organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Carb­­oxy­eth­yl)-2,5-dide­­oxy-2,5-imino-D-mannonic acid [(3R,4R,5R)-1-(2-carb­­oxy­eth­yl)-3,4-dihy­dr­oxy-5-hy­dr­oxy­methyl-L-proline]

aDepartment of Chemical Crystallography, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, England, bDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, England, and cPhytoquest Limited, IBERS, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, Wales
*Correspondence e-mail: sarah.jenkinson@chem.ox.ac.uk

(Received 24 August 2012; accepted 30 August 2012; online 5 September 2012)

The absolute stereochemistry of the title compound, C9H15NO7, was determined from the use of D-glucuronolactone as the starting material. The compound crystallizes as the zwitterion. The five-membered ring adopts an envelope conformation with the –CH2OH-substituted C atom forming the flap. An intramolecular N—H⋯O hydrogen-bond occurs. In the crystal, the compound exists as a three-dimensional O—H⋯O intermolecular hydrogen-bonded network with each mol­ecule acting as a donor and acceptor for four hydrogen bonds.

Related literature

For related literature on naturally occurring imino­sugars, see: Asano et al. (2000[Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645-1680.]); Watson et al. (2001[Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265-295.]); Nash et al. (1991[Nash, R. J., Watson, A. A., Winters, A. L., Fleet, G. W. J., Wormald, M. R., Dealler, S., Lees, E., Asano, N. & Kizu, H. (1991). Spec. Publ. R. Soc. Chem. 200, 106-114.]); Welter et al. (1976[Welter, A., Jadot, J., Dardenne, G., Marlier, M. & Casimir, J. (1976). Phytochemistry, 15, 747-749.]); Manning et al. (1985[Manning, K. S., Lynn, D. G., Shabanowitz, J., Fellows, L. E., Sin gh, M. & Schrire, B. D. (1985). J. Chem. Soc. Chem. Commun. pp. 127-129.]); Pereira et al. (1991[Pereira, A. C. de S., Kaplan, M. A. C., Maia, J. G. S., Gottlieb, O. R., Nash, R. J., Fleet, G., Pearce, L., Watkin, D. J. & Scofield, A. M. (1991). Tetrahedron, 47, 5637-5640.]). For the synthesis of the diacid, see: Best et al. (2010[Best, D., Wang, C., Weymouth-Wilson, A. C., Clarkson, R. A., Wilson, F. X., Nash, R. J., Miyauchi, S., Kato, A. & Fleet, G. W. J. (2010). Tetrahedron Asymmetry, 21, 311-319.]); Martínez et al. (2012[Martínez, R. F., Jenkinson, S. F., Hollas, M., Ayres, B. J., Nash, R. J., Kato, A. & Fleet, G. W. J. (2012). In preparation.]). For the extinction correction, see: Larson (1970[Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.]). For hydrogen-atom refinement, see: Cooper et al. (2010[Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100-1107.]). For the temperature controller, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For the Chebychev polynomial used in the weighting scheme, see: Prince (1982[Prince, E. (1982). In Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]); Watkin (1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.]).

[Scheme 1]

Experimental

Crystal data
  • C9H15NO7

  • Mr = 249.22

  • Orthorhombic, P 21 21 21

  • a = 8.5242 (1) Å

  • b = 8.5707 (1) Å

  • c = 14.3585 (3) Å

  • V = 1049.01 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 190 K

  • 0.32 × 0.30 × 0.11 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.93, Tmax = 0.99

  • 18435 measured reflections

  • 1385 independent reflections

  • 1321 reflections with I > 2σ(I)

  • Rint = 0.009

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.062

  • S = 0.93

  • 1385 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O17—H171⋯O15i 0.84 2.19 2.887 (2) 141
O14—H141⋯O10ii 0.86 1.78 2.618 (2) 166
O1—H11⋯O10iii 0.82 1.95 2.753 (2) 165
O4—H41⋯O9i 0.82 1.93 2.720 (2) 163
N6—H61⋯O15 0.90 2.15 2.768 (2) 125
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

