organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Di­methyl­pyridinium bromide

aDepartment of Chemistry, The University of Jordan, Amman 11942, Jordan, bDepartment of Chemistry, Al al-Bayt University, Mafraq 25113, Jordan, cFaculty of Science and IT, Al-Balqa'a Applied University, Salt, Jordan, and dQassim University, Faculty of Science, Chemistry Department, Qassim, Saudi Arabia
*Correspondence e-mail: bfali@aabu.edu.jo

(Received 13 July 2012; accepted 17 September 2012; online 22 September 2012)

The asymmetric unit of the title salt, C7H10N+·Br, comprises two 2,6-dimethyl­pyridinium cations and two bromide anions. One cation and one anion are situated in general positions, while the other cation and the other anion lie on a crystallographic mirror plane parallel to (010). Each pair of ions inter­act via N—H⋯Br and C—H⋯Br hydrogen bonding, generating motifs depending on the cation and anion involved. Thus, the cation and the anion on the mirror plane generate infinite chains along the c axis, while the other ionic pair leads to sheets parallel to the ac plane. In the overall crystal packing, both motifs alternate along the b axis, with a single layer of the chain motif sandwiched between two double layers of the sheet motif. The sheets and chains are further connected via aryl ππ inter­actions [centroid–centroid distances = 3.690 (2) and 3.714 (2) Å], giving a three-dimensional network.

Related literature

For background on the structural importance of noncovalent inter­actions, see: Desiraju (1997[Desiraju, G. R. (1997). Chem. Commun. pp. 1475-1482.]); Hunter (1994[Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101-109.]); Allen et al. (1997[Allen, F. H., Hoy, V. J., Howard, J. A. K., Thalladi, V. R., Desiraju, G. R., Wilson, C. C. & McIntyre, G. J. (1997). J. Am. Chem. Soc. 119, 3477-3480.]); Dolling et al. (2001[Dolling, B., Gillon, A. L., Orpen, A. G., Starbuck, J. & Wang, X. M. (2001). Chem. Commun. pp. 567-568.]); Panunto et al. (1987[Panunto, T. W., Urbanczyk-Lipkowska, Z., Johnson, R. & Etter, M. C. (1987). J. Am. Chem. Soc. 109, 7786-7797.]); Robinson et al. (2000[Robinson, J. M. A., Philp, D., Harris, K. D. M. & Kariuki, B. M. (2000). New J. Chem. 24, 799-806.]). For related geometric parameters, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Ahmadi et al. (2008[Ahmadi, R., Dehghan, L., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1237.]); Amani et al. (2008[Amani, V., Rahimi, R. & Khavasi, H. R. (2008). Acta Cryst. E64, m1143-m1144.]); Jin et al. (2000[Jin, Z. M., Pan, Y. J., Xu, D. J. & Xu, Y. Z. (2000). J. Chem. Crystallogr. 30, 119-122.], 2003[Jin, Z. M., Li, Z. G., Li, M. C., Hu, M. L. & Shen, L. (2003). Acta Cryst. E59, o903-o904.], 2006[Jin, Z.-M., Ma, X.-J., Zhang, Y., Tu, B. & Hu, M.-L. (2006). Acta Cryst. E62, m106-m108.]); Nuss et al. (2005[Nuss, H., Nuss, J. & Jansen, M. (2005). Z. Kristallogr. New Cryst. Struct. 220, 95-96.]); Pan et al. (2001[Pan, Y. J., Jin, Z. M., Sun, C. R. & Jiang, C. W. (2001). Chem. Lett. 30, 1008-1009.]). For related literature on ar­yl⋯aryl inter­actions, see: Gould et al. (1985[Gould, R. O., Gray, A. M., Taylor, P. & Walkinshaw, M. D. (1985). J. Am. Chem. Soc. 107, 5921-5927.]); Hunter & Sanders (1990[Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525-5534.]); Hunter (1994[Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101-109.]); Singh & Thornton (1990[Singh, J. & Thornton, J. M. (1990). J. Mol. Biol. 211, 595-615.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10N+·Br

  • Mr = 188.06

  • Orthorhombic, P n m a

  • a = 15.0788 (13) Å

  • b = 20.432 (3) Å

  • c = 7.8456 (7) Å

  • V = 2417.2 (5) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 5.02 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.242, Tmax = 0.367

  • 6863 measured reflections

  • 2194 independent reflections

  • 1708 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.102

  • S = 1.03

  • 2194 reflections

  • 140 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Br1 0.86 2.34 3.199 (5) 180
N1—H1A⋯Br2 0.86 2.32 3.182 (4) 179
C4—H4A⋯Br2i 0.93 2.83 3.722 (5) 161
C2—H2B⋯Br2ii 0.93 2.76 3.664 (5) 163
C9—H9A⋯Br1iii 0.93 2.97 3.842 (6) 157
Symmetry codes: (i) x, y, z-1; (ii) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+1].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97; molecular graphics: SHELXTL and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Non-covalent interactions play an important role in organizing structural units in both natural and artificial systems (Desiraju, 1997). They exercise important effects on the organization and properties of many materials in areas such as biology (Hunter, 1994), crystal engineering (Allen et al., 1997, Dolling et al., 2001) and material science (Panunto et al., 1987, Robinson et al., 2000). The interactions governing the crystal organization are expected to affect the packing and then the specific properties of solids. We herein report the structure of the salt, 2,6-dimethylpyridinium with the bromide anion, along with its crystal packing.

The asymmetric unit of title salt comprises two 2,6-dimethylpyridinium (hereafter 2,6-dmpH) cation: A (containing N1/C1/C2/C3/C4/C5) and B (containing N2/C8/C9/C10/C11/C12), and two bromide anions (Br1 and Br2), Fig. 1. Cation A as well as the anion Br2 are situated in general positions; while cation B, as well as the Br1 bromide anion are lying on a mirror plane parallel to (010). Both cations having almost identical geometrical parameters, and fall within the range expected (Allen et al., 1987, Ahmadi et al., 2008, Amani et al., 2008, Jin et al., 2003, Nuss et al., 2005, Jin et al., 2006). When compared to pyridine, the C–N–C angles (124.1 (3) and 123.7 (4)° in cations A and B, respectively) in the title compound are widened. This is in good agreement with other reported salts of 2,6-dmpH with different anions, such as the dichromate [124.6 (3)°; (Jin et al., 2006)], the chloride [124.1 (1)°; (Nuss et al., 2005)], the nitrate [124.90 (13)°; (Jin et al., 2003)], the hydrogen phthalate [128.83 (2)°; (Jin et al., 2000)] and the hydrogen fumarate [123.9 (2)°; (Pan et al., 2001)].

The crystal structure of title salt present a supramolecular network, where a complex strong hydrogen-bonding scheme operates between the cations and the anions (Table 1). The 2,6-dmpH (N and C atoms) act as donors, with the Br atoms the acceptors. The supramolecular hydrogen-bonding N–H···Br and C–H···Br synthons are shown in Figures 2 and 3. These hydrogen bonds connect the cations type A and Br2 anions into sheets parallel to the ac plane, Fig. 2. Within each sheet the cations and anions might be considered as packed in a pseudo three-fold arrangement (each cation is connected to three surrounding anions and each anion is connected to three surrounding cations) that extends in the ac plane, Fig. 2. On the other hand, cations type B with Br1 anions are forming infinite chains along the c crystallographic axis, via N2-H2A···Br1···H9-C9 hydrogen bonding, in which each Br1 anions linking two cations through double H···Br···H interactions, Fig. 3.

The overall packing can be describes as of the sandwich type, in which double layers of the sheet type motif formed by cations A and Br2 anions moieties, alternate with single layers of the chains motif type formed by cations B and Br1 anions moieties down the b axis, Fig. 4. Both packing motifs interact through offset-face-to-face aryl···aryl interactions with centroids distances of 3.690 Å for A(Cg)···B(Cg) and 3.712 Å for A(Cg)···A(Cg) (1 - x, 1 - y, -z), giving a three-dimensional network. These separation distances are in accordance with those of calculated and the experimentally observed stacked (offset-face-to-face) interaction modes (Gould et al., 1985, Hunter & Sanders, 1990, Hunter, 1994, Singh & Thornton, 1990).

Related literature top

For background on the structural importance of noncovalent interactions, see: Desiraju (1997); Hunter (1994); Allen et al. (1997); Dolling et al. (2001); Panunto et al. (1987); Robinson et al. (2000). For related geometric parameters, see: Allen et al. (1987); Ahmadi et al. (2008); Amani et al. (2008); Jin et al. (2000, 2003, 2006); Nuss et al. (2005); Pan et al. (2001). For related literature on aryl···aryl interactions, see: Gould et al. (1985); Hunter & Sanders (1990); Hunter (1994); Singh & Thornton (1990). PLEASE CHECK ADDED TEXT.

Experimental top

In an attempt to crystallize a tetrahalomercurate with the 2,6-dimethylpyridinium cation, the title compound crystallized instead. To a warm solution of 2,6-Dimethylpyridine (1 mmol) and 1 ml 60% HBr dissolved in 95% EtOH (10 ml), a hot solution of HgCl2 (1 mmol) dissolved in 95% EtOH (10 ml) was added. The resulting mixture was then treated with Br2 (2–3 ml) and refluxed for 3 hrs. The resulting mixture was left undisturbed to evaporate at room temperature whereupon colorless block crystals are formed after three days.

Refinement top

All hydrogen atoms constrained and assigned isotropic thermal parameters of 1.2 times that of the riding atoms (1.5 for methyl). Largest diff. peak and hole were 0.478 and -0.478 e.Å-3 with largest peak 1.035 Å from Br1.

Structure description top

Non-covalent interactions play an important role in organizing structural units in both natural and artificial systems (Desiraju, 1997). They exercise important effects on the organization and properties of many materials in areas such as biology (Hunter, 1994), crystal engineering (Allen et al., 1997, Dolling et al., 2001) and material science (Panunto et al., 1987, Robinson et al., 2000). The interactions governing the crystal organization are expected to affect the packing and then the specific properties of solids. We herein report the structure of the salt, 2,6-dimethylpyridinium with the bromide anion, along with its crystal packing.

The asymmetric unit of title salt comprises two 2,6-dimethylpyridinium (hereafter 2,6-dmpH) cation: A (containing N1/C1/C2/C3/C4/C5) and B (containing N2/C8/C9/C10/C11/C12), and two bromide anions (Br1 and Br2), Fig. 1. Cation A as well as the anion Br2 are situated in general positions; while cation B, as well as the Br1 bromide anion are lying on a mirror plane parallel to (010). Both cations having almost identical geometrical parameters, and fall within the range expected (Allen et al., 1987, Ahmadi et al., 2008, Amani et al., 2008, Jin et al., 2003, Nuss et al., 2005, Jin et al., 2006). When compared to pyridine, the C–N–C angles (124.1 (3) and 123.7 (4)° in cations A and B, respectively) in the title compound are widened. This is in good agreement with other reported salts of 2,6-dmpH with different anions, such as the dichromate [124.6 (3)°; (Jin et al., 2006)], the chloride [124.1 (1)°; (Nuss et al., 2005)], the nitrate [124.90 (13)°; (Jin et al., 2003)], the hydrogen phthalate [128.83 (2)°; (Jin et al., 2000)] and the hydrogen fumarate [123.9 (2)°; (Pan et al., 2001)].

The crystal structure of title salt present a supramolecular network, where a complex strong hydrogen-bonding scheme operates between the cations and the anions (Table 1). The 2,6-dmpH (N and C atoms) act as donors, with the Br atoms the acceptors. The supramolecular hydrogen-bonding N–H···Br and C–H···Br synthons are shown in Figures 2 and 3. These hydrogen bonds connect the cations type A and Br2 anions into sheets parallel to the ac plane, Fig. 2. Within each sheet the cations and anions might be considered as packed in a pseudo three-fold arrangement (each cation is connected to three surrounding anions and each anion is connected to three surrounding cations) that extends in the ac plane, Fig. 2. On the other hand, cations type B with Br1 anions are forming infinite chains along the c crystallographic axis, via N2-H2A···Br1···H9-C9 hydrogen bonding, in which each Br1 anions linking two cations through double H···Br···H interactions, Fig. 3.

The overall packing can be describes as of the sandwich type, in which double layers of the sheet type motif formed by cations A and Br2 anions moieties, alternate with single layers of the chains motif type formed by cations B and Br1 anions moieties down the b axis, Fig. 4. Both packing motifs interact through offset-face-to-face aryl···aryl interactions with centroids distances of 3.690 Å for A(Cg)···B(Cg) and 3.712 Å for A(Cg)···A(Cg) (1 - x, 1 - y, -z), giving a three-dimensional network. These separation distances are in accordance with those of calculated and the experimentally observed stacked (offset-face-to-face) interaction modes (Gould et al., 1985, Hunter & Sanders, 1990, Hunter, 1994, Singh & Thornton, 1990).

For background on the structural importance of noncovalent interactions, see: Desiraju (1997); Hunter (1994); Allen et al. (1997); Dolling et al. (2001); Panunto et al. (1987); Robinson et al. (2000). For related geometric parameters, see: Allen et al. (1987); Ahmadi et al. (2008); Amani et al. (2008); Jin et al. (2000, 2003, 2006); Nuss et al. (2005); Pan et al. (2001). For related literature on aryl···aryl interactions, see: Gould et al. (1985); Hunter & Sanders (1990); Hunter (1994); Singh & Thornton (1990). PLEASE CHECK ADDED TEXT.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Partial view of the crystal packing showing the sheet motifs parallel to (010). Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Another view of the crystal packing showing the infinite chains runnig along the c axis, with the involved N–H···Br and C–H···Br interactions showed as dashed lines.
[Figure 4] Fig. 4. A view of the overall crystal packing showing single layers of the chain motif sandwiched between double layers of the sheet type motif.
2,6-Dimethylpyridinium bromide top
Crystal data top
C7H10N+·BrF(000) = 1128
Mr = 188.06Dx = 1.550 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 1341 reflections
a = 15.0788 (13) Åθ = 3.0–29.3°
b = 20.432 (3) ŵ = 5.02 mm1
c = 7.8456 (7) ÅT = 293 K
V = 2417.2 (5) Å3Block, colourless
Z = 120.30 × 0.25 × 0.20 mm
Data collection top
Agilent Xcalibur Eos
diffractometer
2194 independent reflections
Radiation source: Enhance (Mo) X-ray Source1708 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 16.0534 pixels mm-1θmax = 25.0°, θmin = 3.4°
ω scansh = 1711
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 2324
Tmin = 0.242, Tmax = 0.367l = 97
6863 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0499P)2 + 0.7328P]
where P = (Fo2 + 2Fc2)/3
2194 reflections(Δ/σ)max = 0.001
140 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C7H10N+·BrV = 2417.2 (5) Å3
Mr = 188.06Z = 12
Orthorhombic, PnmaMo Kα radiation
a = 15.0788 (13) ŵ = 5.02 mm1
b = 20.432 (3) ÅT = 293 K
c = 7.8456 (7) Å0.30 × 0.25 × 0.20 mm
Data collection top
Agilent Xcalibur Eos
diffractometer
2194 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1708 reflections with I > 2σ(I)
Tmin = 0.242, Tmax = 0.367Rint = 0.036
6863 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.03Δρmax = 0.46 e Å3
2194 reflectionsΔρmin = 0.43 e Å3
140 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.0302 (2)0.08268 (13)0.5688 (4)0.0385 (7)
H1A0.06430.08020.65640.046*
C10.0586 (3)0.08263 (16)0.5951 (5)0.0397 (9)
C20.1132 (3)0.08487 (18)0.4561 (6)0.0477 (10)
H2B0.17440.08390.46970.057*
C30.0765 (3)0.08853 (18)0.2958 (6)0.0511 (11)
H3A0.11340.09080.20110.061*
C40.0140 (3)0.08893 (17)0.2736 (5)0.0503 (10)
H4A0.03800.09100.16460.060*
C50.0685 (3)0.08625 (17)0.4130 (5)0.0419 (10)
C60.0902 (3)0.07923 (18)0.7754 (5)0.0519 (11)
H6A0.04200.08920.85100.078*
H6B0.11170.03600.79900.078*
H6C0.13720.11030.79200.078*
C70.1671 (3)0.08641 (19)0.4050 (6)0.0568 (12)
H7A0.18960.12330.46750.085*
H7B0.18570.08940.28830.085*
H7C0.18950.04670.45410.085*
N20.4525 (3)0.25000.7490 (5)0.0406 (10)
H2A0.41640.25000.66400.049*
C80.4177 (4)0.25000.9087 (7)0.0403 (13)
C90.4755 (4)0.25001.0449 (7)0.0450 (13)
H9A0.45420.25001.15610.054*
C100.5655 (4)0.25001.0135 (7)0.0480 (14)
H10A0.60490.25001.10470.058*
C110.5977 (4)0.25000.8509 (8)0.0502 (15)
H11A0.65850.25000.83190.060*
C120.5402 (3)0.25000.7161 (7)0.0397 (12)
C130.3189 (4)0.25000.9253 (8)0.0522 (15)
H13A0.29690.20630.90960.078*0.50
H13B0.29370.27830.84040.078*0.50
H13C0.30260.26541.03660.078*0.50
C140.5682 (4)0.25000.5325 (7)0.0578 (16)
H14A0.59010.29260.50230.087*0.50
H14B0.51820.23930.46190.087*0.50
H14C0.61410.21810.51580.087*0.50
Br10.31927 (4)0.25000.43172 (8)0.0566 (2)
Br20.15804 (3)0.07357 (3)0.89056 (6)0.0627 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0341 (18)0.0458 (17)0.0357 (17)0.0006 (14)0.0011 (14)0.0024 (15)
C10.036 (2)0.039 (2)0.044 (2)0.0048 (17)0.0076 (19)0.0001 (17)
C20.030 (2)0.057 (2)0.057 (3)0.0002 (18)0.000 (2)0.004 (2)
C30.051 (3)0.059 (2)0.043 (2)0.000 (2)0.008 (2)0.001 (2)
C40.054 (3)0.059 (2)0.039 (2)0.003 (2)0.004 (2)0.002 (2)
C50.035 (2)0.044 (2)0.046 (2)0.0027 (17)0.0079 (19)0.0013 (18)
C60.044 (2)0.066 (3)0.046 (2)0.003 (2)0.010 (2)0.003 (2)
C70.037 (2)0.077 (3)0.056 (3)0.002 (2)0.009 (2)0.001 (2)
N20.035 (2)0.048 (2)0.039 (3)0.0000.000 (2)0.000
C80.035 (3)0.046 (3)0.040 (3)0.0000.003 (2)0.000
C90.051 (3)0.047 (3)0.038 (3)0.0000.002 (3)0.000
C100.042 (3)0.054 (3)0.048 (3)0.0000.012 (3)0.000
C110.032 (3)0.063 (4)0.055 (4)0.0000.001 (3)0.000
C120.034 (3)0.042 (3)0.043 (3)0.0000.002 (3)0.000
C130.032 (3)0.072 (4)0.052 (4)0.0000.006 (3)0.000
C140.048 (4)0.078 (4)0.048 (4)0.0000.010 (3)0.000
Br10.0362 (3)0.0925 (5)0.0410 (3)0.0000.0003 (3)0.000
Br20.0390 (3)0.1034 (4)0.0456 (3)0.0040 (2)0.00588 (19)0.0051 (2)
Geometric parameters (Å, º) top
N1—C11.354 (5)N2—C121.348 (6)
N1—C51.354 (5)N2—C81.358 (6)
N1—H1A0.8600N2—H2A0.8600
C1—C21.368 (6)C8—C91.379 (7)
C1—C61.494 (5)C8—C131.496 (7)
C2—C31.376 (6)C9—C101.379 (8)
C2—H2B0.9300C9—H9A0.9300
C3—C41.376 (6)C10—C111.365 (8)
C3—H3A0.9300C10—H10A0.9300
C4—C51.369 (6)C11—C121.367 (7)
C4—H4A0.9300C11—H11A0.9300
C5—C71.487 (6)C12—C141.501 (7)
C6—H6A0.9600C13—H13A0.9600
C6—H6B0.9600C13—H13B0.9600
C6—H6C0.9600C13—H13C0.9600
C7—H7A0.9600C14—H14A0.9600
C7—H7B0.9600C14—H14B0.9600
C7—H7C0.9600C14—H14C0.9600
C1—N1—C5124.0 (4)C12—N2—C8123.8 (5)
C1—N1—H1A118.0C12—N2—H2A118.1
C5—N1—H1A117.9C8—N2—H2A118.1
N1—C1—C2118.3 (4)N2—C8—C9118.1 (5)
N1—C1—C6117.4 (4)N2—C8—C13117.7 (5)
C2—C1—C6124.4 (4)C9—C8—C13124.2 (5)
C1—C2—C3119.2 (4)C10—C9—C8119.0 (5)
C1—C2—H2B120.4C10—C9—H9A120.5
C3—C2—H2B120.4C8—C9—H9A120.5
C4—C3—C2121.0 (4)C11—C10—C9121.1 (5)
C4—C3—H3A119.5C11—C10—H10A119.5
C2—C3—H3A119.5C9—C10—H10A119.5
C5—C4—C3119.6 (4)C10—C11—C12119.9 (5)
C5—C4—H4A120.2C10—C11—H11A120.1
C3—C4—H4A120.2C12—C11—H11A120.1
N1—C5—C4117.8 (4)N2—C12—C11118.3 (5)
N1—C5—C7117.7 (4)N2—C12—C14117.3 (5)
C4—C5—C7124.5 (4)C11—C12—C14124.4 (5)
C1—C6—H6A109.5C8—C13—H13A109.5
C1—C6—H6B109.5C8—C13—H13B109.5
H6A—C6—H6B109.5H13A—C13—H13B109.5
C1—C6—H6C109.5C8—C13—H13C109.5
H6A—C6—H6C109.5H13A—C13—H13C109.5
H6B—C6—H6C109.5H13B—C13—H13C109.5
C5—C7—H7A109.5C12—C14—H14A109.5
C5—C7—H7B109.5C12—C14—H14B109.5
H7A—C7—H7B109.5H14A—C14—H14B109.5
C5—C7—H7C109.5C12—C14—H14C109.5
H7A—C7—H7C109.5H14A—C14—H14C109.5
H7B—C7—H7C109.5H14B—C14—H14C109.5
C5—N1—C1—C21.5 (5)C12—N2—C8—C90.000 (2)
C5—N1—C1—C6179.3 (3)C12—N2—C8—C13180.000 (1)
N1—C1—C2—C31.4 (5)N2—C8—C9—C100.000 (2)
C6—C1—C2—C3179.4 (4)C13—C8—C9—C10180.000 (1)
C1—C2—C3—C41.0 (6)C8—C9—C10—C110.000 (2)
C2—C3—C4—C50.6 (6)C9—C10—C11—C120.000 (2)
C1—N1—C5—C41.1 (5)C8—N2—C12—C110.000 (1)
C1—N1—C5—C7179.4 (3)C8—N2—C12—C14180.0
C3—C4—C5—N10.6 (5)C10—C11—C12—N20.000 (1)
C3—C4—C5—C7180.0 (3)C10—C11—C12—C14180.000 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Br10.862.343.199 (5)180
N1—H1A···Br20.862.323.182 (4)179
C4—H4A···Br2i0.932.833.722 (5)161
C2—H2B···Br2ii0.932.763.664 (5)163
C9—H9A···Br1iii0.932.973.842 (6)157
Symmetry codes: (i) x, y, z1; (ii) x1/2, y, z+3/2; (iii) x, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC7H10N+·Br
Mr188.06
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)15.0788 (13), 20.432 (3), 7.8456 (7)
V3)2417.2 (5)
Z12
Radiation typeMo Kα
µ (mm1)5.02
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent Xcalibur Eos
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.242, 0.367
No. of measured, independent and
observed [I > 2σ(I)] reflections
6863, 2194, 1708
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.102, 1.03
No. of reflections2194
No. of parameters140
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.43

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Br10.862.343.199 (5)180.0
N1—H1A···Br20.862.323.182 (4)179.3
C4—H4A···Br2i0.932.833.722 (5)160.5
C2—H2B···Br2ii0.932.763.664 (5)162.8
C9—H9A···Br1iii0.932.973.842 (6)157.0
Symmetry codes: (i) x, y, z1; (ii) x1/2, y, z+3/2; (iii) x, y+1/2, z+1.
 

Acknowledgements

The structure was determined at Hamdi Mango Center for Scientific Research, The University of Jordan.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAhmadi, R., Dehghan, L., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1237.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Hoy, V. J., Howard, J. A. K., Thalladi, V. R., Desiraju, G. R., Wilson, C. C. & McIntyre, G. J. (1997). J. Am. Chem. Soc. 119, 3477–3480.  CSD CrossRef CAS Web of Science Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAmani, V., Rahimi, R. & Khavasi, H. R. (2008). Acta Cryst. E64, m1143–m1144.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDesiraju, G. R. (1997). Chem. Commun. pp. 1475–1482.  CrossRef Web of Science Google Scholar
First citationDolling, B., Gillon, A. L., Orpen, A. G., Starbuck, J. & Wang, X. M. (2001). Chem. Commun. pp. 567–568.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGould, R. O., Gray, A. M., Taylor, P. & Walkinshaw, M. D. (1985). J. Am. Chem. Soc. 107, 5921–5927.  CrossRef CAS Web of Science Google Scholar
First citationHunter, C. A. (1994). Chem. Soc. Rev. 23, 101–109.  CrossRef CAS Web of Science Google Scholar
First citationHunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525–5534.  CrossRef CAS Web of Science Google Scholar
First citationJin, Z. M., Li, Z. G., Li, M. C., Hu, M. L. & Shen, L. (2003). Acta Cryst. E59, o903–o904.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJin, Z.-M., Ma, X.-J., Zhang, Y., Tu, B. & Hu, M.-L. (2006). Acta Cryst. E62, m106–m108.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJin, Z. M., Pan, Y. J., Xu, D. J. & Xu, Y. Z. (2000). J. Chem. Crystallogr. 30, 119–122.  Web of Science CSD CrossRef CAS Google Scholar
First citationNuss, H., Nuss, J. & Jansen, M. (2005). Z. Kristallogr. New Cryst. Struct. 220, 95–96.  CAS Google Scholar
First citationPan, Y. J., Jin, Z. M., Sun, C. R. & Jiang, C. W. (2001). Chem. Lett. 30, 1008–1009.  CSD CrossRef Google Scholar
First citationPanunto, T. W., Urbanczyk-Lipkowska, Z., Johnson, R. & Etter, M. C. (1987). J. Am. Chem. Soc. 109, 7786–7797.  CSD CrossRef CAS Web of Science Google Scholar
First citationRobinson, J. M. A., Philp, D., Harris, K. D. M. & Kariuki, B. M. (2000). New J. Chem. 24, 799–806.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, J. & Thornton, J. M. (1990). J. Mol. Biol. 211, 595–615.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds