organic compounds
4,4′-[(2R*,3R*,4R*,5R*)-3,4-Dimethyltetrahydrofuran-2,5-diyl]diphenol
aFacultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, UANL, Avenida Universidad S/N, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León CP 66451, Mexico, and bFacultad de Química, Universidad Nacional Autónoma de México, México DF 04510, Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com
The title molecule, C18H20O3, is a furanoid lignan extracted from the leaves of Larrea tridentata. The relative for the four chiral centers was established, showing that this compound is 4-epi-larreatricin, which has been previously reported in the literature. The molecule displays noncrystallographic C2 symmetry, with the methyl and phenol substituents alternating above and below the mean plane of the furan ring. The conformation of this ring is described by the pseudorotation phase angle P = 171.3° and the maximum out-of-plane pucker νm = 37.7°. These parameters indicate that the furan ring adopts the same conformation as the ribose residues in B-DNA. The packing is dominated by intermolecular O—H⋯O hydrogen bonds. The phenol hydroxy groups form chains in the [110] direction and these chains interact via O—H⋯O(furan) contacts.
Related literature
For the extraction, synthesis, characterization and biological activity of the title compound, see: Konno et al. (1990); Moinuddin et al. (2003); Favela-Hernández et al. (2012). For the of sugar rings, see: Altona & Sundaralingam (1972); Sun et al. (2004). For an example of another naturally occurring furanoid lignan, see: Soepadamo et al. (1991).
Experimental
Crystal data
|
Data collection
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536812039359/mw2082sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812039359/mw2082Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812039359/mw2082Isup3.cml
Leaves of L. tridentata were collected in Galeana, Nuevo León, Mexico, and authenticated by Biól. Mauricio González (Voucher 024772, Facultad de Ciencias Biológicas, UANL). Dried and ground leaves (500 g) were extracted with hexane and then with CHCl3 through maceration. Details of the
of the chloroform fraction have been described previously (Favela-Hernández et al., 2012). This afforded, among other products, 11 mg of the title molecule, which was crystallized from CHCl3/MeOH (95/5, v/v). m.p. 503–505 K (Lit. 503–505 K, Konno et al., 1990). 1H and 13C NMR data are in agreement with the X-ray structure.With only first row elements present, the
could not be determined with certainty so the Friedel pairs (1004) were merged. C-bound H atoms were placed in idealized positions with C—H = 0.93 (aromatic CH), 0.96 (methyl CH3) or 0.98 Å (methine CH) and included as riding contributions. Hydroxyl H atoms, H2 and H3, were found in a difference map and refined freely. Isotropic displacement parameters for H atoms were calculated as Uiso(H) = xUeq(carrier atom) where x = 1.5 for methyl and hydroxyl groups, and x = 1.2 for other H atoms.The characterization of the title molecule is a part of a long-term project related to the screening of extracts obtained from plants used in Mexican traditional medicine to treat respiratory infections like tuberculosis. The title furanoid lignan is present in the chloroformic extract of Larrea tridentata, a plant found mainly in the southwestern US and northern Mexico. We have recently probed the antibacterial and antimycobacterial activity of this molecule and found that it is active against methicillin resistant S. aureus and M. tuberculosis H37Rv strain (Favela-Hernández et al., 2012). This molecule was previously extracted from L. tridentata samples from Phoenix, Arizona and characterized by MS and NMR (Konno et al., 1990). The synthesis and chiral HPLC analysis of
of this compound have also been carried out (Moinuddin et al., 2003).The relative stereochemistry for the four chiral C atoms in the furan ring was determined (Fig. 1) showing that the crystallized lignan corresponds to 4-epi-larreatricin (Konno et al., 1990; Moinuddin et al., 2003). The same configuration was found in related furanoid α,α'-diaryl-β,β'-dimethyl manner thus avoiding between aryl and methyl groups. The furan ring adopts a twisted characteristic of ribose sugars in the B-form of DNA (hydrated DNA). This may be checked by computing the phase angle of pseudorotation for the ring, P = 171.3°, and the maximum degree of pucker, νm = 37.7° (Altona & Sundaralingam, 1972). The comparison of these data with the distribution of P and νm for β-nucleosides found in the CSD clearly shows that the title compound lies in the south hemisphere of the pseudorotational wheel and within the C2'-endo cluster (2E form, P = 162° (See Fig. 3 in Altona & Sundaralingam, 1972 and Fig. 6 in Sun et al., 2004)).
from other natural sources, for example grandisin, which is extracted from Cryptocarya crassinervia (Soepadamo et al., 1991). The four substituents of the central furan ring are arranged in an all-transThe
is based on chains formed through intermolecular O—H···O hydrogen bonds involving the hydroxyl groups (Fig. 2, inset). The resulting layer interacts with the neighboring layer packed along the c axis, through O—H···O(furan) contacts, forming the complete three-dimensional framework (Fig. 2).For the extraction, synthesis, characterization and biological activity of the title compound, see: Konno et al. (1990); Moinuddin et al. (2003); Favela-Hernández et al. (2012). For the
of sugar rings, see: Altona & Sundaralingam (1972); Sun et al. (2004). For an example of another naturally occurring furanoid lignan, see: Soepadamo et al. (1991).Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C18H20O3 | F(000) = 304 |
Mr = 284.34 | Dx = 1.222 Mg m−3 |
Monoclinic, P21 | Melting point: 503 K |
Hall symbol: P 2yb | Mo Kα radiation, λ = 0.71073 Å |
a = 6.4225 (4) Å | Cell parameters from 1308 reflections |
b = 12.4973 (7) Å | θ = 3.5–26.0° |
c = 9.8176 (7) Å | µ = 0.08 mm−1 |
β = 101.243 (6)° | T = 298 K |
V = 772.88 (9) Å3 | Block, colourless |
Z = 2 | 0.36 × 0.26 × 0.21 mm |
Agilent Xcalibur (Atlas, Gemini) diffractometer | 1592 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1107 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
Detector resolution: 10.4685 pixels mm-1 | θmax = 26.1°, θmin = 3.5° |
φ and ω scans | h = −7→6 |
Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)] | k = −15→15 |
Tmin = 0.980, Tmax = 0.985 | l = −12→11 |
5223 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.106 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0498P)2] where P = (Fo2 + 2Fc2)/3 |
1592 reflections | (Δ/σ)max < 0.001 |
198 parameters | Δρmax = 0.19 e Å−3 |
1 restraint | Δρmin = −0.18 e Å−3 |
0 constraints | Absolute structure: 1004 measured Friedel pairs merged for refinement |
C18H20O3 | V = 772.88 (9) Å3 |
Mr = 284.34 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 6.4225 (4) Å | µ = 0.08 mm−1 |
b = 12.4973 (7) Å | T = 298 K |
c = 9.8176 (7) Å | 0.36 × 0.26 × 0.21 mm |
β = 101.243 (6)° |
Agilent Xcalibur (Atlas, Gemini) diffractometer | 1592 independent reflections |
Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)] | 1107 reflections with I > 2σ(I) |
Tmin = 0.980, Tmax = 0.985 | Rint = 0.041 |
5223 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 1 restraint |
wR(F2) = 0.106 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.19 e Å−3 |
1592 reflections | Δρmin = −0.18 e Å−3 |
198 parameters | Absolute structure: 1004 measured Friedel pairs merged for refinement |
x | y | z | Uiso*/Ueq | ||
O1 | 0.6576 (4) | 0.17906 (19) | 0.2077 (2) | 0.0608 (7) | |
O2 | 0.3301 (4) | −0.29301 (19) | 0.0656 (2) | 0.0569 (6) | |
H2 | 0.377 (5) | −0.303 (4) | −0.014 (4) | 0.085* | |
O3 | 0.9213 (4) | 0.64265 (18) | 0.0690 (3) | 0.0741 (8) | |
H3 | 1.056 (8) | 0.659 (4) | 0.058 (5) | 0.111* | |
C2 | 0.5625 (5) | 0.1142 (3) | 0.3000 (3) | 0.0489 (8) | |
H2A | 0.4333 | 0.1500 | 0.3155 | 0.059* | |
C3 | 0.7244 (5) | 0.1130 (3) | 0.4373 (4) | 0.0588 (9) | |
H3A | 0.8255 | 0.0553 | 0.4313 | 0.071* | |
C4 | 0.8399 (5) | 0.2166 (3) | 0.4337 (3) | 0.0598 (9) | |
H4A | 0.7472 | 0.2739 | 0.4551 | 0.072* | |
C5 | 0.8532 (5) | 0.2269 (3) | 0.2820 (4) | 0.0519 (9) | |
H5A | 0.9727 | 0.1835 | 0.2651 | 0.062* | |
C6 | 0.6305 (7) | 0.0920 (5) | 0.5619 (4) | 0.0953 (16) | |
H6A | 0.7419 | 0.0872 | 0.6426 | 0.143* | |
H6B | 0.5530 | 0.0259 | 0.5498 | 0.143* | |
H6C | 0.5362 | 0.1493 | 0.5737 | 0.143* | |
C7 | 1.0528 (6) | 0.2277 (4) | 0.5332 (4) | 0.0903 (14) | |
H7A | 1.1126 | 0.2967 | 0.5212 | 0.135* | |
H7B | 1.1476 | 0.1728 | 0.5140 | 0.135* | |
H7C | 1.0323 | 0.2207 | 0.6270 | 0.135* | |
C8 | 0.5031 (5) | 0.0063 (2) | 0.2373 (4) | 0.0459 (8) | |
C9 | 0.6388 (5) | −0.0506 (3) | 0.1717 (4) | 0.0564 (9) | |
H9A | 0.7700 | −0.0214 | 0.1659 | 0.068* | |
C10 | 0.5841 (5) | −0.1507 (3) | 0.1138 (4) | 0.0574 (9) | |
H10A | 0.6780 | −0.1878 | 0.0700 | 0.069* | |
C11 | 0.3913 (5) | −0.1941 (3) | 0.1217 (3) | 0.0448 (8) | |
C12 | 0.2553 (5) | −0.1400 (3) | 0.1891 (4) | 0.0561 (9) | |
H12A | 0.1254 | −0.1701 | 0.1963 | 0.067* | |
C13 | 0.3120 (5) | −0.0407 (3) | 0.2462 (4) | 0.0571 (9) | |
H13A | 0.2189 | −0.0047 | 0.2918 | 0.069* | |
C14 | 0.8752 (5) | 0.3372 (3) | 0.2270 (3) | 0.0467 (8) | |
C15 | 0.7158 (5) | 0.4127 (3) | 0.2230 (4) | 0.0586 (10) | |
H15A | 0.5943 | 0.3948 | 0.2563 | 0.070* | |
C16 | 0.7343 (5) | 0.5140 (3) | 0.1703 (4) | 0.0615 (10) | |
H16A | 0.6250 | 0.5632 | 0.1675 | 0.074* | |
C17 | 0.9120 (5) | 0.5420 (3) | 0.1225 (4) | 0.0526 (9) | |
C18 | 1.0742 (5) | 0.4688 (3) | 0.1258 (4) | 0.0535 (9) | |
H18A | 1.1962 | 0.4877 | 0.0937 | 0.064* | |
C19 | 1.0533 (5) | 0.3675 (3) | 0.1771 (4) | 0.0516 (9) | |
H19A | 1.1621 | 0.3182 | 0.1781 | 0.062* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0838 (15) | 0.0455 (15) | 0.0496 (14) | −0.0226 (12) | 0.0047 (11) | 0.0036 (11) |
O2 | 0.0778 (15) | 0.0387 (14) | 0.0569 (15) | −0.0091 (12) | 0.0199 (11) | −0.0006 (13) |
O3 | 0.0794 (17) | 0.0361 (15) | 0.109 (2) | −0.0074 (13) | 0.0236 (16) | 0.0085 (14) |
C2 | 0.0552 (18) | 0.037 (2) | 0.055 (2) | −0.0024 (15) | 0.0118 (15) | 0.0019 (16) |
C3 | 0.070 (2) | 0.051 (2) | 0.055 (2) | −0.0058 (18) | 0.0119 (17) | 0.0035 (19) |
C4 | 0.063 (2) | 0.059 (2) | 0.054 (2) | −0.0017 (18) | 0.0007 (15) | 0.006 (2) |
C5 | 0.0527 (19) | 0.039 (2) | 0.063 (2) | −0.0002 (15) | 0.0098 (15) | −0.0003 (18) |
C6 | 0.107 (3) | 0.109 (4) | 0.069 (3) | −0.019 (3) | 0.013 (2) | 0.015 (3) |
C7 | 0.086 (3) | 0.097 (4) | 0.077 (3) | −0.015 (3) | −0.009 (2) | 0.002 (3) |
C8 | 0.0547 (19) | 0.0343 (19) | 0.049 (2) | −0.0024 (14) | 0.0109 (15) | 0.0031 (15) |
C9 | 0.0549 (19) | 0.048 (2) | 0.070 (3) | −0.0090 (16) | 0.0216 (17) | −0.006 (2) |
C10 | 0.058 (2) | 0.053 (2) | 0.067 (2) | 0.0024 (17) | 0.0249 (17) | −0.005 (2) |
C11 | 0.0588 (19) | 0.0306 (18) | 0.0461 (19) | −0.0029 (15) | 0.0128 (14) | 0.0048 (15) |
C12 | 0.0563 (19) | 0.043 (2) | 0.073 (3) | −0.0117 (17) | 0.0253 (17) | −0.0023 (19) |
C13 | 0.062 (2) | 0.048 (2) | 0.067 (3) | −0.0035 (17) | 0.0257 (17) | −0.0069 (19) |
C14 | 0.0513 (18) | 0.038 (2) | 0.050 (2) | −0.0052 (14) | 0.0076 (14) | −0.0030 (16) |
C15 | 0.054 (2) | 0.043 (2) | 0.081 (3) | −0.0055 (16) | 0.0191 (18) | −0.0015 (19) |
C16 | 0.057 (2) | 0.040 (2) | 0.088 (3) | −0.0006 (16) | 0.0154 (18) | 0.003 (2) |
C17 | 0.060 (2) | 0.0313 (19) | 0.064 (2) | −0.0072 (16) | 0.0073 (16) | −0.0056 (17) |
C18 | 0.0538 (19) | 0.045 (2) | 0.064 (2) | −0.0055 (16) | 0.0176 (16) | −0.0077 (18) |
C19 | 0.0507 (18) | 0.037 (2) | 0.068 (2) | 0.0000 (15) | 0.0155 (16) | −0.0045 (17) |
O1—C2 | 1.437 (4) | C7—H7C | 0.9600 |
O1—C5 | 1.452 (3) | C8—C9 | 1.378 (5) |
O2—C11 | 1.378 (4) | C8—C13 | 1.379 (4) |
O2—H2 | 0.90 (4) | C9—C10 | 1.390 (5) |
O3—C17 | 1.368 (4) | C9—H9A | 0.9300 |
O3—H3 | 0.92 (5) | C10—C11 | 1.368 (4) |
C2—C8 | 1.501 (4) | C10—H10A | 0.9300 |
C2—C3 | 1.533 (5) | C11—C12 | 1.373 (5) |
C2—H2A | 0.9800 | C12—C13 | 1.381 (5) |
C3—C6 | 1.489 (5) | C12—H12A | 0.9300 |
C3—C4 | 1.496 (5) | C13—H13A | 0.9300 |
C3—H3A | 0.9800 | C14—C19 | 1.383 (5) |
C4—C5 | 1.513 (5) | C14—C15 | 1.387 (4) |
C4—C7 | 1.524 (4) | C15—C16 | 1.381 (5) |
C4—H4A | 0.9800 | C15—H15A | 0.9300 |
C5—C14 | 1.497 (5) | C16—C17 | 1.362 (5) |
C5—H5A | 0.9800 | C16—H16A | 0.9300 |
C6—H6A | 0.9600 | C17—C18 | 1.382 (5) |
C6—H6B | 0.9600 | C18—C19 | 1.379 (5) |
C6—H6C | 0.9600 | C18—H18A | 0.9300 |
C7—H7A | 0.9600 | C19—H19A | 0.9300 |
C7—H7B | 0.9600 | ||
C2—O1—C5 | 110.3 (2) | H7B—C7—H7C | 109.5 |
C11—O2—H2 | 111 (3) | C9—C8—C13 | 117.5 (3) |
C17—O3—H3 | 112 (3) | C9—C8—C2 | 121.5 (3) |
O1—C2—C8 | 110.7 (3) | C13—C8—C2 | 121.0 (3) |
O1—C2—C3 | 105.1 (2) | C8—C9—C10 | 121.5 (3) |
C8—C2—C3 | 115.2 (3) | C8—C9—H9A | 119.2 |
O1—C2—H2A | 108.5 | C10—C9—H9A | 119.2 |
C8—C2—H2A | 108.5 | C11—C10—C9 | 119.6 (3) |
C3—C2—H2A | 108.5 | C11—C10—H10A | 120.2 |
C6—C3—C4 | 117.0 (4) | C9—C10—H10A | 120.2 |
C6—C3—C2 | 114.2 (3) | C10—C11—C12 | 120.0 (3) |
C4—C3—C2 | 103.0 (3) | C10—C11—O2 | 121.6 (3) |
C6—C3—H3A | 107.4 | C12—C11—O2 | 118.4 (3) |
C4—C3—H3A | 107.4 | C11—C12—C13 | 119.7 (3) |
C2—C3—H3A | 107.4 | C11—C12—H12A | 120.1 |
C3—C4—C5 | 102.7 (3) | C13—C12—H12A | 120.1 |
C3—C4—C7 | 116.8 (3) | C8—C13—C12 | 121.7 (3) |
C5—C4—C7 | 114.0 (3) | C8—C13—H13A | 119.2 |
C3—C4—H4A | 107.6 | C12—C13—H13A | 119.2 |
C5—C4—H4A | 107.6 | C19—C14—C15 | 117.4 (3) |
C7—C4—H4A | 107.6 | C19—C14—C5 | 121.5 (3) |
O1—C5—C14 | 109.3 (2) | C15—C14—C5 | 121.1 (3) |
O1—C5—C4 | 104.5 (2) | C16—C15—C14 | 121.1 (3) |
C14—C5—C4 | 117.4 (3) | C16—C15—H15A | 119.4 |
O1—C5—H5A | 108.4 | C14—C15—H15A | 119.4 |
C14—C5—H5A | 108.4 | C17—C16—C15 | 120.3 (3) |
C4—C5—H5A | 108.4 | C17—C16—H16A | 119.9 |
C3—C6—H6A | 109.5 | C15—C16—H16A | 119.9 |
C3—C6—H6B | 109.5 | C16—C17—O3 | 118.1 (3) |
H6A—C6—H6B | 109.5 | C16—C17—C18 | 120.0 (3) |
C3—C6—H6C | 109.5 | O3—C17—C18 | 121.9 (3) |
H6A—C6—H6C | 109.5 | C19—C18—C17 | 119.3 (3) |
H6B—C6—H6C | 109.5 | C19—C18—H18A | 120.3 |
C4—C7—H7A | 109.5 | C17—C18—H18A | 120.3 |
C4—C7—H7B | 109.5 | C18—C19—C14 | 121.8 (3) |
H7A—C7—H7B | 109.5 | C18—C19—H19A | 119.1 |
C4—C7—H7C | 109.5 | C14—C19—H19A | 119.1 |
H7A—C7—H7C | 109.5 | ||
C5—O1—C2—C8 | −131.3 (3) | C8—C9—C10—C11 | 0.1 (5) |
C5—O1—C2—C3 | −6.2 (3) | C9—C10—C11—C12 | −1.4 (5) |
O1—C2—C3—C6 | 155.4 (4) | C9—C10—C11—O2 | 179.9 (3) |
C8—C2—C3—C6 | −82.5 (4) | C10—C11—C12—C13 | 1.4 (5) |
O1—C2—C3—C4 | 27.4 (3) | O2—C11—C12—C13 | −179.9 (3) |
C8—C2—C3—C4 | 149.6 (3) | C9—C8—C13—C12 | −1.4 (5) |
C6—C3—C4—C5 | −163.5 (3) | C2—C8—C13—C12 | −179.9 (3) |
C2—C3—C4—C5 | −37.3 (3) | C11—C12—C13—C8 | 0.1 (5) |
C6—C3—C4—C7 | 71.0 (5) | O1—C5—C14—C19 | −124.5 (3) |
C2—C3—C4—C7 | −162.8 (3) | C4—C5—C14—C19 | 116.8 (3) |
C2—O1—C5—C14 | −143.7 (3) | O1—C5—C14—C15 | 54.8 (4) |
C2—O1—C5—C4 | −17.2 (3) | C4—C5—C14—C15 | −63.9 (4) |
C3—C4—C5—O1 | 34.0 (3) | C19—C14—C15—C16 | 0.3 (5) |
C7—C4—C5—O1 | 161.3 (3) | C5—C14—C15—C16 | −179.0 (3) |
C3—C4—C5—C14 | 155.2 (3) | C14—C15—C16—C17 | −0.7 (6) |
C7—C4—C5—C14 | −77.5 (4) | C15—C16—C17—O3 | 178.8 (3) |
O1—C2—C8—C9 | 44.0 (4) | C15—C16—C17—C18 | 0.4 (6) |
C3—C2—C8—C9 | −75.1 (4) | C16—C17—C18—C19 | 0.3 (5) |
O1—C2—C8—C13 | −137.5 (3) | O3—C17—C18—C19 | −178.0 (3) |
C3—C2—C8—C13 | 103.4 (4) | C17—C18—C19—C14 | −0.7 (5) |
C13—C8—C9—C10 | 1.3 (5) | C15—C14—C19—C18 | 0.4 (5) |
C2—C8—C9—C10 | 179.9 (3) | C5—C14—C19—C18 | 179.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O2i | 0.92 (5) | 1.84 (5) | 2.752 (4) | 169 (5) |
O2—H2···O1ii | 0.90 (4) | 1.89 (4) | 2.723 (3) | 154 (3) |
Symmetry codes: (i) x+1, y+1, z; (ii) −x+1, y−1/2, −z. |
Experimental details
Crystal data | |
Chemical formula | C18H20O3 |
Mr | 284.34 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 298 |
a, b, c (Å) | 6.4225 (4), 12.4973 (7), 9.8176 (7) |
β (°) | 101.243 (6) |
V (Å3) | 772.88 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.36 × 0.26 × 0.21 |
Data collection | |
Diffractometer | Agilent Xcalibur (Atlas, Gemini) |
Absorption correction | Analytical [CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)] |
Tmin, Tmax | 0.980, 0.985 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5223, 1592, 1107 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.618 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.106, 1.05 |
No. of reflections | 1592 |
No. of parameters | 198 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.19, −0.18 |
Absolute structure | 1004 measured Friedel pairs merged for refinement |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O2i | 0.92 (5) | 1.84 (5) | 2.752 (4) | 169 (5) |
O2—H2···O1ii | 0.90 (4) | 1.89 (4) | 2.723 (3) | 154 (3) |
Symmetry codes: (i) x+1, y+1, z; (ii) −x+1, y−1/2, −z. |
Acknowledgements
This project was financially supported by Mexican grants CONACYT-SEP-CB-2008-01 (project No. 106107) and PAICYT SA221-09.
References
Altona, C. & Sundaralingam, M. (1972). J. Am. Chem. Soc. 94, 8205–8212. CrossRef CAS PubMed Web of Science Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Favela-Hernández, J. M. J., García, A., Garza-González, E., Rivas-Galindo, V. M. & Camacho-Corona, M. R. (2012). Phytother. Res. doi:10.1002/ptr.4660. Google Scholar
Konno, C., Lu, Z.-Z., Xue, H.-Z., Erdelmeier, C. A. J., Meksuriyen, D., Che, C.-T., Cordell, G. A., Soejarto, D. D., Waller, D. P. & Fong, H. H. S. (1990). J. Nat. Prod. 53, 396–406. CrossRef CAS PubMed Web of Science Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Moinuddin, S. G. A., Hishiyama, S., Cho, M.-H., Davin, L. B. & Lewis, N. G. (2003). Org. Biomol. Chem. 1, 2307–2313. Web of Science CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxforfdshire, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Soepadamo, J. M. S., Fang, X.-P., McLaughlin, J. L. & Fanwick, P. E. (1991). J. Nat. Prod. 54, 1681–1683. PubMed Web of Science Google Scholar
Sun, G., Voigt, J. H., Filippov, I. V., Marquez, V. E. & Nicklaus, M. C. (2004). J. Chem. Inf. Comput. Sci. 44, 1752–1762. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The characterization of the title molecule is a part of a long-term project related to the screening of extracts obtained from plants used in Mexican traditional medicine to treat respiratory infections like tuberculosis. The title furanoid lignan is present in the chloroformic extract of Larrea tridentata, a plant found mainly in the southwestern US and northern Mexico. We have recently probed the antibacterial and antimycobacterial activity of this molecule and found that it is active against methicillin resistant S. aureus and M. tuberculosis H37Rv strain (Favela-Hernández et al., 2012). This molecule was previously extracted from L. tridentata samples from Phoenix, Arizona and characterized by MS and NMR (Konno et al., 1990). The synthesis and chiral HPLC analysis of stereoisomers of this compound have also been carried out (Moinuddin et al., 2003).
The relative stereochemistry for the four chiral C atoms in the furan ring was determined (Fig. 1) showing that the crystallized lignan corresponds to 4-epi-larreatricin (Konno et al., 1990; Moinuddin et al., 2003). The same configuration was found in related furanoid lignans from other natural sources, for example grandisin, which is extracted from Cryptocarya crassinervia (Soepadamo et al., 1991). The four substituents of the central furan ring are arranged in an all-trans α,α'-diaryl-β,β'-dimethyl manner thus avoiding steric hindrance between aryl and methyl groups. The furan ring adopts a twisted envelope conformation characteristic of ribose sugars in the B-form of DNA (hydrated DNA). This may be checked by computing the phase angle of pseudorotation for the ring, P = 171.3°, and the maximum degree of pucker, νm = 37.7° (Altona & Sundaralingam, 1972). The comparison of these data with the distribution of P and νm for β-nucleosides found in the CSD clearly shows that the title compound lies in the south hemisphere of the pseudorotational wheel and within the C2'-endo cluster (2E form, P = 162° (See Fig. 3 in Altona & Sundaralingam, 1972 and Fig. 6 in Sun et al., 2004)).
The crystal structure is based on chains formed through intermolecular O—H···O hydrogen bonds involving the hydroxyl groups (Fig. 2, inset). The resulting layer interacts with the neighboring layer packed along the c axis, through O—H···O(furan) contacts, forming the complete three-dimensional framework (Fig. 2).