More than 250 iminosugars, sugar mimics in which the ring oxygen in a pyranose or furanose is replaced by nitrogen to form polyhydroxylated piperidines and pyrrolidines, have been isolated from plants (Asano et al., 2000; Watson et al., 2001). DMDP 1 (Fig. 1), originally isolated from Derris eliptica (Welter et al., 1976), but the most widely occurring iminosugar, is even found in potatoes (Nash et al., 1991). In contrast, BR1 2 from Baphia racemosa (Manning et al., 1985) and 7a-epialexaflorine 3 from Alexa grandiflora (Pereira et al., 1991) are among the very few corresponding sugar amino acids (SAA) found in nature. From examination of crude extracts of plants, it is clear that other SAA are natural products. As part of a program to make authentic samples of such SAA to identify them in crude plant extracts, the SAA corresponding to DMDP 4 (Best et al., 2010) was converted to the diacid 5 by initial reaction with tert-butyl acrylate in methanol in the presence of triethylamine followed by treatment with aqueous trifluoroacetic acid (Martínez, 2012). The structure of 5 was unequivocally determined by X-ray crystallographic analysis; the absolute configuration was determined by the use of d-glucuronolactone as the starting material for the synthesis.

The five ring adopts an envelope conformation with C5 out of the plane (Fig. 2). The compound exisits as a three-dimensional O—H···O intermolecular hydrogen-bonded network with each molecule acting as a donor and acceptor for four hydrogen bonds (Fig. 3).

Related literature top

For related literature on naturally occurring iminosugars, see: Asano et al. (2000); Watson et al. (2001); Nash et al. (1991); Welter et al. (1976); Manning et al. (1985); Pereira et al. (1991). For the synthesis of the diacid, see: Best et al. (2010); Martínez et al. (2012). For the extinction correction, see: Larson (1970). For hydrogen-atom refinement, see: Cooper et al. (2010). For the temperature controller, see: Cosier & Glazer (1986). For the Chebychev polynomial used in the weighting scheme, see: Prince (1982); Watkin (1994).

Experimental top

The synthetic procedure is described in the comment section and illustrated in Fig. 1. The title compound was recrystallized from water: [α]D25 -6.7 (c 0.75 in H2O); m.p. 523 K (decomposed).

Refinement top

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the starting material.

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uĩso~(H) (in the range 1.2–1.5 times U~eq~ of the parent atom), after which the positions were refined with riding constraints (Cooper et al., 2010).

Structure description top

More than 250 iminosugars, sugar mimics in which the ring oxygen in a pyranose or furanose is replaced by nitrogen to form polyhydroxylated piperidines and pyrrolidines, have been isolated from plants (Asano et al., 2000; Watson et al., 2001). DMDP 1 (Fig. 1), originally isolated from Derris eliptica (Welter et al., 1976), but the most widely occurring iminosugar, is even found in potatoes (Nash et al., 1991). In contrast, BR1 2 from Baphia racemosa (Manning et al., 1985) and 7a-epialexaflorine 3 from Alexa grandiflora (Pereira et al., 1991) are among the very few corresponding sugar amino acids (SAA) found in nature. From examination of crude extracts of plants, it is clear that other SAA are natural products. As part of a program to make authentic samples of such SAA to identify them in crude plant extracts, the SAA corresponding to DMDP 4 (Best et al., 2010) was converted to the diacid 5 by initial reaction with tert-butyl acrylate in methanol in the presence of triethylamine followed by treatment with aqueous trifluoroacetic acid (Martínez, 2012). The structure of 5 was unequivocally determined by X-ray crystallographic analysis; the absolute configuration was determined by the use of d-glucuronolactone as the starting material for the synthesis.

The five ring adopts an envelope conformation with C5 out of the plane (Fig. 2). The compound exisits as a three-dimensional O—H···O intermolecular hydrogen-bonded network with each molecule acting as a donor and acceptor for four hydrogen bonds (Fig. 3).

For related literature on naturally occurring iminosugars, see: Asano et al. (2000); Watson et al. (2001); Nash et al. (1991); Welter et al. (1976); Manning et al. (1985); Pereira et al. (1991). For the synthesis of the diacid, see: Best et al. (2010); Martínez et al. (2012). For the extinction correction, see: Larson (1970). For hydrogen-atom refinement, see: Cooper et al. (2010). For the temperature controller, see: Cosier & Glazer (1986). For the Chebychev polynomial used in the weighting scheme, see: Prince (1982); Watkin (1994).

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. Synthetic Scheme.
[Figure 2] Fig. 2. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 3] Fig. 3. Packing diagram of the title compound projected along the b-axis. Hydrogen bonds are shown as dotted lines.
N-(2-Carboxyethyl)-2,5-dideoxy-2,5-imino-D-mannonic acid top
Crystal data top
C9H15NO7F(000) = 528
Mr = 249.22Dx = 1.578 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1401 reflections
a = 8.5242 (1) Åθ = 5–27°
b = 8.5707 (1) ŵ = 0.14 mm1
c = 14.3585 (3) ÅT = 190 K
V = 1049.01 (3) Å3Plate, colourless
Z = 40.32 × 0.30 × 0.11 mm
Data collection top
Nonius KappaCCD
diffractometer
1321 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.009
ω scansθmax = 27.5°, θmin = 5.3°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1111
Tmin = 0.93, Tmax = 0.99k = 1111
18435 measured reflectionsl = 1818
1385 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.024 Method, part 1, Chebychev polynomial, (Watkin, 1994; Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 24.6 39.9 23.9 10.2 2.48
wR(F2) = 0.062(Δ/σ)max = 0.0004353
S = 0.93Δρmax = 0.21 e Å3
1385 reflectionsΔρmin = 0.14 e Å3
155 parametersExtinction correction: Larson (1970), Equation 22
0 restraintsExtinction coefficient: 190 (20)
Primary atom site location: Other
Crystal data top
C9H15NO7V = 1049.01 (3) Å3
Mr = 249.22Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.5242 (1) ŵ = 0.14 mm1
b = 8.5707 (1) ÅT = 190 K
c = 14.3585 (3) Å0.32 × 0.30 × 0.11 mm
Data collection top
Nonius KappaCCD
diffractometer
1385 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
1321 reflections with I > 2σ(I)
Tmin = 0.93, Tmax = 0.99Rint = 0.009
18435 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 0.93Δρmax = 0.21 e Å3
1385 reflectionsΔρmin = 0.14 e Å3
155 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.25779 (14)0.79237 (13)0.78008 (7)0.0203
C20.21884 (17)0.76687 (17)0.68515 (10)0.0156
C30.34616 (17)0.82784 (16)0.61866 (10)0.0153
O40.27181 (12)0.86546 (13)0.53261 (7)0.0199
C50.45582 (16)0.68918 (15)0.60409 (9)0.0148
N60.33646 (14)0.56002 (13)0.59290 (8)0.0141
C70.21204 (16)0.58889 (17)0.66539 (10)0.0144
C80.05081 (18)0.54093 (16)0.62872 (10)0.0155
O90.03760 (13)0.51412 (12)0.54371 (7)0.0196
O100.05866 (13)0.53953 (13)0.68791 (7)0.0205
C110.39382 (17)0.39407 (16)0.59147 (11)0.0168
C120.51896 (18)0.36273 (17)0.51838 (9)0.0177
C130.48212 (17)0.41891 (17)0.42111 (10)0.0178
O140.57147 (14)0.35134 (13)0.35801 (7)0.0218
O150.38504 (14)0.51908 (13)0.40387 (7)0.0241
C160.56756 (17)0.66168 (17)0.68540 (11)0.0191
O170.66018 (13)0.79709 (15)0.69892 (8)0.0252
H210.12060.81290.66800.0190*
H310.39830.91790.64500.0177*
H510.51500.69920.54520.0178*
H710.23580.53260.72110.0155*
H1110.30070.33040.58020.0199*
H1120.43770.36980.65170.0210*
H1210.53900.25100.51520.0211*
H1220.61810.41320.53520.0221*
H1620.63270.56760.67250.0238*
H1610.50650.64500.74290.0230*
H1710.72880.80630.65730.0384*
H1410.55030.38540.30350.0342*
H110.19950.86110.80000.0308*
H410.33910.90870.50160.0308*
H610.28820.57480.53790.0220*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0242 (5)0.0209 (5)0.0158 (5)0.0028 (5)0.0009 (4)0.0050 (4)
C20.0150 (6)0.0164 (6)0.0153 (6)0.0016 (5)0.0004 (5)0.0010 (5)
C30.0158 (6)0.0143 (6)0.0158 (6)0.0003 (5)0.0004 (5)0.0005 (5)
O40.0173 (5)0.0230 (5)0.0195 (5)0.0015 (4)0.0003 (4)0.0065 (4)
C50.0133 (6)0.0146 (6)0.0166 (6)0.0001 (5)0.0012 (5)0.0005 (5)
N60.0134 (5)0.0142 (5)0.0148 (5)0.0008 (4)0.0011 (5)0.0004 (4)
C70.0144 (6)0.0148 (6)0.0140 (6)0.0014 (5)0.0020 (5)0.0002 (5)
C80.0161 (6)0.0137 (6)0.0167 (6)0.0004 (5)0.0008 (5)0.0016 (5)
O90.0196 (5)0.0233 (5)0.0160 (5)0.0003 (5)0.0016 (4)0.0015 (4)
O100.0154 (5)0.0266 (5)0.0196 (5)0.0028 (4)0.0036 (4)0.0011 (4)
C110.0202 (7)0.0124 (6)0.0179 (6)0.0024 (5)0.0038 (6)0.0012 (5)
C120.0198 (7)0.0157 (6)0.0176 (6)0.0034 (6)0.0020 (6)0.0005 (5)
C130.0184 (6)0.0176 (6)0.0174 (6)0.0005 (6)0.0013 (6)0.0020 (5)
O140.0257 (6)0.0246 (5)0.0151 (5)0.0056 (5)0.0016 (4)0.0016 (4)
O150.0254 (5)0.0277 (6)0.0191 (5)0.0085 (5)0.0010 (5)0.0005 (4)
C160.0168 (6)0.0195 (7)0.0209 (7)0.0018 (6)0.0022 (6)0.0029 (6)
O170.0189 (5)0.0334 (6)0.0232 (5)0.0089 (5)0.0013 (5)0.0051 (5)
Geometric parameters (Å, º) top
O1—C21.4198 (17)C7—H710.956
O1—H110.822C8—O91.2471 (17)
C2—C31.537 (2)C8—O101.2622 (18)
C2—C71.553 (2)C11—C121.5204 (19)
C2—H210.958C11—H1110.976
C3—O41.4257 (16)C11—H1120.965
C3—C51.5263 (19)C12—C131.5103 (19)
C3—H310.968C12—H1210.974
O4—H410.815C12—H1220.980
C5—N61.5121 (17)C13—O141.3177 (18)
C5—C161.525 (2)C13—O151.2178 (19)
C5—H510.989O14—H1410.855
N6—C71.5064 (17)C16—O171.4171 (18)
N6—C111.5041 (17)C16—H1620.997
N6—H610.900C16—H1610.987
C7—C81.528 (2)O17—H1710.840
C2—O1—H11107.6C2—C7—H71109.5
O1—C2—C3112.26 (12)N6—C7—H71110.3
O1—C2—C7109.60 (12)C8—C7—H71110.1
C3—C2—C7104.29 (11)C7—C8—O9117.91 (13)
O1—C2—H21112.8C7—C8—O10115.82 (12)
C3—C2—H21108.5O9—C8—O10126.19 (15)
C7—C2—H21109.0N6—C11—C12113.87 (12)
C2—C3—O4107.53 (11)N6—C11—H111105.5
C2—C3—C5104.65 (11)C12—C11—H111110.9
O4—C3—C5109.24 (11)N6—C11—H112108.5
C2—C3—H31110.6C12—C11—H112108.0
O4—C3—H31111.2H111—C11—H112110.1
C5—C3—H31113.2C11—C12—C13115.85 (12)
C3—O4—H41105.3C11—C12—H121109.2
C3—C5—N699.93 (10)C13—C12—H121107.9
C3—C5—C16113.45 (11)C11—C12—H122111.0
N6—C5—C16112.86 (11)C13—C12—H122105.4
C3—C5—H51111.2H121—C12—H122107.1
N6—C5—H51108.4C12—C13—O14112.05 (12)
C16—C5—H51110.5C12—C13—O15123.65 (13)
C5—N6—C7106.26 (10)O14—C13—O15124.25 (14)
C5—N6—C11118.36 (11)C13—O14—H141111.0
C7—N6—C11113.18 (11)C5—C16—O17109.05 (12)
C5—N6—H61107.3C5—C16—H162109.3
C7—N6—H61105.2O17—C16—H162112.2
C11—N6—H61105.7C5—C16—H161109.5
C2—C7—N6105.15 (11)O17—C16—H161107.4
C2—C7—C8111.15 (12)H162—C16—H161109.4
N6—C7—C8110.54 (11)C16—O17—H171111.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H51···O4i0.992.523.366 (2)143 (1)
C7—H71···O17ii0.962.493.352 (2)151 (1)
C11—H112···O17ii0.972.383.156 (2)137 (1)
C12—H121···O9iii0.972.433.354 (2)160 (1)
C12—H122···O4i0.982.503.257 (2)134 (1)
C16—H161···O10.992.533.174 (2)123
O17—H171···O15i0.842.192.887 (2)141 (1)
O14—H141···O10iv0.861.782.618 (2)166 (1)
O1—H11···O10v0.821.952.753 (2)165 (1)
O4—H41···O9i0.821.932.720 (2)163 (1)
N6—H61···O150.902.152.768 (2)125
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y1/2, z+3/2; (iii) x+1/2, y+1/2, z+1; (iv) x+1/2, y+1, z1/2; (v) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC9H15NO7
Mr249.22
Crystal system, space groupOrthorhombic, P212121
Temperature (K)190
a, b, c (Å)8.5242 (1), 8.5707 (1), 14.3585 (3)
V3)1049.01 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.32 × 0.30 × 0.11
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.93, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
18435, 1385, 1321
Rint0.009
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.062, 0.93
No. of reflections1385
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.14

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), Superflip (Palatinus & Chapuis, 2007), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O17—H171···O15i0.8402.1882.887 (2)140.69 (4)
O14—H141···O10ii0.8551.7812.618 (2)165.53 (5)
O1—H11···O10iii0.8221.9522.753 (2)164.63 (4)
O4—H41···O9i0.8151.9302.720 (2)163.14 (4)
N6—H61···O150.9002.1472.768 (2)125.42
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y+1, z1/2; (iii) x, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by the Fundación Ramón Areces (RFM).

References

First citationAsano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680.  Web of Science CrossRef CAS Google Scholar
First citationBest, D., Wang, C., Weymouth-Wilson, A. C., Clarkson, R. A., Wilson, F. X., Nash, R. J., Miyauchi, S., Kato, A. & Fleet, G. W. J. (2010). Tetrahedron Asymmetry, 21, 311–319.  Web of Science CrossRef CAS Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLarson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.  Google Scholar
First citationManning, K. S., Lynn, D. G., Shabanowitz, J., Fellows, L. E., Sin gh, M. & Schrire, B. D. (1985). J. Chem. Soc. Chem. Commun. pp. 127–129.  CrossRef Web of Science Google Scholar
First citationMartínez, R. F., Jenkinson, S. F., Hollas, M., Ayres, B. J., Nash, R. J., Kato, A. & Fleet, G. W. J. (2012). In preparation.  Google Scholar
First citationNash, R. J., Watson, A. A., Winters, A. L., Fleet, G. W. J., Wormald, M. R., Dealler, S., Lees, E., Asano, N. & Kizu, H. (1991). Spec. Publ. R. Soc. Chem. 200, 106–114.  Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPereira, A. C. de S., Kaplan, M. A. C., Maia, J. G. S., Gottlieb, O. R., Nash, R. J., Fleet, G., Pearce, L., Watkin, D. J. & Scofield, A. M. (1991). Tetrahedron, 47, 5637–5640.  CAS Google Scholar
First citationPrince, E. (1982). In Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationWatson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265–295.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWelter, A., Jadot, J., Dardenne, G., Marlier, M. & Casimir, J. (1976). Phytochemistry, 15, 747–749.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds