organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-nitro-N-[(E)-thio­phen-2-yl­methyl­­idene]aniline

aDepartment of Chemistry, State University of New York-College at Geneseo, 1 College Circle, Geneseo, NY 14454, USA
*Correspondence e-mail: geiger@geneseo.edu

(Received 23 August 2012; accepted 30 August 2012; online 5 September 2012)

In the title mol­ecule, C11H9N3O2S, the thio­phene and benzene rings form a dihedral angle of 17.68 (9)°. The thio­phene S atom and the imine N atom are syn with respect to each other. In the crystal, N—H⋯O and N—H⋯N hydrogen bonds connect mol­ecules, forming a two-dimensional network parallel to (10-1).

Related literature

For similar structures, see: Asiri et al. (2012a[Asiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012a). Acta Cryst. E68, o2288.],b[Asiri, A. M., Faidallah, H. M., Khan, K. A., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, o1026.]); Prasath et al. (2010[Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2884.]). For a discussion of the use of Schiff base compounds containing thio­phene in fluorescent chemosensors, see: Chen et al. (2012[Chen, X., Pradhan, T., Wang, F., Kim, J. S. & Yoon, J. (2012). Chem. Rev. 12, 1910-1956.]). For a review of the biological use of 2-thio­phenes, see Kleemann et al. (2006[Kleemann, A., Engel, J. B., Kutscher, B. & Reichert, D. (2006). In Pharmaceutical Substances. New York, Stuttgart: Georg Thieme Verlag.]). For a crystal structure from a related study on thio­phene-substituted benzimidazoles, see: Geiger et al. (2012[Geiger, D. K., Geiger, H. C., Williams, L. & Noll, B. C. (2012). Acta Cryst. E68, o420.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9N3O2S

  • Mr = 247.27

  • Monoclinic, C 2/c

  • a = 24.335 (4) Å

  • b = 7.2084 (10) Å

  • c = 16.932 (3) Å

  • β = 133.396 (10)°

  • V = 2158.3 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 200 K

  • 0.60 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART X2S benchtop diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.844, Tmax = 0.944

  • 6460 measured reflections

  • 1923 independent reflections

  • 1619 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.138

  • S = 1.09

  • 1923 reflections

  • 166 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HB⋯O1i 0.81 (2) 2.25 (2) 2.991 (2) 152 (2)
N1—HA⋯N2ii 0.88 (2) 2.43 (3) 3.295 (2) 164.9 (19)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XSHELL (Bruker, 2004[Bruker (2004). XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Besides their pharmacolgical importance (Kleemann et al., 2006), thiophene-containing compounds are of interest because of there potential use in chemical sensors (Chen et al., 2012). The title compound was isolated during our continuing studies of thiophene-substituted benzimidazoles (Geiger et al., 2012).

The title compound exhibits syn geometry about the imine group. A perspective view of the compound is shown in Figure 1. The thiophene and benzene rings are slightly tilted with an interplanar angle of 17.58 (9)°. The imine group displays a torsional angle (C2-N2-C7-C8) of 178.5 (2)°. The plane of the nitro group is 3.6 (2)° out of the benzene ring mean plane.

A two dimensional hydrogen-bonded network (Fig. 2) emanating from the amino group and extending to a nitro oxygen atom and an imine nitrogen atom connects symmetry related molecules parallel to (101).

Related literature top

For similar structures, see: Asiri et al. (2012a,b); Prasath et al. (2010). For a discussion of the use of Schiff base compounds containing thiophene in fluorescent chemosensors, see: Chen et al. (2012). For a review of the biological use of 2-thiophenes, see Kleemann et al. (2006). For a crystal structure from a related study on thiophene-substituted benzimidazoles, see: Geiger et al. (2012).

Experimental top

0.500 g (3.26 mmol) 4-Nitro-1,2-diaminobenzene and 1.3 ml (6.5 mmole) 2-thiophenecarboxaldehyde were stirred in 130 ml ethanol under nitrogen for 3 days. After removal of the solvent via rotory evaporation, the crude product was recrystallized from equal volumes of dichloromethane and diethylether. A golden solid was obtained in 70% yield. 1H NMR spectrum (CDCl3, 400 MHz, p.p.m.): 8.76 (1H, s), 7.99 (2H, m), 7.55 (2H, m), 7.17 (1H, t), 6.70 (1H, d), 5.00 (2H, bs).

Single crystals were obtained via vapor diffusion of hexanes into a concentrated 1-propanol solution of the title compound.

Refinement top

The amine hydrogen atoms (HA, HB) and the imine hydrogen atom (H7) were refined isotropically. All other hydrogen atoms were refined using a riding model (AFIX 43). The hydrogen atom thermal parameters were set using the approximation Uiso = 1.2Ueq(C).

Structure description top

Besides their pharmacolgical importance (Kleemann et al., 2006), thiophene-containing compounds are of interest because of there potential use in chemical sensors (Chen et al., 2012). The title compound was isolated during our continuing studies of thiophene-substituted benzimidazoles (Geiger et al., 2012).

The title compound exhibits syn geometry about the imine group. A perspective view of the compound is shown in Figure 1. The thiophene and benzene rings are slightly tilted with an interplanar angle of 17.58 (9)°. The imine group displays a torsional angle (C2-N2-C7-C8) of 178.5 (2)°. The plane of the nitro group is 3.6 (2)° out of the benzene ring mean plane.

A two dimensional hydrogen-bonded network (Fig. 2) emanating from the amino group and extending to a nitro oxygen atom and an imine nitrogen atom connects symmetry related molecules parallel to (101).

For similar structures, see: Asiri et al. (2012a,b); Prasath et al. (2010). For a discussion of the use of Schiff base compounds containing thiophene in fluorescent chemosensors, see: Chen et al. (2012). For a review of the biological use of 2-thiophenes, see Kleemann et al. (2006). For a crystal structure from a related study on thiophene-substituted benzimidazoles, see: Geiger et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XSHELL (Bruker, 2004) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with displacement ellipsoids of non-hydrogen atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. Unit cell packing diagram of the title compound displaying the donor-acceptor distances of the hydrogen-bonding network as dashed lines. H atoms are not shown and displacement ellipsoids are displayed at the 25% probability level.
2-Amino-5-nitro-N-[(E)-thiophen-2-ylmethylidene]aniline top
Crystal data top
C11H9N3O2SF(000) = 1024
Mr = 247.27Dx = 1.522 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2950 reflections
a = 24.335 (4) Åθ = 2.3–25.0°
b = 7.2084 (10) ŵ = 0.29 mm1
c = 16.932 (3) ÅT = 200 K
β = 133.396 (10)°Plate, orange
V = 2158.3 (6) Å30.60 × 0.30 × 0.20 mm
Z = 8
Data collection top
Bruker SMART X2S benchtop
diffractometer
1923 independent reflections
Radiation source: XOS X-beam microfocus source1619 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.072
ω scansθmax = 25.1°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2528
Tmin = 0.844, Tmax = 0.944k = 88
6460 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0862P)2 + 0.1606P]
where P = (Fo2 + 2Fc2)/3
1923 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C11H9N3O2SV = 2158.3 (6) Å3
Mr = 247.27Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.335 (4) ŵ = 0.29 mm1
b = 7.2084 (10) ÅT = 200 K
c = 16.932 (3) Å0.60 × 0.30 × 0.20 mm
β = 133.396 (10)°
Data collection top
Bruker SMART X2S benchtop
diffractometer
1923 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1619 reflections with I > 2σ(I)
Tmin = 0.844, Tmax = 0.944Rint = 0.072
6460 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.45 e Å3
1923 reflectionsΔρmin = 0.46 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.37474 (3)0.02144 (9)0.15352 (4)0.0390 (3)
O10.11073 (9)0.1684 (3)0.18166 (15)0.0536 (5)
O20.06193 (9)0.0037 (3)0.22717 (13)0.0485 (5)
N10.23171 (10)0.3033 (3)0.22589 (14)0.0317 (4)
HA0.2348 (12)0.384 (3)0.268 (2)0.033 (6)*
HB0.2669 (13)0.292 (3)0.230 (2)0.040 (7)*
N20.22136 (9)0.0875 (2)0.08347 (13)0.0246 (4)
N30.05550 (10)0.1071 (3)0.16331 (15)0.0356 (5)
C10.16213 (10)0.2554 (3)0.13152 (15)0.0227 (4)
C20.15340 (11)0.1461 (3)0.05347 (15)0.0225 (4)
C30.08196 (11)0.0985 (3)0.04247 (15)0.0250 (5)
H30.07580.02450.09450.030*
C40.01887 (11)0.1588 (3)0.06301 (16)0.0268 (5)
C50.02641 (12)0.2658 (3)0.01241 (18)0.0318 (5)
H50.01710.30590.00240.038*
C60.09727 (12)0.3126 (3)0.10818 (17)0.0305 (5)
H60.10250.38530.15980.037*
C70.21931 (11)0.0503 (3)0.00748 (16)0.0243 (4)
H70.1755 (11)0.058 (3)0.0645 (17)0.020 (5)*
C80.28411 (11)0.0148 (3)0.02707 (16)0.0242 (5)
C90.28193 (11)0.0775 (3)0.05083 (16)0.0285 (5)
H90.23710.08150.12600.034*
C100.35331 (12)0.1360 (3)0.00832 (17)0.0304 (5)
H100.36160.18550.05140.037*
C110.40851 (13)0.1137 (3)0.10053 (18)0.0377 (6)
H110.46000.14550.14270.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0295 (4)0.0638 (5)0.0252 (4)0.0090 (2)0.0193 (3)0.0003 (2)
O10.0246 (9)0.0738 (13)0.0535 (11)0.0082 (8)0.0235 (8)0.0051 (9)
O20.0351 (10)0.0698 (12)0.0314 (9)0.0101 (8)0.0193 (8)0.0121 (8)
N10.0313 (10)0.0408 (11)0.0265 (9)0.0039 (8)0.0213 (9)0.0060 (8)
N20.0262 (9)0.0252 (9)0.0284 (8)0.0010 (7)0.0210 (8)0.0007 (7)
N30.0254 (10)0.0443 (11)0.0340 (10)0.0012 (8)0.0192 (8)0.0081 (8)
C10.0269 (10)0.0232 (9)0.0238 (9)0.0013 (8)0.0196 (8)0.0035 (8)
C20.0262 (10)0.0225 (10)0.0253 (10)0.0023 (8)0.0202 (9)0.0041 (8)
C30.0280 (11)0.0266 (11)0.0255 (9)0.0004 (8)0.0204 (9)0.0007 (8)
C40.0230 (10)0.0311 (11)0.0282 (10)0.0000 (8)0.0183 (9)0.0031 (8)
C50.0315 (11)0.0356 (11)0.0413 (11)0.0036 (9)0.0301 (10)0.0046 (10)
C60.0380 (12)0.0325 (11)0.0344 (11)0.0023 (9)0.0300 (10)0.0015 (9)
C70.0277 (11)0.0238 (10)0.0256 (10)0.0012 (8)0.0199 (9)0.0037 (8)
C80.0269 (11)0.0242 (10)0.0288 (10)0.0023 (8)0.0220 (10)0.0043 (8)
C90.0335 (11)0.0312 (11)0.0286 (10)0.0019 (9)0.0243 (10)0.0016 (9)
C100.0371 (12)0.0322 (11)0.0377 (11)0.0039 (9)0.0317 (11)0.0020 (9)
C110.0304 (12)0.0523 (14)0.0373 (11)0.0091 (10)0.0259 (10)0.0046 (10)
Geometric parameters (Å, º) top
S1—C111.713 (2)C3—H30.9500
S1—C81.721 (2)C4—C51.392 (3)
O1—N31.235 (2)C5—C61.369 (3)
O2—N31.232 (2)C5—H50.9500
N1—C11.350 (3)C6—H60.9500
N1—HA0.88 (2)C7—C81.449 (3)
N1—HB0.81 (2)C7—H70.92 (2)
N2—C71.281 (3)C8—C91.360 (3)
N2—C21.420 (2)C9—C101.413 (3)
N3—C41.440 (3)C9—H90.9500
C1—C61.400 (3)C10—C111.351 (3)
C1—C21.424 (3)C10—H100.9500
C2—C31.378 (3)C11—H110.9500
C3—C41.391 (2)
C11—S1—C891.44 (10)C6—C5—H5120.4
C1—N1—HA117.8 (14)C4—C5—H5120.4
C1—N1—HB118.2 (18)C5—C6—C1121.34 (18)
HA—N1—HB119 (2)C5—C6—H6119.3
C7—N2—C2118.08 (16)C1—C6—H6119.3
O2—N3—O1122.40 (19)N2—C7—C8123.55 (18)
O2—N3—C4119.38 (17)N2—C7—H7122.0 (12)
O1—N3—C4118.23 (19)C8—C7—H7114.4 (12)
N1—C1—C6120.86 (18)C9—C8—C7125.06 (19)
N1—C1—C2120.42 (17)C9—C8—S1111.09 (15)
C6—C1—C2118.72 (17)C7—C8—S1123.84 (15)
C3—C2—N2124.30 (16)C8—C9—C10112.96 (18)
C3—C2—C1119.68 (17)C8—C9—H9123.5
N2—C2—C1115.98 (17)C10—C9—H9123.5
C2—C3—C4119.93 (17)C11—C10—C9112.44 (18)
C2—C3—H3120.0C11—C10—H10123.8
C4—C3—H3120.0C9—C10—H10123.8
C3—C4—C5121.12 (18)C10—C11—S1112.05 (16)
C3—C4—N3119.41 (17)C10—C11—H11124.0
C5—C4—N3119.47 (17)S1—C11—H11124.0
C6—C5—C4119.21 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HB···O1i0.81 (2)2.25 (2)2.991 (2)152 (2)
N1—HA···N2ii0.88 (2)2.43 (3)3.295 (2)164.9 (19)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H9N3O2S
Mr247.27
Crystal system, space groupMonoclinic, C2/c
Temperature (K)200
a, b, c (Å)24.335 (4), 7.2084 (10), 16.932 (3)
β (°) 133.396 (10)
V3)2158.3 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.60 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART X2S benchtop
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.844, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
6460, 1923, 1619
Rint0.072
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.138, 1.09
No. of reflections1923
No. of parameters166
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.46

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XSHELL (Bruker, 2004) and Mercury (Macrae et al., 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HB···O1i0.81 (2)2.25 (2)2.991 (2)152 (2)
N1—HA···N2ii0.88 (2)2.43 (3)3.295 (2)164.9 (19)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by a Congressionally directed grant from the US Department of Education (grant No. P116Z100020) for the X-ray diffractometer and a grant from the Geneseo Foundation.

References

First citationAsiri, A. M., Faidallah, H. M., Khan, K. A., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, o1026.  CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012a). Acta Cryst. E68, o2288.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X., Pradhan, T., Wang, F., Kim, J. S. & Yoon, J. (2012). Chem. Rev. 12, 1910–1956.  Web of Science CrossRef Google Scholar
First citationGeiger, D. K., Geiger, H. C., Williams, L. & Noll, B. C. (2012). Acta Cryst. E68, o420.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKleemann, A., Engel, J. B., Kutscher, B. & Reichert, D. (2006). In Pharmaceutical Substances. New York, Stuttgart: Georg Thieme Verlag.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPrasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2884.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds