C5122.7 (2)C15—C16—H16120.9
O3—C4—C3118.70 (18)N1—C17—C16119.8 (2)
C5—C4—C3118.59 (18)N1—C17—H17120.1
C6—C5—C4120.3 (2)C16—C17—H17120.1
C6—C5—Cl2121.68 (16)N2—C18—C15177.4 (3)
C4—C5—Cl2117.99 (16)N3—C19—C20119.8 (2)
O4—C6—C5122.1 (2)N3—C19—H19120.1
O4—C6—C1115.73 (19)C20—C19—H19120.1
C5—C6—C1122.17 (18)C19—C20—C21118.5 (2)
O5—C7—C8127.07 (19)C19—C20—H20120.7
O5—C7—C12114.44 (19)C21—C20—H20120.7
C8—C7—C12118.49 (19)C22—C21—C20120.5 (2)
C9—C8—C7122.90 (18)C22—C21—C24120.7 (2)
C9—C8—Cl3120.81 (16)C20—C21—C24118.83 (19)
C7—C8—Cl3116.14 (16)C23—C22—C21118.2 (2)
O6—C9—C8126.72 (19)C23—C22—H22120.9
O6—C9—C10116.38 (18)C21—C22—H22120.9
C8—C9—C10116.90 (18)N3—C23—C22120.4 (2)
O7—C10—C11122.69 (19)N3—C23—H23119.8
O7—C10—C9117.86 (19)C22—C23—H23119.8
C11—C10—C9119.41 (18)N4—C24—C21178.9 (3)
O1—C1—C2—C3170.6 (2)O6—C9—C10—O77.3 (3)
C6—C1—C2—C39.2 (3)C8—C9—C10—O7171.9 (2)
O1—C1—C2—Cl12.5 (3)O6—C9—C10—C11174.71 (19)
C6—C1—C2—Cl1177.63 (15)C8—C9—C10—C116.1 (3)
C1—C2—C3—O2172.6 (2)O7—C10—C11—C12174.8 (2)
Cl1—C2—C3—O20.3 (3)C9—C10—C11—C123.1 (3)
C1—C2—C3—C49.6 (3)O7—C10—C11—Cl41.7 (3)
Cl1—C2—C3—C4177.44 (15)C9—C10—C11—Cl4179.63 (15)
O2—C3—C4—O32.2 (3)C10—C11—C12—O8178.7 (2)
C2—C3—C4—O3175.76 (19)Cl4—C11—C12—O82.3 (3)
O2—C3—C4—C5177.69 (18)C10—C11—C12—C71.4 (3)
C2—C3—C4—C54.4 (3)Cl4—C11—C12—C7177.88 (16)
O3—C4—C5—C6178.8 (2)O5—C7—C12—O82.3 (3)
C3—C4—C5—C61.1 (3)C8—C7—C12—O8177.45 (19)
O3—C4—C5—Cl21.2 (3)O5—C7—C12—C11177.6 (2)
C3—C4—C5—Cl2178.92 (14)C8—C7—C12—C112.7 (3)
C4—C5—C6—O4177.88 (19)C17—N1—C13—C140.8 (3)
Cl2—C5—C6—O42.1 (3)N1—C13—C14—C150.7 (3)
C4—C5—C6—C11.6 (3)C13—C14—C15—C161.6 (3)
Cl2—C5—C6—C1178.48 (15)C13—C14—C15—C18176.4 (2)
O1—C1—C6—O42.9 (3)C14—C15—C16—C171.0 (3)
C2—C1—C6—O4177.21 (18)C18—C15—C16—C17177.1 (2)
O1—C1—C6—C5176.6 (2)C13—N1—C17—C161.4 (3)
C2—C1—C6—C53.3 (3)C15—C16—C17—N10.5 (3)
O5—C7—C8—C9174.2 (2)C23—N3—C19—C200.5 (3)
C12—C7—C8—C96.1 (3)N3—C19—C20—C210.0 (3)
O5—C7—C8—Cl31.5 (3)C19—C20—C21—C220.5 (3)
C12—C7—C8—Cl3178.26 (15)C19—C20—C21—C24179.5 (2)
C7—C8—C9—O6173.2 (2)C20—C21—C22—C230.4 (3)
Cl3—C8—C9—O62.2 (3)C24—C21—C22—C23179.6 (2)
C7—C8—C9—C107.6 (3)C19—N3—C23—C220.6 (3)
Cl3—C8—C9—C10176.91 (15)C21—C22—C23—N30.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.95 (4)1.67 (4)2.602 (2)170 (3)
N3—H3···O60.90 (4)1.84 (4)2.719 (3)166 (3)
O4—H4···N2i0.80 (4)1.99 (4)2.741 (3)155 (4)
O8—H8···N4ii0.93 (5)2.07 (5)2.875 (3)144 (4)
C13—H13···N4iii0.952.553.407 (3)150
C14—H14···O3iv0.952.423.209 (3)141
C16—H16···Cl3v0.952.713.431 (3)133
C17—H17···O1vi0.952.303.194 (3)157
C19—H19···O20.952.253.192 (3)170
C20—H20···Cl10.952.833.626 (3)142
C23—H23···O5vii0.952.143.040 (3)158
Symmetry codes: (i) x, y, z1; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x+1, y+2, z+1; (v) x+1, y+1, z+1; (vi) x+1, y+1, z; (vii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC6H5N2+·C6HCl2O4
Mr313.10
Crystal system, space groupTriclinic, P1
Temperature (K)180
a, b, c (Å)9.3918 (7), 10.6652 (7), 13.9135 (8)
α, β, γ (°)111.8033 (18), 106.258 (3), 90.416 (3)
V3)1232.50 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.36 × 0.31 × 0.09
Data collection
DiffractometerRigaku R-AXIS RAPID II
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.866, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
21354, 7135, 4934
Rint0.108
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.164, 0.99
No. of reflections7135
No. of parameters377
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.89, 0.83

Computer programs: PROCESS-AUTO (Rigaku/MSC, 2004), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.95 (4)1.67 (4)2.602 (2)170 (3)
N3—H3···O60.90 (4)1.84 (4)2.719 (3)166 (3)
O4—H4···N2i0.80 (4)1.99 (4)2.741 (3)155 (4)
O8—H8···N4ii0.93 (5)2.07 (5)2.875 (3)144 (4)
C13—H13···N4iii0.952.553.407 (3)150
C14—H14···O3iv0.952.423.209 (3)141
C16—H16···Cl3v0.952.713.431 (3)133
C17—H17···O1vi0.952.303.194 (3)157
C19—H19···O20.952.253.192 (3)170
C20—H20···Cl10.952.833.626 (3)142
C23—H23···O5vii0.952.143.040 (3)158
Symmetry codes: (i) x, y, z1; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x+1, y+2, z+1; (v) x+1, y+1, z+1; (vi) x+1, y+1, z; (vii) x, y+1, z+1.
 

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 22550013) from the Japan Society for the Promotion of Science.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGotoh, K., Nagoshi, H. & Ishida, H. (2008). Acta Cryst. E64, o1260.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIshida, H. & Kashino, S. (2002). Z. Naturforsch. Teil A, 57, 829–836.  CAS Google Scholar
First citationNihei, T., Ishimaru, S., Ishida, H., Ishihara, H. & Ikeda, R. (2000). Chem. Phys. Lett. 329, 7–14.  Web of Science CrossRef CAS Google Scholar
First citationRigaku/MSC. (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomura, M. & Yamashita, Y. (2008). X-Ray Struct. Anal. Online, 24, x31–x32.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds