organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-(3,4-di­methyl-5,5-dioxo-1H,4H-benzo[e]pyrazolo­[4,3-c][1,2]thia­zin-1-yl)acetate

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, bDepartment of Chemistry, Government College University, Faisalabad 38000, Pakistan, cApplied Chemistry Research Center, PCSIR Laboratories Complex, Lahore 54600, Pakistan, and dDepartment of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: matloob_123@yahoo.com

(Received 13 September 2012; accepted 19 September 2012; online 26 September 2012)

In the title mol­ecule, C15H17N3O4S, the heterocyclic thia­zine ring adopts a twist-boat conformation, which differs from that in related compounds, with adjacent S and C atoms displaced by 0.981 (4) and 0.413 (5) Å, respectively, on the same side of the mean plane formed by the remaining ring atoms. The mean plane of the benzene ring makes a dihedral angle of 23.43 (14)° with the mean plane of the pyrazole ring. In the crystal, mol­ecules are connected by weak C—H⋯O hydrogen bonds to form a three-dimensional network. The H atoms of the methyl group attached to the pyrazole ring were refined over six sites with equal occupancies.

Related literature

For background literature and crystal structures of related pyrazolo­benzothia­zine derivatives, see: Aslam et al. (2012[Aslam, S., Siddiqui, H. L., Ahmad, M., Zia-ur-Rehman, M. & Parvez, M. (2012). Acta Cryst. E68, o1970-o1971.]); Ahmad et al. (2012[Ahmad, M., Siddiqui, H. L., Ahmad, N., Aslam, S. & Parvez, M. (2012). Acta Cryst. E68, o2470-o2471.]). For the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17N3O4S

  • Mr = 335.38

  • Monoclinic, P 21 /c

  • a = 8.3027 (2) Å

  • b = 8.5915 (3) Å

  • c = 22.3476 (7) Å

  • β = 90.674 (2)°

  • V = 1594.00 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 173 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.956, Tmax = 0.965

  • 15091 measured reflections

  • 3576 independent reflections

  • 2820 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.127

  • S = 1.10

  • 3576 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O2i 0.99 2.43 3.338 (3) 152
C12—H12B⋯O1ii 0.99 2.29 3.255 (3) 165
C4—H4⋯O2iii 0.95 2.58 3.290 (3) 132
C10—H10C⋯O4iv 0.98 2.51 3.369 (4) 147
C14—H14B⋯O1v 0.99 2.55 3.424 (4) 147
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y-1, z; (iii) x-1, y, z; (iv) -x+1, -y, -z+1; (v) x-1, y-1, z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Continuing our research on hybrid pyrazolobenzothiazine derivatives based on pyrazole and benzothiazine nuclei which are well known for their wide range of biological activities (Ahmad et al., 2012) we have synthsized the title compound which is a novel product wherein the ethylecatate has been substituted at N1 of the pyrazole ring instead of the usual N2 position. A search of the Cambridge Structural Database (Allen, 2002; CSD Version 5.33) revealed eleven structures with substituents at the N2 position and only one structure with substituents at both N1 and N2 positions and no pyrazolobenzothiazine derivative with a substituent at the N1 position. We report the synthesis and crystal structure of the title compound in this article.

The bond distances and angles in the title compound (Fig. 1) agree very well with those reported in closely related structures (Aslam et al., 2012; Ahmad et al., 2012). The heterocyclic thiazine ring adopts a twist-boat conformation with atoms S1 and C1 displaced by 0.981 (4) and 0.413 (5) Å, respectively, on the same side from the mean plane formed by the remaining ring atoms (N1/C6–C8 atoms). The mean-plane of the benzene ring C1–C6 makes a dihedral angle 23.43 (14)° with the mean-plane of the pyrazole ring (N2/N3/C7/C8/C9). The acetate group (O3/O4/C12/C13/C14) is essentially planar (rmsd 0.031 Å) and its mean-plane is oriented at 82.4 (2)° with respect to the pyrazole ring.

The crystal structure is stabilized by weak intermolecular C—H···O hydrogen bonds resulting in a three-dimensional network (Fig. 2 and Table 1).

Related literature top

For background literature and crystal structures of related pyrazolobenzothiazine derivatives, see: Aslam et al. (2012); Ahmad et al. (2012). For the Cambridge Structural Database, see: Allen (2002).

Experimental top

A mixture of 3,4-dimethyl-2,4-dihydropyrazolo[4,3-c][1,2]benzothiazine 5,5-dioxide (5.0 g, 0.020 moles), anhydrous potassium carbonate (3.31 g, 0.024 moles), ethyl chloroacetate (2.94 g, 0.024 moles) and acetonitrile (30 ml) was refluxed for 10 h followed by the removal of solvent under vacuum. The residue obtained was washed with cold water to get the title compound as a white crystalline product. Transparent crystals suitable for X-ray crystallographic studies were grown from a CHCl3 solution at room temperature by slow evaporation.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Structure description top

Continuing our research on hybrid pyrazolobenzothiazine derivatives based on pyrazole and benzothiazine nuclei which are well known for their wide range of biological activities (Ahmad et al., 2012) we have synthsized the title compound which is a novel product wherein the ethylecatate has been substituted at N1 of the pyrazole ring instead of the usual N2 position. A search of the Cambridge Structural Database (Allen, 2002; CSD Version 5.33) revealed eleven structures with substituents at the N2 position and only one structure with substituents at both N1 and N2 positions and no pyrazolobenzothiazine derivative with a substituent at the N1 position. We report the synthesis and crystal structure of the title compound in this article.

The bond distances and angles in the title compound (Fig. 1) agree very well with those reported in closely related structures (Aslam et al., 2012; Ahmad et al., 2012). The heterocyclic thiazine ring adopts a twist-boat conformation with atoms S1 and C1 displaced by 0.981 (4) and 0.413 (5) Å, respectively, on the same side from the mean plane formed by the remaining ring atoms (N1/C6–C8 atoms). The mean-plane of the benzene ring C1–C6 makes a dihedral angle 23.43 (14)° with the mean-plane of the pyrazole ring (N2/N3/C7/C8/C9). The acetate group (O3/O4/C12/C13/C14) is essentially planar (rmsd 0.031 Å) and its mean-plane is oriented at 82.4 (2)° with respect to the pyrazole ring.

The crystal structure is stabilized by weak intermolecular C—H···O hydrogen bonds resulting in a three-dimensional network (Fig. 2 and Table 1).

For background literature and crystal structures of related pyrazolobenzothiazine derivatives, see: Aslam et al. (2012); Ahmad et al. (2012). For the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are presented as small spheres of an arbitrary radius.
[Figure 2] Fig. 2. The weak hydrogen bonds (dashed lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen bonds are omitted for clarity.
Ethyl 2-(3,4-dimethyl-5,5-dioxo-1H,4H- benzo[e]pyrazolo[4,3-c][1,2]thiazin-1-yl)acetate top
Crystal data top
C15H17N3O4SF(000) = 704
Mr = 335.38Dx = 1.398 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3460 reflections
a = 8.3027 (2) Åθ = 1.0–27.5°
b = 8.5915 (3) ŵ = 0.23 mm1
c = 22.3476 (7) ÅT = 173 K
β = 90.674 (2)°Block, colourless
V = 1594.00 (8) Å30.20 × 0.18 × 0.16 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3576 independent reflections
Radiation source: fine-focus sealed tube2820 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω and φ scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1010
Tmin = 0.956, Tmax = 0.965k = 1111
15091 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0235P)2 + 2.7353P]
where P = (Fo2 + 2Fc2)/3
3576 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C15H17N3O4SV = 1594.00 (8) Å3
Mr = 335.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3027 (2) ŵ = 0.23 mm1
b = 8.5915 (3) ÅT = 173 K
c = 22.3476 (7) Å0.20 × 0.18 × 0.16 mm
β = 90.674 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3576 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
2820 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.965Rint = 0.039
15091 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.10Δρmax = 0.33 e Å3
3576 reflectionsΔρmin = 0.45 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.60768 (7)0.28409 (8)0.67513 (3)0.02293 (16)
O10.6208 (2)0.4498 (2)0.67696 (8)0.0301 (4)
O20.7203 (2)0.1922 (2)0.70884 (8)0.0295 (4)
O30.1309 (3)0.4262 (3)0.64119 (9)0.0435 (6)
O40.1716 (3)0.2669 (3)0.56356 (10)0.0537 (7)
N10.6194 (2)0.2279 (3)0.60491 (9)0.0233 (5)
N20.4504 (3)0.1506 (3)0.61898 (9)0.0251 (5)
N30.5677 (3)0.1867 (3)0.57904 (10)0.0296 (5)
C10.4117 (3)0.2290 (3)0.69663 (11)0.0231 (5)
C20.3265 (3)0.3239 (3)0.73520 (12)0.0289 (6)
H20.37080.41940.74900.035*
C30.1753 (3)0.2761 (4)0.75310 (13)0.0365 (7)
H30.11660.33780.78060.044*
C40.1088 (3)0.1396 (4)0.73138 (13)0.0352 (7)
H40.00460.10880.74380.042*
C50.1925 (3)0.0476 (3)0.69173 (12)0.0300 (6)
H50.14380.04400.67600.036*
C60.3483 (3)0.0884 (3)0.67452 (11)0.0237 (5)
C70.4492 (3)0.0034 (3)0.63269 (11)0.0230 (5)
C80.5724 (3)0.0676 (3)0.59991 (11)0.0231 (5)
C90.6426 (3)0.0531 (3)0.56744 (11)0.0273 (6)
C100.7810 (4)0.0464 (4)0.52519 (14)0.0400 (7)
H10A0.80200.15070.50940.060*0.50
H10B0.87710.00830.54650.060*0.50
H10C0.75470.02430.49210.060*0.50
H10D0.82050.06090.52260.060*0.50
H10E0.74540.08150.48550.060*0.50
H10F0.86790.11410.53990.060*0.50
C110.5531 (4)0.3344 (3)0.55871 (12)0.0354 (7)
H11A0.58310.29700.51890.053*
H11B0.59680.43910.56500.053*
H11C0.43550.33750.56160.053*
C120.3618 (3)0.2766 (3)0.64581 (11)0.0268 (6)
H12A0.33180.24650.68700.032*
H12B0.43250.36920.64870.032*
C130.2108 (3)0.3195 (3)0.61103 (12)0.0289 (6)
C140.0120 (4)0.4933 (5)0.61234 (15)0.0498 (9)
H14A0.06810.41250.58840.060*
H14B0.08710.53110.64320.060*
C150.0347 (4)0.6243 (4)0.57295 (16)0.0516 (9)
H15A0.06220.67120.55520.077*
H15B0.09300.70270.59660.077*
H15C0.10420.58550.54110.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0218 (3)0.0242 (3)0.0228 (3)0.0016 (3)0.0000 (2)0.0012 (3)
O10.0321 (10)0.0244 (10)0.0339 (10)0.0043 (8)0.0013 (8)0.0057 (8)
O20.0242 (9)0.0367 (11)0.0276 (9)0.0017 (8)0.0034 (7)0.0017 (8)
O30.0440 (12)0.0537 (15)0.0330 (11)0.0269 (11)0.0023 (9)0.0034 (10)
O40.0597 (15)0.0542 (16)0.0466 (14)0.0224 (12)0.0224 (12)0.0196 (12)
N10.0263 (11)0.0227 (11)0.0210 (10)0.0037 (9)0.0032 (8)0.0002 (9)
N20.0313 (11)0.0237 (12)0.0204 (10)0.0042 (9)0.0045 (9)0.0025 (9)
N30.0361 (12)0.0298 (13)0.0231 (11)0.0019 (10)0.0093 (9)0.0039 (10)
C10.0232 (12)0.0264 (13)0.0198 (12)0.0043 (10)0.0011 (9)0.0015 (10)
C20.0317 (14)0.0263 (15)0.0287 (14)0.0032 (11)0.0035 (11)0.0015 (11)
C30.0338 (15)0.0379 (17)0.0381 (16)0.0142 (13)0.0132 (12)0.0002 (14)
C40.0221 (13)0.0428 (18)0.0408 (16)0.0041 (12)0.0078 (11)0.0069 (14)
C50.0249 (13)0.0311 (15)0.0342 (15)0.0011 (12)0.0007 (11)0.0007 (12)
C60.0220 (12)0.0270 (14)0.0219 (12)0.0015 (10)0.0008 (10)0.0019 (10)
C70.0234 (12)0.0256 (13)0.0200 (12)0.0018 (10)0.0012 (10)0.0006 (10)
C80.0249 (12)0.0238 (13)0.0206 (12)0.0034 (10)0.0010 (10)0.0000 (10)
C90.0327 (14)0.0275 (14)0.0217 (13)0.0016 (12)0.0066 (11)0.0007 (11)
C100.0475 (18)0.0366 (17)0.0362 (16)0.0020 (14)0.0200 (14)0.0044 (14)
C110.0515 (18)0.0303 (16)0.0244 (14)0.0047 (14)0.0019 (12)0.0074 (12)
C120.0332 (14)0.0236 (13)0.0234 (13)0.0036 (11)0.0003 (11)0.0028 (11)
C130.0323 (14)0.0284 (15)0.0260 (14)0.0043 (12)0.0016 (11)0.0004 (11)
C140.0363 (17)0.063 (2)0.050 (2)0.0272 (17)0.0035 (15)0.0070 (18)
C150.052 (2)0.047 (2)0.055 (2)0.0165 (17)0.0085 (17)0.0043 (18)
Geometric parameters (Å, º) top
S1—O11.429 (2)C6—C71.458 (3)
S1—O21.4312 (19)C7—C81.381 (3)
S1—N11.646 (2)C8—C91.397 (4)
S1—C11.767 (3)C9—C101.497 (4)
O3—C131.321 (3)C10—H10A0.9800
O3—C141.462 (3)C10—H10B0.9800
O4—C131.195 (3)C10—H10C0.9800
N1—C81.435 (3)C10—H10D0.9800
N1—C111.481 (3)C10—H10E0.9800
N2—C71.358 (3)C10—H10F0.9800
N2—N31.365 (3)C11—H11A0.9800
N2—C121.443 (3)C11—H11B0.9800
N3—C91.333 (3)C11—H11C0.9800
C1—C21.387 (4)C12—C131.513 (4)
C1—C61.405 (4)C12—H12A0.9900
C2—C31.384 (4)C12—H12B0.9900
C2—H20.9500C14—C151.483 (5)
C3—C41.381 (4)C14—H14A0.9900
C3—H30.9500C14—H14B0.9900
C4—C51.381 (4)C15—H15A0.9800
C4—H40.9500C15—H15B0.9800
C5—C61.399 (4)C15—H15C0.9800
C5—H50.9500
O1—S1—O2119.04 (12)H10A—C10—H10C109.5
O1—S1—N1108.32 (12)H10B—C10—H10C109.5
O2—S1—N1107.12 (11)C9—C10—H10D109.5
O1—S1—C1109.24 (12)H10A—C10—H10D141.1
O2—S1—C1107.91 (12)H10B—C10—H10D56.3
N1—S1—C1104.22 (11)H10C—C10—H10D56.3
C13—O3—C14117.3 (2)C9—C10—H10E109.5
C8—N1—C11116.1 (2)H10A—C10—H10E56.3
C8—N1—S1109.67 (17)H10B—C10—H10E141.1
C11—N1—S1117.25 (18)H10C—C10—H10E56.3
C7—N2—N3112.1 (2)H10D—C10—H10E109.5
C7—N2—C12129.2 (2)C9—C10—H10F109.5
N3—N2—C12118.2 (2)H10A—C10—H10F56.3
C9—N3—N2105.6 (2)H10B—C10—H10F56.3
C2—C1—C6122.2 (2)H10C—C10—H10F141.1
C2—C1—S1119.3 (2)H10D—C10—H10F109.5
C6—C1—S1118.50 (19)H10E—C10—H10F109.5
C3—C2—C1118.4 (3)N1—C11—H11A109.5
C3—C2—H2120.8N1—C11—H11B109.5
C1—C2—H2120.8H11A—C11—H11B109.5
C4—C3—C2120.7 (3)N1—C11—H11C109.5
C4—C3—H3119.7H11A—C11—H11C109.5
C2—C3—H3119.7H11B—C11—H11C109.5
C5—C4—C3120.6 (3)N2—C12—C13113.1 (2)
C5—C4—H4119.7N2—C12—H12A109.0
C3—C4—H4119.7C13—C12—H12A109.0
C4—C5—C6120.5 (3)N2—C12—H12B109.0
C4—C5—H5119.8C13—C12—H12B109.0
C6—C5—H5119.8H12A—C12—H12B107.8
C5—C6—C1117.5 (2)O4—C13—O3125.6 (3)
C5—C6—C7126.2 (2)O4—C13—C12125.4 (3)
C1—C6—C7116.1 (2)O3—C13—C12109.0 (2)
N2—C7—C8105.2 (2)O3—C14—C15110.2 (3)
N2—C7—C6129.7 (2)O3—C14—H14A109.6
C8—C7—C6125.1 (2)C15—C14—H14A109.6
C7—C8—C9107.2 (2)O3—C14—H14B109.6
C7—C8—N1123.0 (2)C15—C14—H14B109.6
C9—C8—N1129.6 (2)H14A—C14—H14B108.1
N3—C9—C8109.9 (2)C14—C15—H15A109.5
N3—C9—C10121.3 (3)C14—C15—H15B109.5
C8—C9—C10128.8 (3)H15A—C15—H15B109.5
C9—C10—H10A109.5C14—C15—H15C109.5
C9—C10—H10B109.5H15A—C15—H15C109.5
H10A—C10—H10B109.5H15B—C15—H15C109.5
C9—C10—H10C109.5
O1—S1—N1—C8167.65 (16)N3—N2—C7—C6177.6 (2)
O2—S1—N1—C862.78 (19)C12—N2—C7—C66.1 (4)
C1—S1—N1—C851.42 (19)C5—C6—C7—N227.8 (4)
O1—S1—N1—C1132.5 (2)C1—C6—C7—N2156.1 (3)
O2—S1—N1—C11162.02 (19)C5—C6—C7—C8155.4 (3)
C1—S1—N1—C1183.8 (2)C1—C6—C7—C820.7 (4)
C7—N2—N3—C90.2 (3)N2—C7—C8—C90.2 (3)
C12—N2—N3—C9172.2 (2)C6—C7—C8—C9177.6 (2)
O1—S1—C1—C228.1 (2)N2—C7—C8—N1175.4 (2)
O2—S1—C1—C2102.6 (2)C6—C7—C8—N12.1 (4)
N1—S1—C1—C2143.7 (2)C11—N1—C8—C798.0 (3)
O1—S1—C1—C6152.79 (19)S1—N1—C8—C737.7 (3)
O2—S1—C1—C676.4 (2)C11—N1—C8—C987.5 (3)
N1—S1—C1—C637.2 (2)S1—N1—C8—C9136.7 (3)
C6—C1—C2—C31.2 (4)N2—N3—C9—C80.1 (3)
S1—C1—C2—C3177.9 (2)N2—N3—C9—C10179.6 (2)
C1—C2—C3—C42.2 (4)C7—C8—C9—N30.0 (3)
C2—C3—C4—C50.5 (4)N1—C8—C9—N3175.1 (2)
C3—C4—C5—C62.3 (4)C7—C8—C9—C10179.7 (3)
C4—C5—C6—C13.2 (4)N1—C8—C9—C104.6 (5)
C4—C5—C6—C7179.2 (3)C7—N2—C12—C1397.8 (3)
C2—C1—C6—C51.5 (4)N3—N2—C12—C1391.2 (3)
S1—C1—C6—C5179.50 (19)C14—O3—C13—O44.4 (5)
C2—C1—C6—C7177.9 (2)C14—O3—C13—C12174.7 (3)
S1—C1—C6—C73.1 (3)N2—C12—C13—O46.1 (4)
N3—N2—C7—C80.2 (3)N2—C12—C13—O3174.8 (2)
C12—N2—C7—C8171.2 (2)C13—O3—C14—C1585.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O2i0.992.433.338 (3)152
C12—H12B···O1ii0.992.293.255 (3)165
C4—H4···O2iii0.952.583.290 (3)132
C10—H10C···O4iv0.982.513.369 (4)147
C14—H14B···O1v0.992.553.424 (4)147
C11—H11B···O10.982.512.872 (3)102
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y1, z; (iii) x1, y, z; (iv) x+1, y, z+1; (v) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC15H17N3O4S
Mr335.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)8.3027 (2), 8.5915 (3), 22.3476 (7)
β (°) 90.674 (2)
V3)1594.00 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.956, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
15091, 3576, 2820
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.127, 1.10
No. of reflections3576
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.45

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O2i0.992.433.338 (3)152.0
C12—H12B···O1ii0.992.293.255 (3)165.1
C4—H4···O2iii0.952.583.290 (3)131.8
C10—H10C···O4iv0.982.513.369 (4)146.7
C14—H14B···O1v0.992.553.424 (4)146.6
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y1, z; (iii) x1, y, z; (iv) x+1, y, z+1; (v) x1, y1, z.
 

Acknowledgements

The authors are grateful to the Higher Education Commission, Pakistan, and the Institute of Chemistry, University of the Punjab, Lahore, Pakistan, for financial support.

References

First citationAhmad, M., Siddiqui, H. L., Ahmad, N., Aslam, S. & Parvez, M. (2012). Acta Cryst. E68, o2470–o2471.  CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAslam, S., Siddiqui, H. L., Ahmad, M., Zia-ur-Rehman, M. & Parvez, M. (2012). Acta Cryst. E68, o1970–o1971.  CSD CrossRef IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds