organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-[(2R*,3R*,4R*,5R*)-3,4-Di­methyl­tetra­hydro­furan-2,5-di­yl]diphenol

aFacultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, UANL, Avenida Universidad S/N, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León CP 66451, Mexico, and bFacultad de Química, Universidad Nacional Autónoma de México, México DF 04510, Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

(Received 17 August 2012; accepted 14 September 2012; online 26 September 2012)

The title mol­ecule, C18H20O3, is a furan­oid lignan extracted from the leaves of Larrea tridentata. The relative absolute configuration for the four chiral centers was established, showing that this compound is 4-epi-larreatricin, which has been previously reported in the literature. The mol­ecule displays noncrystallographic C2 symmetry, with the methyl and phenol substituents alternating above and below the mean plane of the furan ring. The conformation of this ring is described by the pseudorotation phase angle P = 171.3° and the maximum out-of-plane pucker νm = 37.7°. These parameters indicate that the furan ring adopts the same conformation as the ribose residues in B-DNA. The packing is dominated by inter­molecular O—H⋯O hydrogen bonds. The phenol hy­droxy groups form chains in the [110] direction and these chains inter­act via O—H⋯O(furan) contacts.

Related literature

For the extraction, synthesis, characterization and biological activity of the title compound, see: Konno et al. (1990[Konno, C., Lu, Z.-Z., Xue, H.-Z., Erdelmeier, C. A. J., Meksuriyen, D., Che, C.-T., Cordell, G. A., Soejarto, D. D., Waller, D. P. & Fong, H. H. S. (1990). J. Nat. Prod. 53, 396-406.]); Moinuddin et al. (2003[Moinuddin, S. G. A., Hishiyama, S., Cho, M.-H., Davin, L. B. & Lewis, N. G. (2003). Org. Biomol. Chem. 1, 2307-2313.]); Favela-Hernández et al. (2012[Favela-Hernández, J. M. J., García, A., Garza-González, E., Rivas-Galindo, V. M. & Camacho-Corona, M. R. (2012). Phytother. Res. doi:10.1002/ptr.4660.]). For the conformational analysis of sugar rings, see: Altona & Sundaralingam (1972[Altona, C. & Sundaralingam, M. (1972). J. Am. Chem. Soc. 94, 8205-8212.]); Sun et al. (2004[Sun, G., Voigt, J. H., Filippov, I. V., Marquez, V. E. & Nicklaus, M. C. (2004). J. Chem. Inf. Comput. Sci. 44, 1752-1762.]). For an example of another naturally occurring furan­oid lignan, see: Soepadamo et al. (1991[Soepadamo, J. M. S., Fang, X.-P., McLaughlin, J. L. & Fanwick, P. E. (1991). J. Nat. Prod. 54, 1681-1683.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20O3

  • Mr = 284.34

  • Monoclinic, P 21

  • a = 6.4225 (4) Å

  • b = 12.4973 (7) Å

  • c = 9.8176 (7) Å

  • β = 101.243 (6)°

  • V = 772.88 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.36 × 0.26 × 0.21 mm

Data collection
  • Agilent Xcalibur (Atlas, Gemini) diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxforfdshire, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.980, Tmax = 0.985

  • 5223 measured reflections

  • 1592 independent reflections

  • 1107 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.106

  • S = 1.05

  • 1592 reflections

  • 198 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: 1004 measured Friedel pairs merged for refinement

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.92 (5) 1.84 (5) 2.752 (4) 169 (5)
O2—H2⋯O1ii 0.90 (4) 1.89 (4) 2.723 (3) 154 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) [-x+1, y-{\script{1\over 2}}, -z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxforfdshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxforfdshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The characterization of the title molecule is a part of a long-term project related to the screening of extracts obtained from plants used in Mexican traditional medicine to treat respiratory infections like tuberculosis. The title furanoid lignan is present in the chloroformic extract of Larrea tridentata, a plant found mainly in the southwestern US and northern Mexico. We have recently probed the antibacterial and antimycobacterial activity of this molecule and found that it is active against methicillin resistant S. aureus and M. tuberculosis H37Rv strain (Favela-Hernández et al., 2012). This molecule was previously extracted from L. tridentata samples from Phoenix, Arizona and characterized by MS and NMR (Konno et al., 1990). The synthesis and chiral HPLC analysis of stereoisomers of this compound have also been carried out (Moinuddin et al., 2003).

The relative stereochemistry for the four chiral C atoms in the furan ring was determined (Fig. 1) showing that the crystallized lignan corresponds to 4-epi-larreatricin (Konno et al., 1990; Moinuddin et al., 2003). The same configuration was found in related furanoid lignans from other natural sources, for example grandisin, which is extracted from Cryptocarya crassinervia (Soepadamo et al., 1991). The four substituents of the central furan ring are arranged in an all-trans α,α'-diaryl-β,β'-dimethyl manner thus avoiding steric hindrance between aryl and methyl groups. The furan ring adopts a twisted envelope conformation characteristic of ribose sugars in the B-form of DNA (hydrated DNA). This may be checked by computing the phase angle of pseudorotation for the ring, P = 171.3°, and the maximum degree of pucker, νm = 37.7° (Altona & Sundaralingam, 1972). The comparison of these data with the distribution of P and νm for β-nucleosides found in the CSD clearly shows that the title compound lies in the south hemisphere of the pseudorotational wheel and within the C2'-endo cluster (2E form, P = 162° (See Fig. 3 in Altona & Sundaralingam, 1972 and Fig. 6 in Sun et al., 2004)).

The crystal structure is based on chains formed through intermolecular O—H···O hydrogen bonds involving the hydroxyl groups (Fig. 2, inset). The resulting layer interacts with the neighboring layer packed along the c axis, through O—H···O(furan) contacts, forming the complete three-dimensional framework (Fig. 2).

Related literature top

For the extraction, synthesis, characterization and biological activity of the title compound, see: Konno et al. (1990); Moinuddin et al. (2003); Favela-Hernández et al. (2012). For the conformational analysis of sugar rings, see: Altona & Sundaralingam (1972); Sun et al. (2004). For an example of another naturally occurring furanoid lignan, see: Soepadamo et al. (1991).

Experimental top

Leaves of L. tridentata were collected in Galeana, Nuevo León, Mexico, and authenticated by Biól. Mauricio González (Voucher 024772, Facultad de Ciencias Biológicas, UANL). Dried and ground leaves (500 g) were extracted with hexane and then with CHCl3 through maceration. Details of the chromatography of the chloroform fraction have been described previously (Favela-Hernández et al., 2012). This afforded, among other products, 11 mg of the title molecule, which was crystallized from CHCl3/MeOH (95/5, v/v). m.p. 503–505 K (Lit. 503–505 K, Konno et al., 1990). 1H and 13C NMR data are in agreement with the X-ray structure.

Refinement top

With only first row elements present, the absolute structure could not be determined with certainty so the Friedel pairs (1004) were merged. C-bound H atoms were placed in idealized positions with C—H = 0.93 (aromatic CH), 0.96 (methyl CH3) or 0.98 Å (methine CH) and included as riding contributions. Hydroxyl H atoms, H2 and H3, were found in a difference map and refined freely. Isotropic displacement parameters for H atoms were calculated as Uiso(H) = xUeq(carrier atom) where x = 1.5 for methyl and hydroxyl groups, and x = 1.2 for other H atoms.

Structure description top

The characterization of the title molecule is a part of a long-term project related to the screening of extracts obtained from plants used in Mexican traditional medicine to treat respiratory infections like tuberculosis. The title furanoid lignan is present in the chloroformic extract of Larrea tridentata, a plant found mainly in the southwestern US and northern Mexico. We have recently probed the antibacterial and antimycobacterial activity of this molecule and found that it is active against methicillin resistant S. aureus and M. tuberculosis H37Rv strain (Favela-Hernández et al., 2012). This molecule was previously extracted from L. tridentata samples from Phoenix, Arizona and characterized by MS and NMR (Konno et al., 1990). The synthesis and chiral HPLC analysis of stereoisomers of this compound have also been carried out (Moinuddin et al., 2003).

The relative stereochemistry for the four chiral C atoms in the furan ring was determined (Fig. 1) showing that the crystallized lignan corresponds to 4-epi-larreatricin (Konno et al., 1990; Moinuddin et al., 2003). The same configuration was found in related furanoid lignans from other natural sources, for example grandisin, which is extracted from Cryptocarya crassinervia (Soepadamo et al., 1991). The four substituents of the central furan ring are arranged in an all-trans α,α'-diaryl-β,β'-dimethyl manner thus avoiding steric hindrance between aryl and methyl groups. The furan ring adopts a twisted envelope conformation characteristic of ribose sugars in the B-form of DNA (hydrated DNA). This may be checked by computing the phase angle of pseudorotation for the ring, P = 171.3°, and the maximum degree of pucker, νm = 37.7° (Altona & Sundaralingam, 1972). The comparison of these data with the distribution of P and νm for β-nucleosides found in the CSD clearly shows that the title compound lies in the south hemisphere of the pseudorotational wheel and within the C2'-endo cluster (2E form, P = 162° (See Fig. 3 in Altona & Sundaralingam, 1972 and Fig. 6 in Sun et al., 2004)).

The crystal structure is based on chains formed through intermolecular O—H···O hydrogen bonds involving the hydroxyl groups (Fig. 2, inset). The resulting layer interacts with the neighboring layer packed along the c axis, through O—H···O(furan) contacts, forming the complete three-dimensional framework (Fig. 2).

For the extraction, synthesis, characterization and biological activity of the title compound, see: Konno et al. (1990); Moinuddin et al. (2003); Favela-Hernández et al. (2012). For the conformational analysis of sugar rings, see: Altona & Sundaralingam (1972); Sun et al. (2004). For an example of another naturally occurring furanoid lignan, see: Soepadamo et al. (1991).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP-like view of the title molecule with displacement ellipsoids for non-H atoms at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound viewed down c emphasizing the chain framework. All red chains are placed in a common plane, and blue chains are in a plane above the red molecules. Both planes interact through O—H···O(furan) contacts. The inset represents a part of a single chain. All H atoms not involved in hydrogen bonds have been omitted, and intermolecular contacts are represented as green dashed lines.
4,4'-[rel-(2R,3R,4R,5R)-3,4- Dimethyltetrahydrofuran-2,5-diyl]diphenol top
Crystal data top
C18H20O3F(000) = 304
Mr = 284.34Dx = 1.222 Mg m3
Monoclinic, P21Melting point: 503 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 6.4225 (4) ÅCell parameters from 1308 reflections
b = 12.4973 (7) Åθ = 3.5–26.0°
c = 9.8176 (7) ŵ = 0.08 mm1
β = 101.243 (6)°T = 298 K
V = 772.88 (9) Å3Block, colourless
Z = 20.36 × 0.26 × 0.21 mm
Data collection top
Agilent Xcalibur (Atlas, Gemini)
diffractometer
1592 independent reflections
Radiation source: Enhance (Mo) X-ray Source1107 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 10.4685 pixels mm-1θmax = 26.1°, θmin = 3.5°
φ and ω scansh = 76
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
k = 1515
Tmin = 0.980, Tmax = 0.985l = 1211
5223 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0498P)2]
where P = (Fo2 + 2Fc2)/3
1592 reflections(Δ/σ)max < 0.001
198 parametersΔρmax = 0.19 e Å3
1 restraintΔρmin = 0.18 e Å3
0 constraintsAbsolute structure: 1004 measured Friedel pairs merged for refinement
Crystal data top
C18H20O3V = 772.88 (9) Å3
Mr = 284.34Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.4225 (4) ŵ = 0.08 mm1
b = 12.4973 (7) ÅT = 298 K
c = 9.8176 (7) Å0.36 × 0.26 × 0.21 mm
β = 101.243 (6)°
Data collection top
Agilent Xcalibur (Atlas, Gemini)
diffractometer
1592 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
1107 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.985Rint = 0.041
5223 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.19 e Å3
1592 reflectionsΔρmin = 0.18 e Å3
198 parametersAbsolute structure: 1004 measured Friedel pairs merged for refinement
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6576 (4)0.17906 (19)0.2077 (2)0.0608 (7)
O20.3301 (4)0.29301 (19)0.0656 (2)0.0569 (6)
H20.377 (5)0.303 (4)0.014 (4)0.085*
O30.9213 (4)0.64265 (18)0.0690 (3)0.0741 (8)
H31.056 (8)0.659 (4)0.058 (5)0.111*
C20.5625 (5)0.1142 (3)0.3000 (3)0.0489 (8)
H2A0.43330.15000.31550.059*
C30.7244 (5)0.1130 (3)0.4373 (4)0.0588 (9)
H3A0.82550.05530.43130.071*
C40.8399 (5)0.2166 (3)0.4337 (3)0.0598 (9)
H4A0.74720.27390.45510.072*
C50.8532 (5)0.2269 (3)0.2820 (4)0.0519 (9)
H5A0.97270.18350.26510.062*
C60.6305 (7)0.0920 (5)0.5619 (4)0.0953 (16)
H6A0.74190.08720.64260.143*
H6B0.55300.02590.54980.143*
H6C0.53620.14930.57370.143*
C71.0528 (6)0.2277 (4)0.5332 (4)0.0903 (14)
H7A1.11260.29670.52120.135*
H7B1.14760.17280.51400.135*
H7C1.03230.22070.62700.135*
C80.5031 (5)0.0063 (2)0.2373 (4)0.0459 (8)
C90.6388 (5)0.0506 (3)0.1717 (4)0.0564 (9)
H9A0.77000.02140.16590.068*
C100.5841 (5)0.1507 (3)0.1138 (4)0.0574 (9)
H10A0.67800.18780.07000.069*
C110.3913 (5)0.1941 (3)0.1217 (3)0.0448 (8)
C120.2553 (5)0.1400 (3)0.1891 (4)0.0561 (9)
H12A0.12540.17010.19630.067*
C130.3120 (5)0.0407 (3)0.2462 (4)0.0571 (9)
H13A0.21890.00470.29180.069*
C140.8752 (5)0.3372 (3)0.2270 (3)0.0467 (8)
C150.7158 (5)0.4127 (3)0.2230 (4)0.0586 (10)
H15A0.59430.39480.25630.070*
C160.7343 (5)0.5140 (3)0.1703 (4)0.0615 (10)
H16A0.62500.56320.16750.074*
C170.9120 (5)0.5420 (3)0.1225 (4)0.0526 (9)
C181.0742 (5)0.4688 (3)0.1258 (4)0.0535 (9)
H18A1.19620.48770.09370.064*
C191.0533 (5)0.3675 (3)0.1771 (4)0.0516 (9)
H19A1.16210.31820.17810.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0838 (15)0.0455 (15)0.0496 (14)0.0226 (12)0.0047 (11)0.0036 (11)
O20.0778 (15)0.0387 (14)0.0569 (15)0.0091 (12)0.0199 (11)0.0006 (13)
O30.0794 (17)0.0361 (15)0.109 (2)0.0074 (13)0.0236 (16)0.0085 (14)
C20.0552 (18)0.037 (2)0.055 (2)0.0024 (15)0.0118 (15)0.0019 (16)
C30.070 (2)0.051 (2)0.055 (2)0.0058 (18)0.0119 (17)0.0035 (19)
C40.063 (2)0.059 (2)0.054 (2)0.0017 (18)0.0007 (15)0.006 (2)
C50.0527 (19)0.039 (2)0.063 (2)0.0002 (15)0.0098 (15)0.0003 (18)
C60.107 (3)0.109 (4)0.069 (3)0.019 (3)0.013 (2)0.015 (3)
C70.086 (3)0.097 (4)0.077 (3)0.015 (3)0.009 (2)0.002 (3)
C80.0547 (19)0.0343 (19)0.049 (2)0.0024 (14)0.0109 (15)0.0031 (15)
C90.0549 (19)0.048 (2)0.070 (3)0.0090 (16)0.0216 (17)0.006 (2)
C100.058 (2)0.053 (2)0.067 (2)0.0024 (17)0.0249 (17)0.005 (2)
C110.0588 (19)0.0306 (18)0.0461 (19)0.0029 (15)0.0128 (14)0.0048 (15)
C120.0563 (19)0.043 (2)0.073 (3)0.0117 (17)0.0253 (17)0.0023 (19)
C130.062 (2)0.048 (2)0.067 (3)0.0035 (17)0.0257 (17)0.0069 (19)
C140.0513 (18)0.038 (2)0.050 (2)0.0052 (14)0.0076 (14)0.0030 (16)
C150.054 (2)0.043 (2)0.081 (3)0.0055 (16)0.0191 (18)0.0015 (19)
C160.057 (2)0.040 (2)0.088 (3)0.0006 (16)0.0154 (18)0.003 (2)
C170.060 (2)0.0313 (19)0.064 (2)0.0072 (16)0.0073 (16)0.0056 (17)
C180.0538 (19)0.045 (2)0.064 (2)0.0055 (16)0.0176 (16)0.0077 (18)
C190.0507 (18)0.037 (2)0.068 (2)0.0000 (15)0.0155 (16)0.0045 (17)
Geometric parameters (Å, º) top
O1—C21.437 (4)C7—H7C0.9600
O1—C51.452 (3)C8—C91.378 (5)
O2—C111.378 (4)C8—C131.379 (4)
O2—H20.90 (4)C9—C101.390 (5)
O3—C171.368 (4)C9—H9A0.9300
O3—H30.92 (5)C10—C111.368 (4)
C2—C81.501 (4)C10—H10A0.9300
C2—C31.533 (5)C11—C121.373 (5)
C2—H2A0.9800C12—C131.381 (5)
C3—C61.489 (5)C12—H12A0.9300
C3—C41.496 (5)C13—H13A0.9300
C3—H3A0.9800C14—C191.383 (5)
C4—C51.513 (5)C14—C151.387 (4)
C4—C71.524 (4)C15—C161.381 (5)
C4—H4A0.9800C15—H15A0.9300
C5—C141.497 (5)C16—C171.362 (5)
C5—H5A0.9800C16—H16A0.9300
C6—H6A0.9600C17—C181.382 (5)
C6—H6B0.9600C18—C191.379 (5)
C6—H6C0.9600C18—H18A0.9300
C7—H7A0.9600C19—H19A0.9300
C7—H7B0.9600
C2—O1—C5110.3 (2)H7B—C7—H7C109.5
C11—O2—H2111 (3)C9—C8—C13117.5 (3)
C17—O3—H3112 (3)C9—C8—C2121.5 (3)
O1—C2—C8110.7 (3)C13—C8—C2121.0 (3)
O1—C2—C3105.1 (2)C8—C9—C10121.5 (3)
C8—C2—C3115.2 (3)C8—C9—H9A119.2
O1—C2—H2A108.5C10—C9—H9A119.2
C8—C2—H2A108.5C11—C10—C9119.6 (3)
C3—C2—H2A108.5C11—C10—H10A120.2
C6—C3—C4117.0 (4)C9—C10—H10A120.2
C6—C3—C2114.2 (3)C10—C11—C12120.0 (3)
C4—C3—C2103.0 (3)C10—C11—O2121.6 (3)
C6—C3—H3A107.4C12—C11—O2118.4 (3)
C4—C3—H3A107.4C11—C12—C13119.7 (3)
C2—C3—H3A107.4C11—C12—H12A120.1
C3—C4—C5102.7 (3)C13—C12—H12A120.1
C3—C4—C7116.8 (3)C8—C13—C12121.7 (3)
C5—C4—C7114.0 (3)C8—C13—H13A119.2
C3—C4—H4A107.6C12—C13—H13A119.2
C5—C4—H4A107.6C19—C14—C15117.4 (3)
C7—C4—H4A107.6C19—C14—C5121.5 (3)
O1—C5—C14109.3 (2)C15—C14—C5121.1 (3)
O1—C5—C4104.5 (2)C16—C15—C14121.1 (3)
C14—C5—C4117.4 (3)C16—C15—H15A119.4
O1—C5—H5A108.4C14—C15—H15A119.4
C14—C5—H5A108.4C17—C16—C15120.3 (3)
C4—C5—H5A108.4C17—C16—H16A119.9
C3—C6—H6A109.5C15—C16—H16A119.9
C3—C6—H6B109.5C16—C17—O3118.1 (3)
H6A—C6—H6B109.5C16—C17—C18120.0 (3)
C3—C6—H6C109.5O3—C17—C18121.9 (3)
H6A—C6—H6C109.5C19—C18—C17119.3 (3)
H6B—C6—H6C109.5C19—C18—H18A120.3
C4—C7—H7A109.5C17—C18—H18A120.3
C4—C7—H7B109.5C18—C19—C14121.8 (3)
H7A—C7—H7B109.5C18—C19—H19A119.1
C4—C7—H7C109.5C14—C19—H19A119.1
H7A—C7—H7C109.5
C5—O1—C2—C8131.3 (3)C8—C9—C10—C110.1 (5)
C5—O1—C2—C36.2 (3)C9—C10—C11—C121.4 (5)
O1—C2—C3—C6155.4 (4)C9—C10—C11—O2179.9 (3)
C8—C2—C3—C682.5 (4)C10—C11—C12—C131.4 (5)
O1—C2—C3—C427.4 (3)O2—C11—C12—C13179.9 (3)
C8—C2—C3—C4149.6 (3)C9—C8—C13—C121.4 (5)
C6—C3—C4—C5163.5 (3)C2—C8—C13—C12179.9 (3)
C2—C3—C4—C537.3 (3)C11—C12—C13—C80.1 (5)
C6—C3—C4—C771.0 (5)O1—C5—C14—C19124.5 (3)
C2—C3—C4—C7162.8 (3)C4—C5—C14—C19116.8 (3)
C2—O1—C5—C14143.7 (3)O1—C5—C14—C1554.8 (4)
C2—O1—C5—C417.2 (3)C4—C5—C14—C1563.9 (4)
C3—C4—C5—O134.0 (3)C19—C14—C15—C160.3 (5)
C7—C4—C5—O1161.3 (3)C5—C14—C15—C16179.0 (3)
C3—C4—C5—C14155.2 (3)C14—C15—C16—C170.7 (6)
C7—C4—C5—C1477.5 (4)C15—C16—C17—O3178.8 (3)
O1—C2—C8—C944.0 (4)C15—C16—C17—C180.4 (6)
C3—C2—C8—C975.1 (4)C16—C17—C18—C190.3 (5)
O1—C2—C8—C13137.5 (3)O3—C17—C18—C19178.0 (3)
C3—C2—C8—C13103.4 (4)C17—C18—C19—C140.7 (5)
C13—C8—C9—C101.3 (5)C15—C14—C19—C180.4 (5)
C2—C8—C9—C10179.9 (3)C5—C14—C19—C18179.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.92 (5)1.84 (5)2.752 (4)169 (5)
O2—H2···O1ii0.90 (4)1.89 (4)2.723 (3)154 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y1/2, z.

Experimental details

Crystal data
Chemical formulaC18H20O3
Mr284.34
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)6.4225 (4), 12.4973 (7), 9.8176 (7)
β (°) 101.243 (6)
V3)772.88 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.36 × 0.26 × 0.21
Data collection
DiffractometerAgilent Xcalibur (Atlas, Gemini)
Absorption correctionAnalytical
[CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.980, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
5223, 1592, 1107
Rint0.041
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.106, 1.05
No. of reflections1592
No. of parameters198
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.18
Absolute structure1004 measured Friedel pairs merged for refinement

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.92 (5)1.84 (5)2.752 (4)169 (5)
O2—H2···O1ii0.90 (4)1.89 (4)2.723 (3)154 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y1/2, z.
 

Acknowledgements

This project was financially supported by Mexican grants CONACYT-SEP-CB-2008-01 (project No. 106107) and PAICYT SA221-09.

References

First citationAltona, C. & Sundaralingam, M. (1972). J. Am. Chem. Soc. 94, 8205–8212.  CrossRef CAS PubMed Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFavela-Hernández, J. M. J., García, A., Garza-González, E., Rivas-Galindo, V. M. & Camacho-Corona, M. R. (2012). Phytother. Res. doi:10.1002/ptr.4660.  Google Scholar
First citationKonno, C., Lu, Z.-Z., Xue, H.-Z., Erdelmeier, C. A. J., Meksuriyen, D., Che, C.-T., Cordell, G. A., Soejarto, D. D., Waller, D. P. & Fong, H. H. S. (1990). J. Nat. Prod. 53, 396–406.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoinuddin, S. G. A., Hishiyama, S., Cho, M.-H., Davin, L. B. & Lewis, N. G. (2003). Org. Biomol. Chem. 1, 2307–2313.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxforfdshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoepadamo, J. M. S., Fang, X.-P., McLaughlin, J. L. & Fanwick, P. E. (1991). J. Nat. Prod. 54, 1681–1683.  PubMed Web of Science Google Scholar
First citationSun, G., Voigt, J. H., Filippov, I. V., Marquez, V. E. & Nicklaus, M. C. (2004). J. Chem. Inf. Comput. Sci. 44, 1752–1762.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds