organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(4-Decyl­oxyphen­yl)-3-(2-hy­dr­oxy­phen­yl)prop-2-en-1-one

aDepartment of Chemistry, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, bDepartment of Molecular Biology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, and cSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 29 August 2012; accepted 10 September 2012; online 15 September 2012)

In the title compound, C25H32O3, the enone group adopts an s-cis conformation. The alk­oxy chain is in an all-trans conformation. The dihedral angle between the benzene rings is 7.86 (5)°. In the crystal, mol­ecules are connected by pairs of O—H⋯O hydrogen bonds, forming inversion dimers and giving R22(10) rings. Within these dimers, weak C—H⋯O hydrogen bonds form two R22(7) rings. In the crystal, the approximately planar mol­ecules [largest deviation for an atom being 0.4737 (12) Å for the terminal C atom of the alk­oxy chain] are arranged in sheets parallel to (20-1). Weak C—H⋯π inter­actions are also observed.

Related literature

For the biological properties of chalcone derivatives, see: Bhat et al. (2005[Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177-3180.]); Xue et al. (2004[Xue, C. X., Cui, S. Y., Liu, M. C., Hu, Z. D. & Fan, B. T. (2004). Eur. J. Med. Chem. 39, 745-753.]); Won et al. (2005[Won, S. J., Liu, C. T., Tsao, L. T., Weng, J. R., Ko, H. H., Wang, J. P. & Lin, C. N. (2005). Eur. J. Med. Chem. 40, 103-112.]); Zhao et al. (2005[Zhao, L. M., Jin, H. S., Sun, L. P., Piao, H. R. & Quan, Z. S. (2005). Chem. Lett. 15, 5027-5029.]); Satyanarayana et al. (2004[Satyanarayana, M., Tiwari, P., Tripathi, B. K., Srivastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. Lett. 12, 883-889.]). For related structures, see: Razak et al. (2009[Razak, I. A., Fun, H.-K., Ngaini, Z., Rahman, N. I. A. & Hussain, H. (2009). Acta Cryst. E65, o1439-o1440.]); Ngaini et al. (2010[Ngaini, Z., Fadzillah, S. M. H., Hussain, H., Razak, I. A. & Fun, H.-K. (2010). Acta Cryst. E66, o3275-o3276.], 2011[Ngaini, Z., Fadzillah, S. M. H., Hussain, H., Razak, I. A. & Fun, H.-K. (2011). Acta Cryst. E67, o169-o170.]). For graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986)[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]. For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C25H32O3

  • Mr = 380.51

  • Triclinic, [P \overline 1]

  • a = 8.6674 (13) Å

  • b = 10.9865 (17) Å

  • c = 12.1352 (19) Å

  • α = 74.405 (3)°

  • β = 72.891 (3)°

  • γ = 85.981 (4)°

  • V = 1063.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.62 × 0.15 × 0.14 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.955, Tmax = 0.990

  • 30192 measured reflections

  • 8434 independent reflections

  • 6213 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.160

  • S = 1.02

  • 8434 reflections

  • 258 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2i 0.939 (18) 1.789 (18) 2.6867 (12) 159.0 (16)
C7—H7A⋯O1i 0.93 2.31 3.2169 (13) 164
C22—H22ACg1ii 0.97 2.85 3.6887 (12) 146
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x, y, z-1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones have displayed an impressive array of biological activities and are extensively reported (Xue et al., 2004; Bhat et al., 2005; Won et al., 2005; Zhao et al., 2005 and Satyanarayana et al., 2004). Here in, we report the crystal structure of the title compound (I).

In (I), Fig. 1, the bond lengths observed are comparable with standard reported values (Allen et al., 1987). The enone (O2/C7–C9) moiety adopts a s-cis conformation with a torsion angle of -6.41 (15)°. The mean plane through the enone (O2/C7–C9) moiety form dihedral angles of 2.80 (6) and 7.26 (6)° respectively with the benzene (C1–C6 and C10–C15) rings. The dihedral angle between the two benzene rings is 7.86 (5)°.

An observed widening of the C1–C6–C7 and C6–C7–C8 angles of 122.85 (8) and 126.23 (8)° respectively, may be the consequence of the short contact between H1A and H8A (2.19 Å). Similarly, the slight distortion of the O3–C13–C14 angle to 125.18 (9)° may be the result of a close H14A and H16B (2.37 Å) contact. The geometric parameters are consistent to those observed in closely related structures (Razak et al., 2009; Ngaini et al., 2010; Ngaini et al., 2011).

The alkoxy chain adopts an all trans conformation with the difference from the ideal values of the torsion angles ranging from 0.98 (7)° to 7.98 (9)°. The C16–O3–C13–C14 torsion angle of 4.73 (13)° indicate that atoms C16 and O3 and the attached benzene ring are approximately co-planar. The alkoxy chain appears to deviate from co-planarity with the ring for atoms further away i.e. C24 and C25. The dihedral angle between the least-square plane through atoms O3/C16–C25 [maximum deviation = 0.2507 (10)Å at C25] and the attached benzene ring is 15.20 (5)°.

In the crystal (Fig. 2), molecules are connected by a pair of O1—H1O1···O2i and a pair of weak C7—H7A···O1i hydrogen bonds to form a R22(10) ring and two R22(7) rings within inversion dimers. These dimers are arranged into sheets parallel to (201). Weak C—H···π interactions (Table 1) are also observed.

Related literature top

For the biological properties of chalcone derivatives, see: Bhat et al. (2005); Xue et al. (2004); Won et al. (2005); Zhao et al. (2005); Satyanarayana et al. (2004). For related structures, see: Razak et al. (2009); Ngaini et al. (2010, 2011). For graph-set theory, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For standard bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 2-hydroxybenzaldehyde (2.44 ml, 20 mmol), 4-decyloxyacetophenone (6.65 g, 20 mmol) and KOH (4.04 g, 72 mmol) in methanol (60 ml) was heated at reflux for 12 h. The reaction was cooled to room temperature and acidified with cold diluted HCl (2N). After redissolving in hexane followed by few days of slow evaporation, crystals were collected.

Refinement top

The O-bound H atom was located in a difference Fourier map and refined freely with O–H = 0.943 (17) Å. The remaining H atoms were placed in calculated positions with C–H = 0.93–0.97 Å. The Uiso values were constrained to be 1.5Ueq (methyl-H atom) and 1.2Ueq (other H atoms). The rotating model group was applied for the methyl group.

Structure description top

Chalcones have displayed an impressive array of biological activities and are extensively reported (Xue et al., 2004; Bhat et al., 2005; Won et al., 2005; Zhao et al., 2005 and Satyanarayana et al., 2004). Here in, we report the crystal structure of the title compound (I).

In (I), Fig. 1, the bond lengths observed are comparable with standard reported values (Allen et al., 1987). The enone (O2/C7–C9) moiety adopts a s-cis conformation with a torsion angle of -6.41 (15)°. The mean plane through the enone (O2/C7–C9) moiety form dihedral angles of 2.80 (6) and 7.26 (6)° respectively with the benzene (C1–C6 and C10–C15) rings. The dihedral angle between the two benzene rings is 7.86 (5)°.

An observed widening of the C1–C6–C7 and C6–C7–C8 angles of 122.85 (8) and 126.23 (8)° respectively, may be the consequence of the short contact between H1A and H8A (2.19 Å). Similarly, the slight distortion of the O3–C13–C14 angle to 125.18 (9)° may be the result of a close H14A and H16B (2.37 Å) contact. The geometric parameters are consistent to those observed in closely related structures (Razak et al., 2009; Ngaini et al., 2010; Ngaini et al., 2011).

The alkoxy chain adopts an all trans conformation with the difference from the ideal values of the torsion angles ranging from 0.98 (7)° to 7.98 (9)°. The C16–O3–C13–C14 torsion angle of 4.73 (13)° indicate that atoms C16 and O3 and the attached benzene ring are approximately co-planar. The alkoxy chain appears to deviate from co-planarity with the ring for atoms further away i.e. C24 and C25. The dihedral angle between the least-square plane through atoms O3/C16–C25 [maximum deviation = 0.2507 (10)Å at C25] and the attached benzene ring is 15.20 (5)°.

In the crystal (Fig. 2), molecules are connected by a pair of O1—H1O1···O2i and a pair of weak C7—H7A···O1i hydrogen bonds to form a R22(10) ring and two R22(7) rings within inversion dimers. These dimers are arranged into sheets parallel to (201). Weak C—H···π interactions (Table 1) are also observed.

For the biological properties of chalcone derivatives, see: Bhat et al. (2005); Xue et al. (2004); Won et al. (2005); Zhao et al. (2005); Satyanarayana et al. (2004). For related structures, see: Razak et al. (2009); Ngaini et al. (2010, 2011). For graph-set theory, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For standard bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A pair inversion related molecules connected by hydrogen bonds (dashed lines).
[Figure 3] Fig. 3. The crystal packing, viewed along the b-axis, showing the molecules in pairs, arranged into sheets parallel to (201) plane. Hydrogen bonds are shown as dashed lines. Only H atoms involved in hydrogen bonds are shown.
(E)-1-(4-Decyloxyphenyl)-3-(2-hydroxyphenyl)prop-2-en-1-one top
Crystal data top
C25H32O3Z = 2
Mr = 380.51F(000) = 412
Triclinic, P1Dx = 1.188 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6674 (13) ÅCell parameters from 7111 reflections
b = 10.9865 (17) Åθ = 2.5–33.7°
c = 12.1352 (19) ŵ = 0.08 mm1
α = 74.405 (3)°T = 100 K
β = 72.891 (3)°Block, yellow
γ = 85.981 (4)°0.62 × 0.15 × 0.14 mm
V = 1063.7 (3) Å3
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
8434 independent reflections
Radiation source: fine-focus sealed tube6213 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 33.9°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.955, Tmax = 0.990k = 1717
30192 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0957P)2 + 0.086P]
where P = (Fo2 + 2Fc2)/3
8434 reflections(Δ/σ)max < 0.001
258 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C25H32O3γ = 85.981 (4)°
Mr = 380.51V = 1063.7 (3) Å3
Triclinic, P1Z = 2
a = 8.6674 (13) ÅMo Kα radiation
b = 10.9865 (17) ŵ = 0.08 mm1
c = 12.1352 (19) ÅT = 100 K
α = 74.405 (3)°0.62 × 0.15 × 0.14 mm
β = 72.891 (3)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
8434 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6213 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.990Rint = 0.034
30192 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.63 e Å3
8434 reflectionsΔρmin = 0.20 e Å3
258 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.97173 (10)0.64655 (7)0.51189 (7)0.03236 (17)
O20.94280 (8)0.34433 (6)0.29484 (6)0.02528 (14)
O30.72670 (9)0.27611 (6)0.13495 (6)0.02605 (15)
C10.83637 (12)0.82610 (8)0.26041 (8)0.02406 (17)
H1A0.80870.81270.19610.029*
C20.82611 (13)0.94641 (9)0.27668 (9)0.0290 (2)
H2A0.79101.01280.22410.035*
C30.86846 (12)0.96808 (9)0.37210 (9)0.02815 (19)
H3A0.86301.04930.38250.034*
C40.91859 (11)0.86906 (8)0.45150 (9)0.02482 (17)
H4A0.94660.88360.51520.030*
C50.92699 (11)0.74707 (8)0.43560 (8)0.02130 (16)
C60.88752 (10)0.72389 (8)0.33845 (7)0.01911 (15)
C70.89920 (10)0.59575 (8)0.32398 (8)0.02062 (16)
H7A0.92600.53260.38360.025*
C80.87499 (11)0.56017 (8)0.23288 (8)0.02137 (16)
H8A0.84640.62130.17270.026*
C90.89166 (10)0.42876 (8)0.22394 (7)0.01902 (15)
C100.84626 (10)0.39669 (8)0.12615 (7)0.01838 (15)
C110.87712 (10)0.27355 (8)0.11183 (8)0.02067 (16)
H11A0.92580.21580.16260.025*
C120.83636 (11)0.23708 (8)0.02362 (8)0.02239 (16)
H12A0.85810.15550.01510.027*
C130.76235 (10)0.32268 (8)0.05314 (7)0.02090 (16)
C140.73151 (11)0.44598 (8)0.04146 (8)0.02183 (16)
H14A0.68340.50360.09270.026*
C150.77373 (10)0.48127 (8)0.04772 (7)0.02078 (16)
H15A0.75320.56330.05540.025*
C160.66227 (11)0.35667 (9)0.22515 (8)0.02424 (17)
H16A0.73790.42420.27520.029*
H16B0.56130.39350.18920.029*
C170.63573 (12)0.27105 (9)0.29722 (8)0.02506 (17)
H17A0.55560.20740.24550.030*
H17B0.73580.22770.32350.030*
C180.58040 (11)0.33829 (9)0.40639 (8)0.02417 (17)
H18A0.47460.37430.38090.029*
H18B0.65510.40660.45600.029*
C190.57271 (12)0.24580 (9)0.47838 (8)0.02537 (18)
H19A0.50750.17350.42510.030*
H19B0.68090.21570.50820.030*
C200.50411 (11)0.29821 (9)0.58370 (8)0.02291 (16)
H20A0.39780.33230.55570.027*
H20B0.57300.36660.64080.027*
C210.49168 (11)0.19692 (9)0.64525 (8)0.02409 (17)
H21A0.42920.12630.58610.029*
H21B0.59930.16650.67630.029*
C220.41473 (11)0.24020 (8)0.74698 (8)0.02339 (17)
H22A0.48480.30260.81150.028*
H22B0.31290.28060.71900.028*
C230.38450 (12)0.13207 (9)0.79502 (8)0.02553 (18)
H23A0.48580.08980.82000.031*
H23B0.31160.07120.73100.031*
C240.31312 (12)0.17379 (10)0.89953 (9)0.02908 (19)
H24A0.39230.22500.96760.035*
H24B0.21990.22610.87850.035*
C250.26215 (14)0.06325 (11)0.93513 (10)0.0364 (2)
H25A0.21340.09490.99870.055*
H25B0.18570.01090.86760.055*
H25C0.35520.01430.96150.055*
H1O10.9937 (19)0.6709 (15)0.5747 (15)0.054 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0556 (5)0.0212 (3)0.0321 (4)0.0096 (3)0.0303 (3)0.0091 (3)
O20.0347 (3)0.0214 (3)0.0252 (3)0.0039 (2)0.0166 (3)0.0073 (2)
O30.0373 (4)0.0246 (3)0.0235 (3)0.0037 (3)0.0170 (3)0.0099 (2)
C10.0322 (4)0.0187 (4)0.0236 (4)0.0014 (3)0.0130 (3)0.0042 (3)
C20.0410 (5)0.0178 (4)0.0316 (5)0.0032 (3)0.0178 (4)0.0049 (3)
C30.0368 (5)0.0178 (4)0.0343 (5)0.0028 (3)0.0164 (4)0.0082 (3)
C40.0310 (4)0.0204 (4)0.0287 (4)0.0026 (3)0.0143 (3)0.0100 (3)
C50.0247 (4)0.0178 (3)0.0240 (4)0.0031 (3)0.0112 (3)0.0058 (3)
C60.0220 (4)0.0171 (3)0.0198 (3)0.0004 (3)0.0084 (3)0.0047 (3)
C70.0249 (4)0.0171 (3)0.0216 (4)0.0016 (3)0.0092 (3)0.0055 (3)
C80.0273 (4)0.0179 (3)0.0209 (4)0.0003 (3)0.0104 (3)0.0045 (3)
C90.0203 (3)0.0191 (3)0.0188 (3)0.0006 (3)0.0068 (3)0.0052 (3)
C100.0205 (3)0.0181 (3)0.0172 (3)0.0011 (3)0.0063 (3)0.0044 (3)
C110.0247 (4)0.0188 (3)0.0207 (4)0.0014 (3)0.0100 (3)0.0054 (3)
C120.0291 (4)0.0196 (4)0.0220 (4)0.0021 (3)0.0114 (3)0.0073 (3)
C130.0240 (4)0.0225 (4)0.0182 (3)0.0006 (3)0.0076 (3)0.0066 (3)
C140.0259 (4)0.0211 (4)0.0206 (4)0.0019 (3)0.0102 (3)0.0055 (3)
C150.0252 (4)0.0187 (3)0.0197 (3)0.0007 (3)0.0083 (3)0.0052 (3)
C160.0285 (4)0.0271 (4)0.0210 (4)0.0023 (3)0.0114 (3)0.0085 (3)
C170.0295 (4)0.0281 (4)0.0221 (4)0.0002 (3)0.0114 (3)0.0093 (3)
C180.0263 (4)0.0281 (4)0.0218 (4)0.0012 (3)0.0100 (3)0.0093 (3)
C190.0302 (4)0.0279 (4)0.0216 (4)0.0011 (3)0.0103 (3)0.0092 (3)
C200.0246 (4)0.0263 (4)0.0197 (4)0.0002 (3)0.0079 (3)0.0073 (3)
C210.0289 (4)0.0260 (4)0.0207 (4)0.0016 (3)0.0110 (3)0.0077 (3)
C220.0264 (4)0.0243 (4)0.0219 (4)0.0015 (3)0.0102 (3)0.0068 (3)
C230.0316 (4)0.0254 (4)0.0239 (4)0.0023 (3)0.0144 (3)0.0070 (3)
C240.0330 (5)0.0309 (5)0.0279 (4)0.0006 (4)0.0176 (4)0.0056 (4)
C250.0427 (6)0.0421 (6)0.0349 (5)0.0011 (5)0.0217 (4)0.0156 (5)
Geometric parameters (Å, º) top
O1—C51.3523 (10)C16—C171.5146 (12)
O1—H1O10.943 (17)C16—H16A0.9700
O2—C91.2389 (10)C16—H16B0.9700
O3—C131.3485 (10)C17—C181.5260 (13)
O3—C161.4363 (11)C17—H17A0.9700
C1—C21.3811 (13)C17—H17B0.9700
C1—C61.4000 (12)C18—C191.5236 (12)
C1—H1A0.9300C18—H18A0.9700
C2—C31.3938 (14)C18—H18B0.9700
C2—H2A0.9300C19—C201.5239 (13)
C3—C41.3846 (13)C19—H19A0.9700
C3—H3A0.9300C19—H19B0.9700
C4—C51.3985 (12)C20—C211.5228 (12)
C4—H4A0.9300C20—H20A0.9700
C5—C61.4080 (12)C20—H20B0.9700
C6—C71.4579 (11)C21—C221.5229 (12)
C7—C81.3414 (12)C21—H21A0.9700
C7—H7A0.9300C21—H21B0.9700
C8—C91.4706 (12)C22—C231.5250 (13)
C8—H8A0.9300C22—H22A0.9700
C9—C101.4854 (11)C22—H22B0.9700
C10—C151.3998 (11)C23—C241.5201 (13)
C10—C111.4072 (12)C23—H23A0.9700
C11—C121.3800 (12)C23—H23B0.9700
C11—H11A0.9300C24—C251.5252 (15)
C12—C131.3999 (12)C24—H24A0.9700
C12—H12A0.9300C24—H24B0.9700
C13—C141.3988 (12)C25—H25A0.9600
C14—C151.3906 (12)C25—H25B0.9600
C14—H14A0.9300C25—H25C0.9600
C15—H15A0.9300
C5—O1—H1O1110.9 (10)C16—C17—H17A108.6
C13—O3—C16120.53 (7)C18—C17—H17A108.6
C2—C1—C6121.51 (9)C16—C17—H17B108.6
C2—C1—H1A119.2C18—C17—H17B108.6
C6—C1—H1A119.2H17A—C17—H17B107.6
C1—C2—C3119.86 (9)C19—C18—C17110.31 (8)
C1—C2—H2A120.1C19—C18—H18A109.6
C3—C2—H2A120.1C17—C18—H18A109.6
C4—C3—C2120.20 (9)C19—C18—H18B109.6
C4—C3—H3A119.9C17—C18—H18B109.6
C2—C3—H3A119.9H18A—C18—H18B108.1
C3—C4—C5119.80 (8)C18—C19—C20115.59 (8)
C3—C4—H4A120.1C18—C19—H19A108.4
C5—C4—H4A120.1C20—C19—H19A108.4
O1—C5—C4122.25 (8)C18—C19—H19B108.4
O1—C5—C6116.99 (8)C20—C19—H19B108.4
C4—C5—C6120.76 (8)H19A—C19—H19B107.4
C1—C6—C5117.86 (8)C21—C20—C19111.70 (8)
C1—C6—C7122.86 (8)C21—C20—H20A109.3
C5—C6—C7119.27 (7)C19—C20—H20A109.3
C8—C7—C6126.24 (8)C21—C20—H20B109.3
C8—C7—H7A116.9C19—C20—H20B109.3
C6—C7—H7A116.9H20A—C20—H20B107.9
C7—C8—C9122.90 (8)C20—C21—C22114.80 (8)
C7—C8—H8A118.6C20—C21—H21A108.6
C9—C8—H8A118.6C22—C21—H21A108.6
O2—C9—C8122.21 (8)C20—C21—H21B108.6
O2—C9—C10119.06 (7)C22—C21—H21B108.6
C8—C9—C10118.72 (7)H21A—C21—H21B107.5
C15—C10—C11117.94 (8)C21—C22—C23112.95 (7)
C15—C10—C9124.00 (7)C21—C22—H22A109.0
C11—C10—C9118.06 (7)C23—C22—H22A109.0
C12—C11—C10121.04 (8)C21—C22—H22B109.0
C12—C11—H11A119.5C23—C22—H22B109.0
C10—C11—H11A119.5H22A—C22—H22B107.8
C11—C12—C13120.15 (8)C24—C23—C22113.85 (8)
C11—C12—H12A119.9C24—C23—H23A108.8
C13—C12—H12A119.9C22—C23—H23A108.8
O3—C13—C14125.19 (8)C24—C23—H23B108.8
O3—C13—C12114.85 (8)C22—C23—H23B108.8
C14—C13—C12119.96 (8)H23A—C23—H23B107.7
C15—C14—C13119.15 (8)C23—C24—C25113.04 (8)
C15—C14—H14A120.4C23—C24—H24A109.0
C13—C14—H14A120.4C25—C24—H24A109.0
C14—C15—C10121.76 (8)C23—C24—H24B109.0
C14—C15—H15A119.1C25—C24—H24B109.0
C10—C15—H15A119.1H24A—C24—H24B107.8
O3—C16—C17104.98 (7)C24—C25—H25A109.5
O3—C16—H16A110.8C24—C25—H25B109.5
C17—C16—H16A110.8H25A—C25—H25B109.5
O3—C16—H16B110.8C24—C25—H25C109.5
C17—C16—H16B110.8H25A—C25—H25C109.5
H16A—C16—H16B108.8H25B—C25—H25C109.5
C16—C17—C18114.77 (8)
C6—C1—C2—C30.50 (15)C9—C10—C11—C12179.29 (7)
C1—C2—C3—C40.91 (16)C10—C11—C12—C130.32 (13)
C2—C3—C4—C50.14 (15)C16—O3—C13—C144.73 (13)
C3—C4—C5—O1178.52 (9)C16—O3—C13—C12175.05 (8)
C3—C4—C5—C61.05 (14)C11—C12—C13—O3179.37 (8)
C2—C1—C6—C50.65 (14)C11—C12—C13—C140.84 (13)
C2—C1—C6—C7179.81 (9)O3—C13—C14—C15179.56 (8)
O1—C5—C6—C1178.17 (8)C12—C13—C14—C150.67 (13)
C4—C5—C6—C11.42 (13)C13—C14—C15—C100.01 (13)
O1—C5—C6—C71.02 (12)C11—C10—C15—C140.51 (13)
C4—C5—C6—C7179.39 (8)C9—C10—C15—C14179.10 (8)
C1—C6—C7—C84.99 (14)C13—O3—C16—C17179.02 (7)
C5—C6—C7—C8175.86 (9)O3—C16—C17—C18175.00 (7)
C6—C7—C8—C9179.01 (8)C16—C17—C18—C19174.72 (8)
C7—C8—C9—O26.40 (14)C17—C18—C19—C20174.57 (8)
C7—C8—C9—C10173.90 (8)C18—C19—C20—C21176.48 (7)
O2—C9—C10—C15173.99 (8)C19—C20—C21—C22176.53 (8)
C8—C9—C10—C156.30 (12)C20—C21—C22—C23172.41 (8)
O2—C9—C10—C115.62 (12)C21—C22—C23—C24177.98 (8)
C8—C9—C10—C11174.09 (7)C22—C23—C24—C25172.02 (9)
C15—C10—C11—C120.34 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i0.939 (18)1.789 (18)2.6867 (12)159.0 (16)
C7—H7A···O1i0.932.313.2169 (13)164
C22—H22A···Cg1ii0.972.853.6887 (12)146
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC25H32O3
Mr380.51
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.6674 (13), 10.9865 (17), 12.1352 (19)
α, β, γ (°)74.405 (3), 72.891 (3), 85.981 (4)
V3)1063.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.62 × 0.15 × 0.14
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.955, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
30192, 8434, 6213
Rint0.034
(sin θ/λ)max1)0.784
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.160, 1.02
No. of reflections8434
No. of parameters258
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.63, 0.20

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i0.939 (18)1.789 (18)2.6867 (12)159.0 (16)
C7—H7A···O1i0.93002.31003.2169 (13)164.00
C22—H22A···Cg1ii0.97002.853.6887 (12)146
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z1.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

IAR and SIJA thank the Malaysian Government and Universiti Sains Malaysia for the Fundamental Research Grant Scheme (FRGS) No. 203/PFIZIK/6711171. ZN and HH thank Universiti Malaysia Sarawak and the Ministry of Science, Technology and Innovation (MOSTI), for financing this project through FRGS/01(14)/743/2010 (29). SMHF thanks the Malaysian Government and Universiti Malaysia Sarawak for providing a schol­arship for postgraduate studies.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177–3180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNgaini, Z., Fadzillah, S. M. H., Hussain, H., Razak, I. A. & Fun, H.-K. (2010). Acta Cryst. E66, o3275–o3276.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNgaini, Z., Fadzillah, S. M. H., Hussain, H., Razak, I. A. & Fun, H.-K. (2011). Acta Cryst. E67, o169–o170.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRazak, I. A., Fun, H.-K., Ngaini, Z., Rahman, N. I. A. & Hussain, H. (2009). Acta Cryst. E65, o1439–o1440.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSatyanarayana, M., Tiwari, P., Tripathi, B. K., Srivastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. Lett. 12, 883–889.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWon, S. J., Liu, C. T., Tsao, L. T., Weng, J. R., Ko, H. H., Wang, J. P. & Lin, C. N. (2005). Eur. J. Med. Chem. 40, 103–112.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXue, C. X., Cui, S. Y., Liu, M. C., Hu, Z. D. & Fan, B. T. (2004). Eur. J. Med. Chem. 39, 745–753.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhao, L. M., Jin, H. S., Sun, L. P., Piao, H. R. & Quan, Z. S. (2005). Chem. Lett. 15, 5027–5029.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds