organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-methyl-1H-benzimidazol-3-ium) naphthalene-1,5-di­sulfonate

aTianmu College of ZheJiang A & F University, Lin'An 311300, People's Republic of China, and bFaculty of Science, ZheJiang A & F University, Lin'An 311300, People's Republic of China
*Correspondence e-mail: shouwenjin@yahoo.cn

(Received 6 September 2012; accepted 15 September 2012; online 22 September 2012)

The asymmetric unit of the title compound, 2C8H9N2+·C10H6O6S22−, contains a 2-methyl­benzimidazolium cation and one half of a naphthalene-1,5-disulfonate anion. The formula unit is generated by an inversion center. In the crystal, N—H⋯O hydrogen bonds link the components into chains along [001]. In addition, weak C—H⋯O hydrogen bonds and weak C—H⋯π inter­actions are observed. The methyl H atoms were refined as disordered over two sets of sites with equal occupancy.

Related literature

For general background to organic acids, see: Jin et al. (2012[Jin, S. W., Wang, D. Q., Huang, Y. F., Fang, H., Wang, T. Y., Fu, P. X. & Ding, L. L. (2012). J. Mol. Struct. 1017, 51-59.]); Elder et al. (2010[Elder, D. P., Delaney, E., Teasdale, A., Eyley, S., Reif, V. D., Jacq, K., Facchine, K. L., Oestrich, R. S., Sandra, P. & David, F. (2010). J. Pharm. Sci. 99, 2948-2961.]); Voogt & Blanch (2005[Voogt, J. N. & Blanch, H. W. (2005). Cryst. Growth Des. 5, 1135-1144.]); Wang et al. (2005[Wang, L., Yu, X. L., Cai, J. W. & Huang, J. W. (2005). J. Chem. Crystallogr. 35, 481-486.]); Zhang et al. (2005[Zhang, X. L., Ye, B. H. & Chen, X. M. (2005). Cryst. Growth Des. 5, 1609-1616.]).

[Scheme 1]

Experimental

Crystal data
  • 2C8H9N2+·C10H6O6S22−

  • Mr = 552.61

  • Triclinic, [P \overline 1]

  • a = 8.0360 (7) Å

  • b = 9.3969 (8) Å

  • c = 9.5101 (9) Å

  • α = 105.789 (1)°

  • β = 103.303 (1)°

  • γ = 106.497 (2)°

  • V = 624.75 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 298 K

  • 0.45 × 0.41 × 0.19 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.888, Tmax = 0.951

  • 3137 measured reflections

  • 2169 independent reflections

  • 1694 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.119

  • S = 1.05

  • 2169 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C9–C11/C11i/C12i/C13i and C11–C13/C9i/C10i/C11i rings, respectively [symmetry code: (i) −x, −y + 1, −z + 1].

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2ii 0.86 1.86 2.704 (3) 165
N2—H2⋯O1 0.86 1.88 2.684 (3) 155
C8—H8E⋯O3iii 0.96 2.32 3.230 (4) 158
C4—H4⋯Cg1iv 0.93 2.61 3.468 (3) 154
C4—H4⋯Cg2v 0.93 2.61 3.468 (3) 154
Symmetry codes: (ii) x, y, z-1; (iii) -x+1, -y+1, -z+1; (iv) -x, -y, -z; (v) x, y-1, z-1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Sulfonic acids are important compounds, which have been widely used in various fields as coordination chemistry (Wang et al., 2005), pharmaceutical chemistry (Elder et al., 2010), and supramolecular chemistry (Voogt & Blanch, 2005). Recently the main focus for sulfonic acids has been in crystal engineering via hydrogen bonded assembly of sulfonic acid and organic base (Zhang et al., 2005). As an extension of our study concentrating on hydrogen bonded assemblies of organic acids and organic bases (Jin et al., 2012) herein we report the crystal structure of the title compound (I).

The molecular structure of (I) is shown in Fig. 1. The anion lies across an inversion center. In the crystal, N—H···O hydrogen bonds link the components into chains along [001] (Fig. 2). In addition, weak C—H···O hydrogen bonds and weak C—H···π interactions are observed.

Related literature top

For general background to organic [sulfonic?] acids, see: Jin et al. (2012); Elder et al. (2010); Voogt & Blanch (2005); Wang et al. (2005); Zhang et al. (2005).

Experimental top

2-Methyl-1H-benzimidazole (24.0 mg, 0.20 mmol) was dissolved in 10 ml of methanol, and naphthalene-1,5-disulfonic acid tetrahydrate (36 mg, 0.1 mmol) was added. The solution was stirred for 1 h, and then filtered into a test tube. The solution was left standing at room temperature for about one week whereupon colorless block crystals were obtained.

Refinement top

All H atoms were positioned geometrically with C—H = 0.93–0.96 Å, N—H = 0.86 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N). The methyl H atoms were refined as disordered over six sites with equal occupancy.

Structure description top

Sulfonic acids are important compounds, which have been widely used in various fields as coordination chemistry (Wang et al., 2005), pharmaceutical chemistry (Elder et al., 2010), and supramolecular chemistry (Voogt & Blanch, 2005). Recently the main focus for sulfonic acids has been in crystal engineering via hydrogen bonded assembly of sulfonic acid and organic base (Zhang et al., 2005). As an extension of our study concentrating on hydrogen bonded assemblies of organic acids and organic bases (Jin et al., 2012) herein we report the crystal structure of the title compound (I).

The molecular structure of (I) is shown in Fig. 1. The anion lies across an inversion center. In the crystal, N—H···O hydrogen bonds link the components into chains along [001] (Fig. 2). In addition, weak C—H···O hydrogen bonds and weak C—H···π interactions are observed.

For general background to organic [sulfonic?] acids, see: Jin et al. (2012); Elder et al. (2010); Voogt & Blanch (2005); Wang et al. (2005); Zhang et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Only the symmetry unique cation is shown and in the anion unlabeled atoms are related by the symmetry operator (-x, -y + 1, -z + 1).
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines. H atoms not involved in the hydrogen bonds have been omitted for clarity.
Bis(2-methyl-1H-benzimidazol-3-ium) naphthalene-1,5-disulfonate top
Crystal data top
2C8H9N2+·C10H6O6S22Z = 1
Mr = 552.61F(000) = 288
Triclinic, P1Dx = 1.469 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0360 (7) ÅCell parameters from 1471 reflections
b = 9.3969 (8) Åθ = 2.4–28.0°
c = 9.5101 (9) ŵ = 0.26 mm1
α = 105.789 (1)°T = 298 K
β = 103.303 (1)°Block, colourless
γ = 106.497 (2)°0.45 × 0.41 × 0.19 mm
V = 624.75 (10) Å3
Data collection top
Bruker SMART CCD
diffractometer
2169 independent reflections
Radiation source: fine-focus sealed tube1694 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 99
Tmin = 0.888, Tmax = 0.951k = 811
3137 measured reflectionsl = 1011
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.1477P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2169 reflectionsΔρmax = 0.28 e Å3
173 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.043 (6)
Crystal data top
2C8H9N2+·C10H6O6S22γ = 106.497 (2)°
Mr = 552.61V = 624.75 (10) Å3
Triclinic, P1Z = 1
a = 8.0360 (7) ÅMo Kα radiation
b = 9.3969 (8) ŵ = 0.26 mm1
c = 9.5101 (9) ÅT = 298 K
α = 105.789 (1)°0.45 × 0.41 × 0.19 mm
β = 103.303 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2169 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1694 reflections with I > 2σ(I)
Tmin = 0.888, Tmax = 0.951Rint = 0.030
3137 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.05Δρmax = 0.28 e Å3
2169 reflectionsΔρmin = 0.37 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.2089 (3)0.0991 (2)0.0901 (2)0.0390 (5)
H10.18380.10270.18170.047*
N20.2562 (3)0.1632 (2)0.1561 (2)0.0404 (5)
H20.26640.21480.24950.048*
O10.3057 (3)0.2484 (2)0.4604 (2)0.0530 (6)
O20.1946 (3)0.1418 (2)0.6381 (2)0.0447 (5)
O30.4010 (3)0.4162 (2)0.7288 (2)0.0524 (5)
S10.25771 (8)0.28337 (7)0.60043 (6)0.0330 (2)
C10.2166 (4)0.2092 (3)0.0356 (3)0.0383 (6)
C20.2784 (3)0.0185 (3)0.1067 (3)0.0354 (6)
C30.2475 (3)0.0230 (3)0.0511 (3)0.0354 (6)
C40.2607 (4)0.1614 (3)0.1376 (3)0.0436 (7)
H40.23790.19020.24380.052*
C50.3095 (4)0.2543 (3)0.0584 (3)0.0495 (7)
H50.31950.34840.11250.059*
C60.3443 (4)0.2105 (3)0.1010 (3)0.0497 (7)
H60.37960.27510.15060.060*
C70.3281 (4)0.0747 (3)0.1870 (3)0.0455 (7)
H70.34930.04670.29290.055*
C80.1861 (4)0.3582 (3)0.0410 (4)0.0552 (8)
H8A0.19930.41760.14520.083*0.50
H8B0.06430.33320.02630.083*0.50
H8C0.27490.42060.00770.083*0.50
H8D0.15970.36330.06080.083*0.50
H8E0.29470.44770.11060.083*0.50
H8F0.08410.36030.07670.083*0.50
C90.0943 (3)0.2568 (3)0.5733 (3)0.0356 (6)
H90.10130.16810.60090.043*
C100.0652 (3)0.3429 (3)0.5591 (2)0.0284 (5)
C110.0793 (3)0.4782 (3)0.5137 (2)0.0275 (5)
C120.2405 (3)0.5702 (3)0.4963 (3)0.0336 (6)
H120.34380.54270.51430.040*
C130.2477 (3)0.6986 (3)0.4535 (3)0.0388 (6)
H130.35520.75700.44210.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0449 (13)0.0439 (13)0.0288 (11)0.0159 (11)0.0095 (10)0.0171 (10)
N20.0476 (14)0.0419 (13)0.0294 (11)0.0160 (11)0.0130 (10)0.0101 (10)
O10.0700 (14)0.0829 (15)0.0407 (11)0.0547 (12)0.0338 (10)0.0335 (10)
O20.0573 (12)0.0481 (11)0.0447 (10)0.0312 (10)0.0162 (9)0.0290 (9)
O30.0407 (11)0.0512 (12)0.0517 (12)0.0217 (10)0.0051 (9)0.0104 (9)
S10.0378 (4)0.0441 (4)0.0266 (3)0.0251 (3)0.0108 (3)0.0166 (3)
C10.0355 (14)0.0395 (15)0.0375 (14)0.0113 (12)0.0089 (11)0.0155 (12)
C20.0355 (14)0.0385 (14)0.0301 (13)0.0099 (11)0.0107 (11)0.0136 (11)
C30.0368 (14)0.0395 (14)0.0319 (13)0.0130 (12)0.0118 (11)0.0166 (11)
C40.0476 (17)0.0448 (16)0.0327 (13)0.0148 (13)0.0114 (12)0.0095 (12)
C50.0500 (17)0.0393 (16)0.0580 (18)0.0182 (14)0.0170 (15)0.0149 (14)
C60.0512 (18)0.0452 (17)0.0570 (18)0.0174 (14)0.0127 (14)0.0298 (15)
C70.0518 (17)0.0488 (17)0.0369 (14)0.0144 (14)0.0125 (13)0.0235 (13)
C80.0558 (19)0.0448 (17)0.0609 (19)0.0220 (15)0.0107 (16)0.0169 (15)
C90.0424 (15)0.0397 (14)0.0350 (13)0.0185 (12)0.0167 (12)0.0221 (12)
C100.0315 (13)0.0366 (13)0.0225 (11)0.0181 (11)0.0092 (10)0.0126 (10)
C110.0318 (13)0.0336 (13)0.0214 (11)0.0162 (11)0.0100 (10)0.0112 (10)
C120.0286 (13)0.0467 (15)0.0353 (13)0.0211 (12)0.0137 (11)0.0194 (12)
C130.0329 (14)0.0477 (15)0.0463 (15)0.0160 (12)0.0194 (12)0.0261 (13)
Geometric parameters (Å, º) top
N1—C11.327 (3)C6—H60.9300
N1—C31.390 (3)C7—H70.9300
N1—H10.8600C8—H8A0.9600
N2—C11.335 (3)C8—H8B0.9600
N2—C21.389 (3)C8—H8C0.9600
N2—H20.8600C8—H8D0.9600
O1—S11.4491 (17)C8—H8E0.9600
O2—S11.4543 (17)C8—H8F0.9600
O3—S11.4427 (19)C9—C101.366 (3)
S1—C101.786 (2)C9—C13i1.403 (4)
C1—C81.478 (4)C9—H90.9300
C2—C31.386 (3)C10—C111.433 (3)
C2—C71.390 (4)C11—C121.413 (3)
C3—C41.384 (3)C11—C11i1.436 (4)
C4—C51.378 (4)C12—C131.365 (3)
C4—H40.9300C12—H120.9300
C5—C61.395 (4)C13—C9i1.403 (4)
C5—H50.9300C13—H130.9300
C6—C71.375 (4)
C1—N1—C3109.56 (19)H8A—C8—H8B109.5
C1—N1—H1125.2C1—C8—H8C109.5
C3—N1—H1125.2H8A—C8—H8C109.5
C1—N2—C2109.1 (2)H8B—C8—H8C109.5
C1—N2—H2125.5C1—C8—H8D109.5
C2—N2—H2125.5H8A—C8—H8D141.1
O3—S1—O1112.92 (13)H8B—C8—H8D56.3
O3—S1—O2113.16 (11)H8C—C8—H8D56.3
O1—S1—O2111.54 (11)C1—C8—H8E109.5
O3—S1—C10106.00 (11)H8A—C8—H8E56.3
O1—S1—C10106.50 (10)H8B—C8—H8E141.1
O2—S1—C10106.07 (11)H8C—C8—H8E56.3
N1—C1—N2108.8 (2)H8D—C8—H8E109.5
N1—C1—C8125.5 (2)C1—C8—H8F109.5
N2—C1—C8125.7 (2)H8A—C8—H8F56.3
C3—C2—N2106.4 (2)H8B—C8—H8F56.3
C3—C2—C7121.8 (2)H8C—C8—H8F141.1
N2—C2—C7131.7 (2)H8D—C8—H8F109.5
C4—C3—C2121.7 (2)H8E—C8—H8F109.5
C4—C3—N1132.2 (2)C10—C9—C13i120.3 (2)
C2—C3—N1106.1 (2)C10—C9—H9119.8
C5—C4—C3116.6 (2)C13i—C9—H9119.8
C5—C4—H4121.7C9—C10—C11121.2 (2)
C3—C4—H4121.7C9—C10—S1118.13 (18)
C4—C5—C6121.5 (3)C11—C10—S1120.63 (17)
C4—C5—H5119.2C12—C11—C10123.4 (2)
C6—C5—H5119.2C12—C11—C11i118.9 (2)
C7—C6—C5122.0 (3)C10—C11—C11i117.7 (3)
C7—C6—H6119.0C13—C12—C11121.3 (2)
C5—C6—H6119.0C13—C12—H12119.4
C6—C7—C2116.2 (2)C11—C12—H12119.4
C6—C7—H7121.9C12—C13—C9i120.5 (2)
C2—C7—H7121.9C12—C13—H13119.7
C1—C8—H8A109.5C9i—C13—H13119.7
C1—C8—H8B109.5
C3—N1—C1—N21.0 (3)C3—C2—C7—C60.2 (4)
C3—N1—C1—C8179.1 (3)N2—C2—C7—C6177.4 (3)
C2—N2—C1—N11.1 (3)C13i—C9—C10—C111.3 (4)
C2—N2—C1—C8178.9 (3)C13i—C9—C10—S1178.19 (18)
C1—N2—C2—C30.9 (3)O3—S1—C10—C9118.6 (2)
C1—N2—C2—C7176.6 (3)O1—S1—C10—C9120.9 (2)
N2—C2—C3—C4179.3 (2)O2—S1—C10—C92.0 (2)
C7—C2—C3—C41.5 (4)O3—S1—C10—C1160.9 (2)
N2—C2—C3—N10.3 (3)O1—S1—C10—C1159.6 (2)
C7—C2—C3—N1177.5 (2)O2—S1—C10—C11178.54 (17)
C1—N1—C3—C4178.4 (3)C9—C10—C11—C12179.5 (2)
C1—N1—C3—C20.4 (3)S1—C10—C11—C121.1 (3)
C2—C3—C4—C51.2 (4)C9—C10—C11—C11i1.1 (4)
N1—C3—C4—C5177.5 (3)S1—C10—C11—C11i178.4 (2)
C3—C4—C5—C60.2 (4)C10—C11—C12—C13179.7 (2)
C4—C5—C6—C71.4 (5)C11i—C11—C12—C130.2 (4)
C5—C6—C7—C21.2 (4)C11—C12—C13—C9i0.4 (4)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C9–C11/C11i/C12i/C13i and C11–C13/C9i/C10i/C11i rings, respectively [symmetry code: (i) -x, -y + 1, -z + 1]
D—H···AD—HH···AD···AD—H···A
N1—H1···O2ii0.861.862.704 (3)165
N2—H2···O10.861.882.684 (3)155
C8—H8E···O3iii0.962.323.230 (4)158
C4—H4···Cg1iv0.932.613.468 (3)154
C4—H4···Cg2v0.932.613.468 (3)154
Symmetry codes: (ii) x, y, z1; (iii) x+1, y+1, z+1; (iv) x, y, z; (v) x, y1, z1.

Experimental details

Crystal data
Chemical formula2C8H9N2+·C10H6O6S22
Mr552.61
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.0360 (7), 9.3969 (8), 9.5101 (9)
α, β, γ (°)105.789 (1), 103.303 (1), 106.497 (2)
V3)624.75 (10)
Z1
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.45 × 0.41 × 0.19
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.888, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
3137, 2169, 1694
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.119, 1.05
No. of reflections2169
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.37

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C9–C11/C11i/C12i/C13i and C11–C13/C9i/C10i/C11i rings, respectively [symmetry code: (i) -x, -y + 1, -z + 1]
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.862.704 (3)165
N2—H2···O10.861.882.684 (3)155
C8—H8E···O3ii0.962.323.230 (4)158
C4—H4···Cg1iii0.932.613.468 (3)154
C4—H4···Cg2iv0.932.613.468 (3)154
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+1; (iii) x, y, z; (iv) x, y1, z1.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Education Office Foundation of Zhejiang Province (project No. Y201017321) and the Innovation Project of Zhejiang A & F University.

References

First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElder, D. P., Delaney, E., Teasdale, A., Eyley, S., Reif, V. D., Jacq, K., Facchine, K. L., Oestrich, R. S., Sandra, P. & David, F. (2010). J. Pharm. Sci. 99, 2948–2961.  Web of Science CAS PubMed Google Scholar
First citationJin, S. W., Wang, D. Q., Huang, Y. F., Fang, H., Wang, T. Y., Fu, P. X. & Ding, L. L. (2012). J. Mol. Struct. 1017, 51–59.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVoogt, J. N. & Blanch, H. W. (2005). Cryst. Growth Des. 5, 1135–1144.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, L., Yu, X. L., Cai, J. W. & Huang, J. W. (2005). J. Chem. Crystallogr. 35, 481–486.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X. L., Ye, B. H. & Chen, X. M. (2005). Cryst. Growth Des. 5, 1609–1616.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds