organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2H-Benzotriazol-2-yl)-6-[(di­cyclo­hexyl­amino)­meth­yl]-4-(2,4,4-tri­methyl­pentan-2-yl)phenol

aDepartment of Applied Cosmetology and Graduate Institute of Cosmetic Science, Hungkuang University, Taichung City 443, Taiwan, and bDepartment of Chemistry, Chung Yuan Christian University, Chung-Li 320, Taiwan
*Correspondence e-mail: btko@cycu.edu.tw

(Received 5 September 2012; accepted 12 September 2012; online 19 September 2012)

In the title mol­ecule, C33H48N4O, the dihedral angle between the mean planes of the benzotriazole ring system [maximun deviation = 0.038 (2) Å] and the phenol ring is 16.6 (2)°. There is an intra­molecular O—H⋯N hydrogen bond between the phenol and benzotriazole groups.

Related literature

For background information and potential applications of the title compound, see: Chmura et al. (2006[Chmura, A. J., Davidson, M. G., Jones, M. D., Lunn, M. D., Mahon, M. F., Johnson, A. F., Khunkamchoo, P., Roberts, S. L. & Wong, S. S. F. (2006). Macromolecules, 39, 7250-7257.]); Gendler et al. (2006[Gendler, S., Segal, S., Goldberg, I., Goldschmidt, Z. & Kol, M. (2006). Inorg. Chem. 45, 4783-4790.]); Li et al. (2011[Li, J.-Y., Li, C.-Y., Tai, W.-J., Lin, C.-H. & Ko, B.-T. (2011). Inorg. Chem. Commun. 14, 1140-1144.]). For a related structure: see: Li et al. (2009[Li, J.-Y., Liu, Y.-C., Lin, C.-H. & Ko, B.-T. (2009). Acta Cryst. E65, o2475.]).

[Scheme 1]

Experimental

Crystal data
  • C33H48N4O

  • Mr = 516.75

  • Monoclinic, P 21

  • a = 11.9975 (2) Å

  • b = 9.9620 (2) Å

  • c = 12.7511 (2) Å

  • β = 94.468 (1)°

  • V = 1519.37 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.52 × 0.45 × 0.23 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.981

  • 13765 measured reflections

  • 6650 independent reflections

  • 5895 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.101

  • S = 1.01

  • 6650 reflections

  • 347 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O—H0A⋯N1 0.85 1.88 2.618 (2) 145

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Over the past decade, there has been considerable attention drawn to the development of amine-phenolate titanium alkoxides, due mainly to their applications in polymer preparations of well defined polyesters such as poly(ε-caprolactone) (PCL) and poly(lactide) (PLA) (Chmura et al., 2006 & Gendler et al., 2006). Such amine-phenolate type ligands can be easily synthesized via a Mannich condensation from a secondary (or primary) amine, paraformaldehyde, and 2, 4-di-substitute-phenol under reflux conditions. For instance, our group has successfully synthesized and structural characterized amine-phenolate ligands derived from benzotriazole phenoxide (BTP) ligands, and zinc complexes bearing such ligands have been demonstrated to catalyze the ε-caprolactone and β-butyrolactone polymerizations with good catalytic activities in a controlled fashion (Li et al., 2011). However, no amino-BTP ligand with sterically bulky pendant arm has been isolated to date. Herein, we present the synthesis and crystal structure of the title compound, (I), a potential ligand for the preparations of group 4 complexes.

The molecular structure of (I) is composed of a benzotriazole-phenol moiety and the dicyclohexylamino functionalized group (Fig. 1). The dihedral angle between the mean planes of the benzotriazole unit (maximun deviation 0.038 (2)Å for C12) and the benzene ring of the phenoxy group is 16.6 (2)°. There is an intramolecular O—H···N hydrogen bond between the phenol and benzotriazole groups (Table 1). The distance of N1···H is substantially shorter than the van der Waals distance of 2.75 Å for the N and H distance. It is interesting to note that the six-membered ring (O/C1/C2/N2/N1/H0A) formed from the O—H···N hydrogen-bond is almost planar with a mean deviation of 0.041 (2) Å. The bond distances of benzotriazol-phenolate group are similar to those found in the crystal structure of 2-(2H-benzotriazol-2-yl)-6-((diethylamino)methyl)-4-methylphenol (Li et al., 2009).

Related literature top

For background information and potential applications of the title compound, see: Chmura et al. (2006); Gendler et al. (2006); Li et al. (2011). For a related structure: see: Li et al. (2009).

Experimental top

The title compound was synthesized by the following procedure (Fig. 2): To a mixture of paraformaldehyde (1.20 g, 40.0 mmol) and dicyclohexylamine (8 ml, 40.0 mmol) was added 2-(2H-benzotriazol-2-yl)-4-(2,4,4-trimethylpentan-2-yl)phenol (3.23 g, 10.0 mmol). The resulting mixture was heated at 383K for 1 day and then dried under reduced pressure to yield the oily residue. The residue was separated by chromatography over silica gel and eluted with hexane/ethyl acetate (95/5) to afford 4.38 g of the title compound in 85% yield. Colorless crystals were obtained from the saturated hexane solution.

Refinement top

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å with Uiso(H) = 1.2 Ueq(C) for benzene hydrogens; 0.96 Å with Uiso(H) = 1.5 Ueq(C) for CH3 group; 0.97 Å with Uiso(H) = 1.2 Ueq(C) for CH2 group; 0.98 Å with Uiso(H) = 1.2 Ueq(C) for CH group; O—H = 0.85 Å with Uiso(H) = 1.5 Ueq(O).

Structure description top

Over the past decade, there has been considerable attention drawn to the development of amine-phenolate titanium alkoxides, due mainly to their applications in polymer preparations of well defined polyesters such as poly(ε-caprolactone) (PCL) and poly(lactide) (PLA) (Chmura et al., 2006 & Gendler et al., 2006). Such amine-phenolate type ligands can be easily synthesized via a Mannich condensation from a secondary (or primary) amine, paraformaldehyde, and 2, 4-di-substitute-phenol under reflux conditions. For instance, our group has successfully synthesized and structural characterized amine-phenolate ligands derived from benzotriazole phenoxide (BTP) ligands, and zinc complexes bearing such ligands have been demonstrated to catalyze the ε-caprolactone and β-butyrolactone polymerizations with good catalytic activities in a controlled fashion (Li et al., 2011). However, no amino-BTP ligand with sterically bulky pendant arm has been isolated to date. Herein, we present the synthesis and crystal structure of the title compound, (I), a potential ligand for the preparations of group 4 complexes.

The molecular structure of (I) is composed of a benzotriazole-phenol moiety and the dicyclohexylamino functionalized group (Fig. 1). The dihedral angle between the mean planes of the benzotriazole unit (maximun deviation 0.038 (2)Å for C12) and the benzene ring of the phenoxy group is 16.6 (2)°. There is an intramolecular O—H···N hydrogen bond between the phenol and benzotriazole groups (Table 1). The distance of N1···H is substantially shorter than the van der Waals distance of 2.75 Å for the N and H distance. It is interesting to note that the six-membered ring (O/C1/C2/N2/N1/H0A) formed from the O—H···N hydrogen-bond is almost planar with a mean deviation of 0.041 (2) Å. The bond distances of benzotriazol-phenolate group are similar to those found in the crystal structure of 2-(2H-benzotriazol-2-yl)-6-((diethylamino)methyl)-4-methylphenol (Li et al., 2009).

For background information and potential applications of the title compound, see: Chmura et al. (2006); Gendler et al. (2006); Li et al. (2011). For a related structure: see: Li et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The synthetic procedure.
2-(2H-Benzotriazol-2-yl)-6-[(dicyclohexylamino)methyl]-4-(2,4,4- trimethylpentan-2-yl)phenol top
Crystal data top
C33H48N4OF(000) = 564
Mr = 516.75Dx = 1.130 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 9957 reflections
a = 11.9975 (2) Åθ = 2.4–28.2°
b = 9.9620 (2) ŵ = 0.07 mm1
c = 12.7511 (2) ÅT = 296 K
β = 94.468 (1)°Columnar, yellow
V = 1519.37 (5) Å30.52 × 0.45 × 0.23 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
6650 independent reflections
Radiation source: fine-focus sealed tube5895 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 8.3333 pixels mm-1θmax = 28.3°, θmin = 1.7°
φ and ω scansh = 1513
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1313
Tmin = 0.968, Tmax = 0.981l = 1711
13765 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.060P)2 + 0.080P]
where P = (Fo2 + 2Fc2)/3
6650 reflections(Δ/σ)max < 0.001
347 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = 0.15 e Å3
Crystal data top
C33H48N4OV = 1519.37 (5) Å3
Mr = 516.75Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.9975 (2) ŵ = 0.07 mm1
b = 9.9620 (2) ÅT = 296 K
c = 12.7511 (2) Å0.52 × 0.45 × 0.23 mm
β = 94.468 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
6650 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5895 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.981Rint = 0.015
13765 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.101H-atom parameters constrained
S = 1.01Δρmax = 0.15 e Å3
6650 reflectionsΔρmin = 0.15 e Å3
347 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.53426 (8)0.35702 (10)0.14005 (8)0.0496 (3)
H0A0.55880.28400.11620.074*
N10.68618 (9)0.17687 (12)0.10591 (9)0.0443 (3)
N20.76242 (9)0.26671 (11)0.14046 (8)0.0395 (2)
N30.86727 (9)0.24269 (13)0.11847 (10)0.0484 (3)
N40.45573 (9)0.71136 (12)0.29380 (9)0.0432 (3)
C10.62072 (10)0.42880 (13)0.18658 (10)0.0380 (3)
C20.73240 (11)0.38923 (13)0.19034 (10)0.0380 (3)
C30.81709 (11)0.46880 (15)0.23714 (11)0.0424 (3)
H3B0.89070.43890.23930.051*
C40.79395 (11)0.59171 (14)0.28062 (11)0.0430 (3)
C50.68100 (11)0.63126 (15)0.27571 (11)0.0438 (3)
H5A0.66330.71380.30410.053*
C60.59560 (11)0.55311 (14)0.23071 (10)0.0410 (3)
C70.74579 (12)0.08412 (14)0.05639 (11)0.0432 (3)
C80.71115 (15)0.03181 (16)0.00004 (13)0.0550 (4)
H8A0.63720.06050.00430.066*
C90.79132 (17)0.10002 (18)0.04794 (15)0.0666 (5)
H9A0.77100.17610.08710.080*
C100.90369 (18)0.05918 (18)0.04017 (16)0.0738 (5)
H10A0.95550.10970.07380.089*
C110.93929 (16)0.05155 (18)0.01481 (16)0.0672 (5)
H11A1.01400.07750.01960.081*
C120.85784 (12)0.12549 (15)0.06446 (12)0.0463 (3)
C130.88502 (12)0.68861 (16)0.32557 (12)0.0504 (3)
C140.8818 (2)0.8105 (2)0.25089 (16)0.0819 (6)
H14A0.89260.78080.18080.123*
H14B0.94020.87220.27390.123*
H14C0.81070.85450.25150.123*
C151.00213 (14)0.6252 (2)0.32593 (18)0.0790 (6)
H15A1.01710.60200.25530.118*
H15B1.00510.54580.36870.118*
H15C1.05720.68830.35400.118*
C160.86199 (12)0.74430 (14)0.43540 (12)0.0464 (3)
H16A0.91120.82090.44780.056*
H16B0.78640.77960.42860.056*
C170.87178 (14)0.66127 (16)0.53714 (13)0.0556 (4)
C180.8127 (2)0.5252 (2)0.52482 (16)0.0873 (7)
H18A0.73610.53870.49940.131*
H18B0.81570.48060.59170.131*
H18C0.84940.47100.47560.131*
C190.99370 (19)0.6403 (3)0.5801 (2)0.0942 (7)
H19A0.99560.58800.64350.141*
H19B1.02820.72580.59500.141*
H19C1.03360.59380.52870.141*
C200.81634 (19)0.7435 (2)0.62047 (15)0.0792 (6)
H20A0.73800.75300.60010.119*
H20B0.85040.83060.62650.119*
H20C0.82590.69820.68700.119*
C210.47483 (12)0.60067 (16)0.22229 (13)0.0498 (4)
H21A0.45450.62930.15060.060*
H21B0.42670.52620.23770.060*
C220.43782 (12)0.66512 (14)0.40017 (11)0.0444 (3)
H22A0.48350.58410.41180.053*
C230.48267 (14)0.76647 (17)0.48255 (12)0.0549 (4)
H23A0.44050.84930.47360.066*
H23B0.56020.78620.47200.066*
C240.47455 (17)0.7143 (2)0.59412 (13)0.0689 (5)
H24A0.52310.63700.60570.083*
H24B0.49990.78330.64410.083*
C250.35640 (17)0.6751 (2)0.61270 (15)0.0741 (5)
H25A0.30940.75440.60910.089*
H25B0.35480.63700.68260.089*
C260.31068 (16)0.57374 (19)0.53183 (16)0.0701 (5)
H26A0.35240.49060.54100.084*
H26B0.23320.55480.54290.084*
C270.31846 (12)0.62495 (17)0.42101 (13)0.0544 (4)
H27A0.26970.70210.40950.065*
H27B0.29270.55560.37150.065*
C280.38601 (11)0.82172 (14)0.24991 (11)0.0434 (3)
H28A0.36600.87620.30960.052*
C290.45310 (15)0.91286 (19)0.18167 (14)0.0638 (4)
H29A0.52010.94290.22250.077*
H29B0.47610.86190.12220.077*
C300.3865 (2)1.0342 (2)0.14153 (18)0.0806 (6)
H30A0.37211.09170.20040.097*
H30B0.43011.08510.09440.097*
C310.27623 (18)0.9943 (2)0.08383 (16)0.0752 (5)
H31A0.23341.07440.06480.090*
H31B0.29060.94770.01950.090*
C320.20860 (15)0.90448 (19)0.15035 (14)0.0635 (4)
H32A0.14130.87590.10930.076*
H32C0.18640.95460.21050.076*
C330.27546 (13)0.78174 (17)0.18845 (13)0.0530 (4)
H33B0.29150.72710.12850.064*
H33A0.23120.72820.23340.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0346 (5)0.0511 (6)0.0625 (6)0.0022 (4)0.0005 (4)0.0172 (5)
N10.0402 (6)0.0436 (6)0.0494 (6)0.0006 (5)0.0055 (5)0.0046 (5)
N20.0327 (5)0.0423 (6)0.0438 (6)0.0033 (5)0.0057 (4)0.0005 (5)
N30.0350 (6)0.0490 (7)0.0619 (7)0.0069 (5)0.0089 (5)0.0011 (6)
N40.0367 (6)0.0482 (6)0.0443 (6)0.0061 (5)0.0012 (5)0.0095 (5)
C10.0322 (6)0.0442 (7)0.0377 (6)0.0002 (5)0.0037 (5)0.0015 (6)
C20.0363 (7)0.0394 (7)0.0391 (6)0.0018 (5)0.0077 (5)0.0010 (5)
C30.0310 (7)0.0488 (7)0.0478 (7)0.0004 (6)0.0059 (5)0.0002 (6)
C40.0349 (7)0.0479 (7)0.0467 (7)0.0058 (6)0.0063 (5)0.0035 (6)
C50.0381 (7)0.0444 (7)0.0492 (7)0.0012 (6)0.0058 (6)0.0064 (6)
C60.0348 (7)0.0474 (7)0.0412 (7)0.0029 (6)0.0047 (5)0.0040 (6)
C70.0457 (8)0.0416 (7)0.0423 (7)0.0084 (6)0.0037 (5)0.0053 (6)
C80.0618 (10)0.0441 (8)0.0586 (9)0.0047 (7)0.0012 (7)0.0016 (7)
C90.0850 (13)0.0465 (8)0.0688 (10)0.0142 (8)0.0094 (9)0.0072 (8)
C100.0837 (14)0.0572 (10)0.0840 (12)0.0267 (10)0.0286 (10)0.0049 (9)
C110.0533 (9)0.0593 (10)0.0910 (13)0.0170 (8)0.0196 (9)0.0030 (9)
C120.0434 (8)0.0434 (7)0.0528 (7)0.0109 (6)0.0080 (6)0.0041 (6)
C130.0394 (7)0.0523 (8)0.0600 (8)0.0118 (6)0.0063 (6)0.0060 (7)
C140.0947 (15)0.0814 (13)0.0695 (11)0.0406 (12)0.0063 (10)0.0114 (10)
C150.0348 (8)0.0998 (15)0.1037 (15)0.0157 (9)0.0139 (9)0.0395 (13)
C160.0410 (7)0.0370 (7)0.0602 (8)0.0040 (6)0.0017 (6)0.0023 (6)
C170.0585 (9)0.0461 (8)0.0609 (9)0.0024 (7)0.0027 (7)0.0011 (7)
C180.135 (2)0.0608 (11)0.0662 (12)0.0351 (12)0.0065 (12)0.0075 (9)
C190.0854 (15)0.0958 (16)0.0957 (15)0.0206 (13)0.0294 (12)0.0083 (14)
C200.0955 (15)0.0829 (13)0.0591 (10)0.0009 (12)0.0053 (10)0.0073 (10)
C210.0364 (7)0.0554 (9)0.0570 (8)0.0070 (6)0.0011 (6)0.0177 (7)
C220.0397 (7)0.0423 (7)0.0511 (7)0.0031 (6)0.0032 (6)0.0042 (6)
C230.0589 (9)0.0560 (9)0.0491 (8)0.0063 (7)0.0001 (6)0.0058 (7)
C240.0842 (13)0.0750 (12)0.0471 (8)0.0031 (10)0.0031 (8)0.0055 (8)
C250.0908 (14)0.0731 (12)0.0619 (10)0.0196 (11)0.0284 (9)0.0063 (10)
C260.0639 (11)0.0576 (10)0.0926 (14)0.0064 (8)0.0303 (10)0.0143 (10)
C270.0420 (8)0.0504 (8)0.0717 (10)0.0007 (7)0.0100 (7)0.0044 (8)
C280.0408 (7)0.0453 (7)0.0440 (7)0.0028 (6)0.0037 (5)0.0075 (6)
C290.0575 (10)0.0680 (10)0.0654 (10)0.0119 (8)0.0015 (8)0.0047 (9)
C300.0976 (15)0.0610 (11)0.0804 (13)0.0151 (10)0.0113 (11)0.0129 (10)
C310.0965 (15)0.0628 (11)0.0628 (11)0.0076 (10)0.0159 (10)0.0063 (9)
C320.0579 (10)0.0692 (10)0.0612 (9)0.0192 (8)0.0101 (7)0.0075 (8)
C330.0438 (8)0.0550 (9)0.0590 (8)0.0043 (7)0.0032 (6)0.0037 (7)
Geometric parameters (Å, º) top
O—C11.3577 (15)C18—H18A0.9600
O—H0A0.8501C18—H18B0.9600
N1—N21.3300 (16)C18—H18C0.9600
N1—C71.3544 (18)C19—H19A0.9600
N2—N31.3317 (15)C19—H19B0.9600
N2—C21.4352 (17)C19—H19C0.9600
N3—C121.356 (2)C20—H20A0.9600
N4—C211.4603 (18)C20—H20B0.9600
N4—C221.4640 (19)C20—H20C0.9600
N4—C281.4658 (17)C21—H21A0.9700
C1—C21.3940 (18)C21—H21B0.9700
C1—C61.4027 (18)C22—C231.525 (2)
C2—C31.3865 (18)C22—C271.530 (2)
C3—C41.381 (2)C22—H22A0.9800
C3—H3B0.9300C23—C241.525 (2)
C4—C51.4080 (19)C23—H23A0.9700
C4—C131.5351 (19)C23—H23B0.9700
C5—C61.3760 (19)C24—C251.507 (3)
C5—H5A0.9300C24—H24A0.9700
C6—C211.5204 (19)C24—H24B0.9700
C7—C121.402 (2)C25—C261.515 (3)
C7—C81.406 (2)C25—H25A0.9700
C8—C91.361 (2)C25—H25B0.9700
C8—H8A0.9300C26—C271.512 (3)
C9—C101.404 (3)C26—H26A0.9700
C9—H9A0.9300C26—H26B0.9700
C10—C111.358 (3)C27—H27A0.9700
C10—H10A0.9300C27—H27B0.9700
C11—C121.412 (2)C28—C291.529 (2)
C11—H11A0.9300C28—C331.540 (2)
C13—C151.540 (2)C28—H28A0.9800
C13—C141.542 (3)C29—C301.516 (3)
C13—C161.551 (2)C29—H29A0.9700
C14—H14A0.9600C29—H29B0.9700
C14—H14B0.9600C30—C311.516 (3)
C14—H14C0.9600C30—H30A0.9700
C15—H15A0.9600C30—H30B0.9700
C15—H15B0.9600C31—C321.512 (3)
C15—H15C0.9600C31—H31A0.9700
C16—C171.535 (2)C31—H31B0.9700
C16—H16A0.9700C32—C331.521 (2)
C16—H16B0.9700C32—H32A0.9700
C17—C181.532 (3)C32—H32C0.9700
C17—C201.534 (3)C33—H33B0.9700
C17—C191.536 (3)C33—H33A0.9700
C1—O—H0A109.5H19B—C19—H19C109.5
N2—N1—C7103.83 (11)C17—C20—H20A109.5
N1—N2—N3116.48 (11)C17—C20—H20B109.5
N1—N2—C2121.96 (10)H20A—C20—H20B109.5
N3—N2—C2121.32 (11)C17—C20—H20C109.5
N2—N3—C12102.64 (12)H20A—C20—H20C109.5
C21—N4—C22112.48 (12)H20B—C20—H20C109.5
C21—N4—C28116.14 (11)N4—C21—C6112.72 (11)
C22—N4—C28117.98 (10)N4—C21—H21A109.0
O—C1—C2124.46 (11)C6—C21—H21A109.0
O—C1—C6117.36 (11)N4—C21—H21B109.0
C2—C1—C6118.15 (11)C6—C21—H21B109.0
C3—C2—C1121.56 (12)H21A—C21—H21B107.8
C3—C2—N2118.44 (11)N4—C22—C23111.13 (12)
C1—C2—N2119.93 (11)N4—C22—C27116.75 (12)
C4—C3—C2121.07 (12)C23—C22—C27109.78 (12)
C4—C3—H3B119.5N4—C22—H22A106.2
C2—C3—H3B119.5C23—C22—H22A106.2
C3—C4—C5116.94 (12)C27—C22—H22A106.2
C3—C4—C13123.22 (12)C22—C23—C24111.85 (14)
C5—C4—C13119.69 (13)C22—C23—H23A109.2
C6—C5—C4122.89 (13)C24—C23—H23A109.2
C6—C5—H5A118.6C22—C23—H23B109.2
C4—C5—H5A118.6C24—C23—H23B109.2
C5—C6—C1119.38 (12)H23A—C23—H23B107.9
C5—C6—C21121.85 (12)C25—C24—C23111.37 (15)
C1—C6—C21118.69 (12)C25—C24—H24A109.4
N1—C7—C12107.66 (12)C23—C24—H24A109.4
N1—C7—C8130.77 (14)C25—C24—H24B109.4
C12—C7—C8121.50 (14)C23—C24—H24B109.4
C9—C8—C7116.66 (17)H24A—C24—H24B108.0
C9—C8—H8A121.7C24—C25—C26111.16 (14)
C7—C8—H8A121.7C24—C25—H25A109.4
C8—C9—C10122.13 (18)C26—C25—H25A109.4
C8—C9—H9A118.9C24—C25—H25B109.4
C10—C9—H9A118.9C26—C25—H25B109.4
C11—C10—C9122.23 (16)H25A—C25—H25B108.0
C11—C10—H10A118.9C27—C26—C25111.46 (15)
C9—C10—H10A118.9C27—C26—H26A109.3
C10—C11—C12117.02 (18)C25—C26—H26A109.3
C10—C11—H11A121.5C27—C26—H26B109.3
C12—C11—H11A121.5C25—C26—H26B109.3
N3—C12—C7109.39 (12)H26A—C26—H26B108.0
N3—C12—C11130.06 (15)C26—C27—C22112.17 (14)
C7—C12—C11120.44 (15)C26—C27—H27A109.2
C4—C13—C15111.46 (13)C22—C27—H27A109.2
C4—C13—C14106.38 (13)C26—C27—H27B109.2
C15—C13—C14107.68 (15)C22—C27—H27B109.2
C4—C13—C16112.98 (11)H27A—C27—H27B107.9
C15—C13—C16111.75 (13)N4—C28—C29110.65 (12)
C14—C13—C16106.16 (14)N4—C28—C33116.33 (12)
C13—C14—H14A109.5C29—C28—C33109.55 (13)
C13—C14—H14B109.5N4—C28—H28A106.6
H14A—C14—H14B109.5C29—C28—H28A106.6
C13—C14—H14C109.5C33—C28—H28A106.6
H14A—C14—H14C109.5C30—C29—C28112.24 (16)
H14B—C14—H14C109.5C30—C29—H29A109.2
C13—C15—H15A109.5C28—C29—H29A109.2
C13—C15—H15B109.5C30—C29—H29B109.2
H15A—C15—H15B109.5C28—C29—H29B109.2
C13—C15—H15C109.5H29A—C29—H29B107.9
H15A—C15—H15C109.5C31—C30—C29111.81 (16)
H15B—C15—H15C109.5C31—C30—H30A109.3
C17—C16—C13124.26 (13)C29—C30—H30A109.3
C17—C16—H16A106.3C31—C30—H30B109.3
C13—C16—H16A106.3C29—C30—H30B109.3
C17—C16—H16B106.3H30A—C30—H30B107.9
C13—C16—H16B106.3C32—C31—C30111.67 (16)
H16A—C16—H16B106.4C32—C31—H31A109.3
C18—C17—C20108.75 (17)C30—C31—H31A109.3
C18—C17—C16112.69 (14)C32—C31—H31B109.3
C20—C17—C16106.80 (14)C30—C31—H31B109.3
C18—C17—C19109.63 (19)H31A—C31—H31B107.9
C20—C17—C19106.13 (17)C31—C32—C33111.23 (16)
C16—C17—C19112.52 (16)C31—C32—H32A109.4
C17—C18—H18A109.5C33—C32—H32A109.4
C17—C18—H18B109.5C31—C32—H32C109.4
H18A—C18—H18B109.5C33—C32—H32C109.4
C17—C18—H18C109.5H32A—C32—H32C108.0
H18A—C18—H18C109.5C32—C33—C28111.50 (14)
H18B—C18—H18C109.5C32—C33—H33B109.3
C17—C19—H19A109.5C28—C33—H33B109.3
C17—C19—H19B109.5C32—C33—H33A109.3
H19A—C19—H19B109.5C28—C33—H33A109.3
C17—C19—H19C109.5H33B—C33—H33A108.0
H19A—C19—H19C109.5
C7—N1—N2—N30.11 (15)C5—C4—C13—C15178.87 (15)
C7—N1—N2—C2174.59 (11)C3—C4—C13—C14111.33 (17)
N1—N2—N3—C120.10 (15)C5—C4—C13—C1464.02 (18)
C2—N2—N3—C12174.62 (12)C3—C4—C13—C16132.59 (14)
O—C1—C2—C3178.53 (12)C5—C4—C13—C1652.06 (18)
C6—C1—C2—C30.68 (19)C4—C13—C16—C1771.79 (18)
O—C1—C2—N21.67 (19)C15—C13—C16—C1754.9 (2)
C6—C1—C2—N2176.18 (12)C14—C13—C16—C17171.99 (15)
N1—N2—C2—C3171.18 (11)C13—C16—C17—C1847.7 (2)
N3—N2—C2—C314.61 (18)C13—C16—C17—C20167.09 (15)
N1—N2—C2—C111.86 (18)C13—C16—C17—C1976.8 (2)
N3—N2—C2—C1162.35 (12)C22—N4—C21—C683.04 (16)
C1—C2—C3—C40.9 (2)C28—N4—C21—C6136.72 (13)
N2—C2—C3—C4175.96 (12)C5—C6—C21—N418.4 (2)
C2—C3—C4—C50.4 (2)C1—C6—C21—N4164.79 (12)
C2—C3—C4—C13175.04 (13)C21—N4—C22—C23147.68 (12)
C3—C4—C5—C60.3 (2)C28—N4—C22—C2372.88 (15)
C13—C4—C5—C6175.97 (13)C21—N4—C22—C2785.37 (15)
C4—C5—C6—C10.6 (2)C28—N4—C22—C2754.08 (17)
C4—C5—C6—C21177.38 (14)N4—C22—C23—C24174.72 (13)
O—C1—C6—C5177.94 (12)C27—C22—C23—C2454.60 (18)
C2—C1—C6—C50.06 (19)C22—C23—C24—C2555.9 (2)
O—C1—C6—C211.03 (19)C23—C24—C25—C2655.4 (2)
C2—C1—C6—C21176.97 (13)C24—C25—C26—C2755.3 (2)
N2—N1—C7—C120.07 (14)C25—C26—C27—C2255.49 (19)
N2—N1—C7—C8176.86 (14)N4—C22—C27—C26177.72 (13)
N1—C7—C8—C9175.11 (15)C23—C22—C27—C2654.66 (18)
C12—C7—C8—C91.3 (2)C21—N4—C28—C2977.80 (15)
C7—C8—C9—C101.3 (3)C22—N4—C28—C29144.21 (13)
C8—C9—C10—C110.6 (3)C21—N4—C28—C3348.05 (17)
C9—C10—C11—C120.2 (3)C22—N4—C28—C3389.95 (15)
N2—N3—C12—C70.05 (14)N4—C28—C29—C30175.64 (13)
N2—N3—C12—C11176.20 (17)C33—C28—C29—C3054.80 (18)
N1—C7—C12—N30.01 (16)C28—C29—C30—C3154.6 (2)
C8—C7—C12—N3177.16 (13)C29—C30—C31—C3254.1 (2)
N1—C7—C12—C11176.58 (15)C30—C31—C32—C3355.1 (2)
C8—C7—C12—C110.6 (2)C31—C32—C33—C2856.48 (19)
C10—C11—C12—N3175.62 (16)N4—C28—C33—C32177.89 (13)
C10—C11—C12—C70.2 (3)C29—C28—C33—C3255.72 (18)
C3—C4—C13—C155.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O—H0A···N10.851.882.618 (2)145

Experimental details

Crystal data
Chemical formulaC33H48N4O
Mr516.75
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)11.9975 (2), 9.9620 (2), 12.7511 (2)
β (°) 94.468 (1)
V3)1519.37 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.52 × 0.45 × 0.23
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.968, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
13765, 6650, 5895
Rint0.015
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.101, 1.01
No. of reflections6650
No. of parameters347
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.15

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O—H0A···N10.851.8772.618 (2)144.9
 

Acknowledgements

We gratefully acknowledge the financial support in part from the National Science Council, Taiwan (NSC99–2119-M-241–001-MY2 and NSC101–2113-M-033–008-MY3).

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChmura, A. J., Davidson, M. G., Jones, M. D., Lunn, M. D., Mahon, M. F., Johnson, A. F., Khunkamchoo, P., Roberts, S. L. & Wong, S. S. F. (2006). Macromolecules, 39, 7250–7257.  Web of Science CSD CrossRef CAS Google Scholar
First citationGendler, S., Segal, S., Goldberg, I., Goldschmidt, Z. & Kol, M. (2006). Inorg. Chem. 45, 4783–4790.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, J.-Y., Li, C.-Y., Tai, W.-J., Lin, C.-H. & Ko, B.-T. (2011). Inorg. Chem. Commun. 14, 1140–1144.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, J.-Y., Liu, Y.-C., Lin, C.-H. & Ko, B.-T. (2009). Acta Cryst. E65, o2475.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds