organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-Methyl-1-phenyl-4-[(p-tol­yl)(p-tolyl­amino)­methyl­­idene]-1H-pyrazol-5(4H)-one

aPost-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bDepartment of Chemistry, Faculty of Science, The M. S. University of Baroda, Vadodara 390 002, India
*Correspondence e-mail: vivek_gupta2k2@hotmail.com

(Received 17 September 2012; accepted 24 September 2012; online 29 September 2012)

In the title mol­ecule, C25H23N3O2, the pyrazole ring forms dihedral angles of 28.56 (7), 80.35 (7) and 31.99 (7)° with the phenyl ring, the p-tolyl ring and the p-tolyl­amino ring, respectively. The N—H group attached to the exocyclic C=C bond is in a syn arrangement with respect to the C=O bond of the pyrazolone group and an intra­molecular N—H⋯O hydrogen bond is observed. In the crystal, weak C—H⋯π inter­actions link mol­ecules along [100].

Related literature

For related structures, see: Vyas et al. (2011[Vyas, K. M., Jadeja, R. N., Gupta, V. K. & Surati, K. R. (2011). J. Mol. Struct. 990, 110-120.]); Ma et al. (2006[Ma, R.-M., Sun, S.-F. & Ng, S. W. (2006). Acta Cryst. E62, o4679-o4680.]); Sun et al. (2007[Sun, Y.-F., Li, J.-K., Wu, R.-T. & Zheng, Z.-B. (2007). Acta Cryst. E63, o2176-o2177.]).

[Scheme 1]

Experimental

Crystal data
  • C25H23N3O

  • Mr = 381.46

  • Monoclinic, P 21 /n

  • a = 9.2694 (4) Å

  • b = 18.3156 (8) Å

  • c = 12.6716 (7) Å

  • β = 105.124 (5)°

  • V = 2076.80 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.914, Tmax = 1.000

  • 9542 measured reflections

  • 4077 independent reflections

  • 2343 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.132

  • S = 1.01

  • 4077 reflections

  • 270 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C7–C12 ring

D—H⋯A D—H H⋯A DA D—H⋯A
N21—H21⋯O5 0.99 (2) 1.82 (2) 2.702 (2) 146.4 (17)
C15—H15⋯Cgi 0.93 2.63 3.470 (2) 152
Symmetry code: (i) x-1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound (I) was prepared as a continuation of our studies of the structures 4-toluoyl pyrazolones (Vyas et al., 2011). The molecular structure of (I) is shown in Fig 1. The bond lengths and angles in (I) are normal and correspond to those observed in related structures (Ma et al., 2006; Sun et al., 2007). The pyrazolone ring forms dihedral angles of 28.56 (7)°, 80.35 (7)° and 31.99 (7)° with the phenyl ring (C7—C12) and two benzene rings (C14—C19 and C22—C27). In The N—H group attached to the exocyclic CC bond (C4-C13) is in a syn arrangement with respect to the CO bond of the pyrazolone group and an intramolecular N—H···O hydrogen bond is observed. In the crystal, a weak C—H···π interaction link molecules along [100] (Fig .2).

Related literature top

For related structures, see: Vyas et al. (2011); Ma et al. (2006); Sun et al. (2007).

Experimental top

Equimolar (10 mmol) ethanolic solution (50 ml) of 5-Methyl-4-(4-methyl-benzoyl)-2-phenyl-2,4-dihydro-pyrazol-3-one and p-toluidine was refluxed for 6 h in round bottom flask, whereupon a microcrystalline yellow precipitate appeared. The product was then isolated and recrystallized from ethanol, and then dried in vacuo to give the title compound in 85% yield. Yellow single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution of the title compound.

Refinement top

The H atom bonded to N was located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.96 Å and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C).

Structure description top

The title compound (I) was prepared as a continuation of our studies of the structures 4-toluoyl pyrazolones (Vyas et al., 2011). The molecular structure of (I) is shown in Fig 1. The bond lengths and angles in (I) are normal and correspond to those observed in related structures (Ma et al., 2006; Sun et al., 2007). The pyrazolone ring forms dihedral angles of 28.56 (7)°, 80.35 (7)° and 31.99 (7)° with the phenyl ring (C7—C12) and two benzene rings (C14—C19 and C22—C27). In The N—H group attached to the exocyclic CC bond (C4-C13) is in a syn arrangement with respect to the CO bond of the pyrazolone group and an intramolecular N—H···O hydrogen bond is observed. In the crystal, a weak C—H···π interaction link molecules along [100] (Fig .2).

For related structures, see: Vyas et al. (2011); Ma et al. (2006); Sun et al. (2007).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. Part of the one-dimensional motif along [100] formed by weak C—H···π interactions (shown as dashed lines).
(Z)-3-Methyl-1-phenyl-4-[(p-tolyl)(p- tolylamino)methylidene]-1H-pyrazol-5(4H)-one top
Crystal data top
C25H23N3OF(000) = 808
Mr = 381.46Dx = 1.220 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3374 reflections
a = 9.2694 (4) Åθ = 3.5–29.0°
b = 18.3156 (8) ŵ = 0.08 mm1
c = 12.6716 (7) ÅT = 293 K
β = 105.124 (5)°Block, yellow
V = 2076.80 (17) Å30.30 × 0.30 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
4077 independent reflections
Radiation source: fine-focus sealed tube2343 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.5°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 2219
Tmin = 0.914, Tmax = 1.000l = 1512
9542 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0435P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
4077 reflectionsΔρmax = 0.17 e Å3
270 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0018 (5)
Crystal data top
C25H23N3OV = 2076.80 (17) Å3
Mr = 381.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.2694 (4) ŵ = 0.08 mm1
b = 18.3156 (8) ÅT = 293 K
c = 12.6716 (7) Å0.30 × 0.30 × 0.20 mm
β = 105.124 (5)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
4077 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2343 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 1.000Rint = 0.039
9542 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.17 e Å3
4077 reflectionsΔρmin = 0.14 e Å3
270 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.37979 (16)0.27791 (8)0.08898 (14)0.0507 (5)
N20.34012 (18)0.35209 (9)0.07998 (16)0.0566 (5)
C30.1970 (2)0.35428 (11)0.03270 (17)0.0497 (6)
C40.1351 (2)0.28261 (10)0.01024 (16)0.0453 (5)
C50.2589 (2)0.23347 (11)0.04912 (16)0.0466 (5)
O50.26105 (14)0.16518 (7)0.04952 (12)0.0560 (4)
C60.1232 (2)0.42734 (11)0.0119 (2)0.0711 (8)
H6A0.19270.46450.04600.107*
H6B0.03800.42840.04160.107*
H6C0.09140.43610.06540.107*
C70.5268 (2)0.25907 (11)0.14877 (18)0.0489 (5)
C80.5900 (2)0.19386 (12)0.12908 (19)0.0588 (6)
H80.53690.16210.07570.071*
C90.7325 (2)0.17612 (13)0.1892 (2)0.0707 (7)
H90.77530.13220.17610.085*
C100.8117 (3)0.22272 (15)0.2681 (2)0.0741 (8)
H100.90720.21020.30890.089*
C110.7492 (2)0.28799 (14)0.28674 (19)0.0656 (7)
H110.80330.31980.33970.079*
C120.6064 (2)0.30674 (12)0.22733 (18)0.0562 (6)
H120.56440.35090.24010.067*
C130.0104 (2)0.25866 (11)0.03560 (16)0.0447 (5)
C140.1359 (2)0.31073 (10)0.07300 (16)0.0426 (5)
C150.2309 (2)0.32528 (11)0.00777 (18)0.0503 (6)
H150.21870.30080.05830.060*
C160.3446 (2)0.37642 (12)0.04055 (19)0.0574 (6)
H160.40670.38610.00470.069*
C170.3674 (2)0.41302 (11)0.1384 (2)0.0541 (6)
C180.2724 (2)0.39762 (12)0.20344 (18)0.0593 (6)
H180.28580.42170.26990.071*
C190.1579 (2)0.34719 (11)0.17182 (17)0.0555 (6)
H190.09560.33770.21700.067*
C200.4894 (2)0.46931 (12)0.1720 (2)0.0826 (9)
H20A0.57450.45440.14740.124*
H20B0.51760.47390.25020.124*
H20C0.45380.51550.13980.124*
N210.0338 (2)0.18632 (9)0.04121 (15)0.0546 (5)
C220.1653 (2)0.14481 (11)0.08416 (18)0.0503 (6)
C230.1729 (3)0.07733 (11)0.03820 (19)0.0636 (7)
H230.09400.06120.01860.076*
C240.2965 (3)0.03342 (13)0.0756 (2)0.0750 (8)
H240.29950.01220.04400.090*
C250.4156 (3)0.05601 (13)0.1591 (2)0.0666 (7)
C260.4042 (3)0.12227 (13)0.2062 (2)0.0676 (7)
H260.48240.13790.26390.081*
C270.2809 (2)0.16660 (12)0.17105 (19)0.0621 (7)
H270.27560.21090.20570.074*
C280.5540 (3)0.00866 (15)0.1984 (3)0.1072 (11)
H28A0.59990.01880.27410.161*
H28B0.62350.01920.15600.161*
H28C0.52610.04190.19000.161*
H210.060 (2)0.1594 (11)0.0076 (17)0.071 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0428 (9)0.0367 (10)0.0719 (12)0.0019 (8)0.0134 (8)0.0041 (9)
N20.0461 (10)0.0386 (10)0.0830 (13)0.0030 (8)0.0129 (9)0.0032 (9)
C30.0441 (11)0.0432 (13)0.0617 (14)0.0017 (10)0.0135 (10)0.0022 (11)
C40.0409 (10)0.0384 (12)0.0571 (13)0.0009 (9)0.0136 (9)0.0017 (10)
C50.0500 (12)0.0393 (13)0.0524 (13)0.0001 (10)0.0167 (10)0.0026 (11)
O50.0573 (9)0.0382 (9)0.0702 (10)0.0036 (7)0.0126 (8)0.0043 (8)
C60.0557 (13)0.0414 (13)0.107 (2)0.0041 (11)0.0059 (13)0.0020 (13)
C70.0434 (11)0.0462 (13)0.0589 (14)0.0036 (10)0.0165 (10)0.0100 (11)
C80.0518 (13)0.0508 (14)0.0747 (16)0.0046 (11)0.0183 (11)0.0078 (12)
C90.0602 (15)0.0585 (16)0.093 (2)0.0177 (12)0.0189 (14)0.0180 (15)
C100.0546 (14)0.0829 (19)0.0786 (19)0.0143 (14)0.0063 (13)0.0259 (16)
C110.0580 (14)0.0756 (18)0.0593 (15)0.0034 (13)0.0084 (12)0.0096 (13)
C120.0522 (12)0.0586 (15)0.0606 (14)0.0035 (11)0.0197 (11)0.0062 (12)
C130.0487 (11)0.0385 (12)0.0502 (12)0.0021 (10)0.0187 (9)0.0016 (10)
C140.0398 (10)0.0402 (12)0.0481 (12)0.0007 (9)0.0119 (9)0.0011 (10)
C150.0489 (12)0.0503 (14)0.0540 (13)0.0028 (10)0.0174 (10)0.0030 (11)
C160.0471 (12)0.0565 (14)0.0725 (16)0.0016 (11)0.0227 (11)0.0076 (13)
C170.0439 (12)0.0397 (13)0.0700 (16)0.0004 (10)0.0006 (11)0.0071 (12)
C180.0719 (15)0.0464 (14)0.0547 (14)0.0044 (12)0.0077 (12)0.0075 (12)
C190.0662 (14)0.0516 (14)0.0529 (14)0.0054 (11)0.0228 (11)0.0029 (11)
C200.0592 (15)0.0561 (15)0.116 (2)0.0091 (12)0.0072 (15)0.0108 (15)
N210.0467 (10)0.0416 (11)0.0733 (13)0.0009 (9)0.0117 (9)0.0031 (10)
C220.0532 (12)0.0380 (12)0.0631 (14)0.0033 (10)0.0211 (11)0.0037 (11)
C230.0741 (15)0.0430 (14)0.0709 (16)0.0051 (12)0.0139 (13)0.0025 (12)
C240.1014 (19)0.0424 (14)0.0863 (18)0.0170 (14)0.0338 (16)0.0045 (14)
C250.0684 (15)0.0524 (15)0.0857 (18)0.0165 (13)0.0324 (14)0.0247 (14)
C260.0591 (14)0.0579 (16)0.0823 (17)0.0048 (12)0.0120 (12)0.0122 (14)
C270.0601 (14)0.0498 (14)0.0724 (16)0.0072 (11)0.0102 (12)0.0001 (12)
C280.099 (2)0.089 (2)0.140 (3)0.0458 (17)0.0429 (19)0.038 (2)
Geometric parameters (Å, º) top
N1—C51.370 (2)C15—H150.9300
N1—N21.404 (2)C16—C171.377 (3)
N1—C71.418 (2)C16—H160.9300
N2—C31.306 (2)C17—C181.383 (3)
C3—C41.431 (3)C17—C201.507 (3)
C3—C61.495 (3)C18—C191.385 (3)
C4—C131.392 (2)C18—H180.9300
C4—C51.440 (2)C19—H190.9300
C5—O51.251 (2)C20—H20A0.9600
C6—H6A0.9600C20—H20B0.9600
C6—H6B0.9600C20—H20C0.9600
C6—H6C0.9600N21—C221.419 (2)
C7—C81.381 (3)N21—H210.99 (2)
C7—C121.384 (3)C22—C231.376 (3)
C8—C91.381 (3)C22—C271.380 (3)
C8—H80.9300C23—C241.378 (3)
C9—C101.372 (3)C23—H230.9300
C9—H90.9300C24—C251.378 (3)
C10—C111.375 (3)C24—H240.9300
C10—H100.9300C25—C261.369 (3)
C11—C121.384 (3)C25—C281.521 (3)
C11—H110.9300C26—C271.378 (3)
C12—H120.9300C26—H260.9300
C13—N211.342 (2)C27—H270.9300
C13—C141.483 (2)C28—H28A0.9600
C14—C151.382 (3)C28—H28B0.9600
C14—C191.386 (3)C28—H28C0.9600
C15—C161.390 (3)
C5—N1—N2111.90 (14)C17—C16—C15121.6 (2)
C5—N1—C7129.18 (16)C17—C16—H16119.2
N2—N1—C7118.26 (15)C15—C16—H16119.2
C3—N2—N1106.27 (15)C16—C17—C18117.72 (19)
N2—C3—C4111.68 (17)C16—C17—C20121.0 (2)
N2—C3—C6118.15 (18)C18—C17—C20121.2 (2)
C4—C3—C6130.17 (17)C17—C18—C19121.5 (2)
C13—C4—C3131.76 (18)C17—C18—H18119.2
C13—C4—C5122.98 (18)C19—C18—H18119.2
C3—C4—C5105.24 (15)C18—C19—C14120.2 (2)
O5—C5—N1125.57 (16)C18—C19—H19119.9
O5—C5—C4129.53 (17)C14—C19—H19119.9
N1—C5—C4104.89 (16)C17—C20—H20A109.5
C3—C6—H6A109.5C17—C20—H20B109.5
C3—C6—H6B109.5H20A—C20—H20B109.5
H6A—C6—H6B109.5C17—C20—H20C109.5
C3—C6—H6C109.5H20A—C20—H20C109.5
H6A—C6—H6C109.5H20B—C20—H20C109.5
H6B—C6—H6C109.5C13—N21—C22131.33 (18)
C8—C7—C12120.25 (18)C13—N21—H21110.9 (11)
C8—C7—N1120.50 (19)C22—N21—H21117.8 (11)
C12—C7—N1119.25 (18)C23—C22—C27118.87 (19)
C9—C8—C7119.6 (2)C23—C22—N21116.91 (18)
C9—C8—H8120.2C27—C22—N21124.16 (19)
C7—C8—H8120.2C22—C23—C24120.5 (2)
C10—C9—C8120.5 (2)C22—C23—H23119.7
C10—C9—H9119.7C24—C23—H23119.7
C8—C9—H9119.7C25—C24—C23121.1 (2)
C9—C10—C11119.8 (2)C25—C24—H24119.5
C9—C10—H10120.1C23—C24—H24119.5
C11—C10—H10120.1C26—C25—C24117.6 (2)
C10—C11—C12120.5 (2)C26—C25—C28121.1 (2)
C10—C11—H11119.7C24—C25—C28121.2 (2)
C12—C11—H11119.7C25—C26—C27122.2 (2)
C7—C12—C11119.3 (2)C25—C26—H26118.9
C7—C12—H12120.3C27—C26—H26118.9
C11—C12—H12120.3C26—C27—C22119.6 (2)
N21—C13—C4117.32 (17)C26—C27—H27120.2
N21—C13—C14121.02 (17)C22—C27—H27120.2
C4—C13—C14121.62 (17)C25—C28—H28A109.5
C15—C14—C19118.75 (19)C25—C28—H28B109.5
C15—C14—C13120.14 (18)H28A—C28—H28B109.5
C19—C14—C13121.09 (19)C25—C28—H28C109.5
C14—C15—C16120.2 (2)H28A—C28—H28C109.5
C14—C15—H15119.9H28B—C28—H28C109.5
C16—C15—H15119.9
C5—N1—N2—C31.5 (2)C3—C4—C13—C140.8 (3)
C7—N1—N2—C3173.05 (18)C5—C4—C13—C14178.85 (19)
N1—N2—C3—C41.1 (2)N21—C13—C14—C1577.8 (3)
N1—N2—C3—C6179.7 (2)C4—C13—C14—C1599.8 (2)
N2—C3—C4—C13178.0 (2)N21—C13—C14—C19104.0 (2)
C6—C3—C4—C131.1 (4)C4—C13—C14—C1978.3 (3)
N2—C3—C4—C50.4 (2)C19—C14—C15—C161.0 (3)
C6—C3—C4—C5179.4 (2)C13—C14—C15—C16177.19 (17)
N2—N1—C5—O5178.0 (2)C14—C15—C16—C170.9 (3)
C7—N1—C5—O57.6 (4)C15—C16—C17—C180.4 (3)
N2—N1—C5—C41.2 (2)C15—C16—C17—C20178.89 (18)
C7—N1—C5—C4171.6 (2)C16—C17—C18—C190.0 (3)
C13—C4—C5—O50.1 (4)C20—C17—C18—C19178.46 (18)
C3—C4—C5—O5178.6 (2)C17—C18—C19—C140.1 (3)
C13—C4—C5—N1179.07 (19)C15—C14—C19—C180.6 (3)
C3—C4—C5—N10.5 (2)C13—C14—C19—C18177.60 (18)
C5—N1—C7—C833.6 (3)C4—C13—N21—C22178.6 (2)
N2—N1—C7—C8156.5 (2)C14—C13—N21—C223.6 (4)
C5—N1—C7—C12146.3 (2)C13—N21—C22—C23152.0 (2)
N2—N1—C7—C1223.6 (3)C13—N21—C22—C2730.9 (4)
C12—C7—C8—C90.8 (3)C27—C22—C23—C242.4 (4)
N1—C7—C8—C9179.15 (19)N21—C22—C23—C24179.6 (2)
C7—C8—C9—C100.0 (4)C22—C23—C24—C250.5 (4)
C8—C9—C10—C110.7 (4)C23—C24—C25—C262.5 (4)
C9—C10—C11—C120.7 (4)C23—C24—C25—C28178.2 (2)
C8—C7—C12—C110.7 (3)C24—C25—C26—C271.6 (4)
N1—C7—C12—C11179.17 (19)C28—C25—C26—C27179.1 (2)
C10—C11—C12—C70.0 (3)C25—C26—C27—C221.3 (4)
C3—C4—C13—N21176.9 (2)C23—C22—C27—C263.3 (4)
C5—C4—C13—N211.2 (3)N21—C22—C27—C26179.7 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C7–C12 ring
D—H···AD—HH···AD···AD—H···A
N21—H21···O50.99 (2)1.82 (2)2.702 (2)146.4 (17)
C15—H15···Cgi0.932.633.470 (2)152
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC25H23N3O
Mr381.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.2694 (4), 18.3156 (8), 12.6716 (7)
β (°) 105.124 (5)
V3)2076.80 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.914, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9542, 4077, 2343
Rint0.039
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.132, 1.01
No. of reflections4077
No. of parameters270
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.14

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C7–C12 ring
D—H···AD—HH···AD···AD—H···A
N21—H21···O50.99 (2)1.82 (2)2.702 (2)146.4 (17)
C15—H15···Cgi0.932.633.470 (2)152
Symmetry code: (i) x1, y, z.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. VKG is thankful to the University of Jammu, Jammu, for financial support.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMa, R.-M., Sun, S.-F. & Ng, S. W. (2006). Acta Cryst. E62, o4679–o4680.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-F., Li, J.-K., Wu, R.-T. & Zheng, Z.-B. (2007). Acta Cryst. E63, o2176–o2177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVyas, K. M., Jadeja, R. N., Gupta, V. K. & Surati, K. R. (2011). J. Mol. Struct. 990, 110–120.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds