organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-[(2-Amino­phen­yl)imino­meth­yl]-4,6-di-tert-butyl­phenol

aSchool of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, Shaanxi, People's Republic of China, bCollege of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China, and cCollege of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, People's Republic of China
*Correspondence e-mail: lqding@xsyu.edu.cn

(Received 1 August 2012; accepted 8 September 2012; online 15 September 2012)

In the title compound, C21H28N2O, the dihedral angle between the rings is 35.2 (2)°. A weak intra­molecular O—H⋯N hydrogen bond is observed between the O—H H atom and the imine N atom. In the crystal, mol­ecules are linked by additional inter­molecular N—H⋯O hydrogen bonding, resulting in a wave-like chain along the b-axis direction.

Related literature

For related structures, see: Kochem et al. (2010[Kochem, A., Orio, M., Jarjayes, O., Neeseb, F. & Thomas, F. (2010). Chem. Commun. 46, 6765-6767.]); Belmonte et al. (2010[Belmonte, M. M., Wezenberg, S. J., Haak, R. M., Anselmo, D., Escudero-Adán, E. C., Benet-Buchholza, J. & Kleij, A. W. (2010). Dalton Trans. 39, 4541-4550.]); Liu et al. (2010[Liu, P., Feng, X. J. & He, R. (2010). Tetrahedron, 66, 631-636.]). Details of the synthesis can be found in Muñoz-Hernández et al. (2000[Muñoz-Hernández, M. A., Keizer, T. S., Parkin, S., Patrick, B. & Patrick, D. A. (2000). Organometallics, 19, 4416-4421.]).

[Scheme 1]

Experimental

Crystal data
  • C21H28N2O

  • Mr = 324.45

  • Monoclinic, P 21

  • a = 10.898 (5) Å

  • b = 6.230 (3) Å

  • c = 15.095 (8) Å

  • β = 108.928 (6)°

  • V = 969.5 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.38 × 0.26 × 0.20 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.979, Tmax = 0.986

  • 3718 measured reflections

  • 1357 independent reflections

  • 1224 reflections with I > 2σ(I)

  • Rint = 0.025

  • θmax = 22.2°

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.129

  • S = 1.10

  • 1357 reflections

  • 218 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.82 1.87 2.608 (4) 149
N2—H2A⋯O1i 0.86 2.54 3.342 (4) 155
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+2].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

The title compound is an important synthetic intermediate for design and synthesis of asymmetric Schiff base complexes showing excellent catalytic activity in various reactions. In the structure of the title compound the dihedral angle between the two phenyl rings amount to 35.2 (2) ° and all bond lengths are comparable to those observed in similar compounds (Kochem et al., 2010; Belmonte et al., 2010; Liu et al., 2010) (Fig. 1). An intramolecular O—H···N hydrogen bond between the O-H H atom and the N atom N1 is observed (Table 1). In the crystal structure the molecules are linked into chains along the b axis by intermolecular N—H···O hydrogen bonding between the amino group and the hydroxy O atom which act as acceptor (Table 1 and Fig. 2).

Related literature top

For related structures, see: Kochem et al. (2010); Belmonte et al. (2010); Liu et al. (2010). Details of the synthesis can be found in Muñoz-Hernández et al. (2000).

Experimental top

The title compound was obtained according to the synthetic procedure of Muñoz-Hernández et al. (2000). 1,2-diaminobenzene (1.0 g, 9.2 mmol) was added to a solution of 3,5-Di-tert-butyl-2- hydroxybenzaldehyde (1.1 g, 4.6 mmol) in absolute ethanol (40 ml) and heated to reflux for 4 h, then concentrated to 20 ml by distillation. An orange solid precipitated from the reaction mixture and collected by filtration and dried open air. The orange solid was recrystalized from ethanol to give an orange crystal, which was collected by filtration and dried under vacuum, yield 71.0%. The single-crystal of the title compound suitble for X-ray diffraction was obtained by slow evaporation of an ethanol solution of the title compound.

Refinement top

Hydrogen atoms were positioned with idealized geometry (O-H H atoms allowed to rotate but no to tip) and refined using a riding model with N—H = 0.86 Å, C—H = 0.95–0.99 Å, O—H = 0.82 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C/N), Uiso(H) = 1.5 Ueq(O). Because no strong anomalous scattering atoms are present the absolute structure cannot be determined. Therefore, Friedel opposites were merged in the refinement.

Structure description top

The title compound is an important synthetic intermediate for design and synthesis of asymmetric Schiff base complexes showing excellent catalytic activity in various reactions. In the structure of the title compound the dihedral angle between the two phenyl rings amount to 35.2 (2) ° and all bond lengths are comparable to those observed in similar compounds (Kochem et al., 2010; Belmonte et al., 2010; Liu et al., 2010) (Fig. 1). An intramolecular O—H···N hydrogen bond between the O-H H atom and the N atom N1 is observed (Table 1). In the crystal structure the molecules are linked into chains along the b axis by intermolecular N—H···O hydrogen bonding between the amino group and the hydroxy O atom which act as acceptor (Table 1 and Fig. 2).

For related structures, see: Kochem et al. (2010); Belmonte et al. (2010); Liu et al. (2010). Details of the synthesis can be found in Muñoz-Hernández et al. (2000).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the b axis. Intermolecular hydrogen bonding is shown as dashed lines.
(E)-2-[(2-Aminophenyl)iminomethyl]-4,6-di-tert-butylphenol top
Crystal data top
C21H28N2OF(000) = 352
Mr = 324.45Dx = 1.111 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2451 reflections
a = 10.898 (5) Åθ = 1.9–26.6°
b = 6.230 (3) ŵ = 0.07 mm1
c = 15.095 (8) ÅT = 296 K
β = 108.928 (6)°Stick, orange
V = 969.5 (8) Å30.38 × 0.26 × 0.20 mm
Z = 2
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
1357 independent reflections
Radiation source: fine-focus sealed tube1224 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
thin–slice ω scansθmax = 22.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1111
Tmin = 0.979, Tmax = 0.986k = 66
3718 measured reflectionsl = 1016
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0864P)2 + 0.0703P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1357 reflectionsΔρmax = 0.22 e Å3
218 parametersΔρmin = 0.15 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.018 (7)
Crystal data top
C21H28N2OV = 969.5 (8) Å3
Mr = 324.45Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.898 (5) ŵ = 0.07 mm1
b = 6.230 (3) ÅT = 296 K
c = 15.095 (8) Å0.38 × 0.26 × 0.20 mm
β = 108.928 (6)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
1357 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1224 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.986Rint = 0.025
3718 measured reflectionsθmax = 22.2°
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.129H-atom parameters constrained
S = 1.10Δρmax = 0.22 e Å3
1357 reflectionsΔρmin = 0.15 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5353 (2)0.2087 (4)0.80055 (16)0.0705 (8)
H1A0.56350.30480.83890.106*
N10.6999 (3)0.4874 (5)0.9023 (2)0.0643 (8)
C70.6019 (3)0.0180 (6)0.6967 (2)0.0588 (9)
C60.7034 (3)0.0771 (7)0.6648 (2)0.0603 (9)
H6A0.68740.18380.61930.072*
C130.7507 (3)0.2450 (6)0.7952 (2)0.0576 (9)
C120.6285 (3)0.1469 (6)0.7643 (2)0.0587 (9)
C50.8277 (3)0.0122 (7)0.6961 (2)0.0587 (9)
C140.8484 (3)0.1742 (7)0.7605 (2)0.0629 (10)
H14A0.92950.23920.78180.075*
C30.9334 (3)0.0683 (7)0.6571 (3)0.0670 (10)
C150.7804 (3)0.4156 (6)0.8635 (2)0.0646 (10)
H15A0.86260.47710.88030.078*
C80.4673 (3)0.1218 (7)0.6579 (2)0.0669 (11)
C41.0650 (4)0.0253 (13)0.7108 (4)0.126 (2)
H4A1.06080.17910.70710.189*
H4B1.12840.02570.68410.189*
H4C1.08920.01830.77520.189*
C160.7344 (3)0.6617 (6)0.9657 (2)0.0634 (10)
C210.6777 (4)0.6701 (8)1.0365 (2)0.0738 (11)
C170.8160 (4)0.8258 (7)0.9580 (3)0.0790 (12)
H17A0.85230.82230.91020.095*
N20.5933 (4)0.5117 (8)1.0433 (3)0.1113 (15)
H2A0.55800.51781.08660.134*
H2B0.57580.40661.00430.134*
C200.7066 (4)0.8395 (9)1.0986 (3)0.0887 (14)
H20A0.67070.84501.14660.106*
C180.8438 (4)0.9946 (8)1.0206 (3)0.0912 (13)
H18A0.89981.10331.01570.109*
C20.9446 (5)0.3129 (9)0.6651 (4)0.1065 (16)
H2C0.86230.37660.63160.160*
H2D0.96950.35380.72980.160*
H2E1.00880.36170.63880.160*
C90.4638 (4)0.2935 (10)0.5856 (4)0.1117 (19)
H9A0.52660.40260.61370.168*
H9B0.48380.23000.53400.168*
H9C0.37890.35640.56360.168*
C190.7882 (4)1.0003 (10)1.0899 (3)0.0961 (15)
H19A0.80591.11471.13170.115*
C110.3664 (3)0.0476 (9)0.6095 (3)0.0846 (14)
H11A0.39040.11400.56010.127*
H11B0.36240.15470.65430.127*
H11C0.28310.01930.58380.127*
C10.8970 (4)0.0129 (12)0.5548 (3)0.116 (2)
H1C0.88880.14000.54730.174*
H1D0.81580.07960.52130.174*
H1E0.96310.06360.53070.174*
C100.4275 (4)0.2250 (8)0.7362 (3)0.0870 (13)
H10A0.49060.33100.76750.130*
H10B0.34430.29210.71010.130*
H10C0.42270.11670.78020.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0581 (13)0.0762 (17)0.0891 (16)0.0028 (14)0.0405 (13)0.0106 (15)
N10.0622 (17)0.067 (2)0.0671 (17)0.0028 (16)0.0262 (14)0.0019 (17)
C70.0492 (17)0.062 (2)0.0684 (19)0.0013 (17)0.0239 (15)0.0010 (19)
C60.0470 (18)0.068 (2)0.070 (2)0.0007 (17)0.0236 (15)0.010 (2)
C130.0491 (18)0.062 (2)0.0648 (19)0.0041 (16)0.0224 (15)0.0008 (18)
C120.0481 (18)0.068 (2)0.0668 (19)0.0069 (17)0.0280 (15)0.004 (2)
C50.0445 (17)0.065 (2)0.069 (2)0.0028 (18)0.0222 (15)0.003 (2)
C140.0468 (17)0.071 (2)0.074 (2)0.0040 (18)0.0243 (16)0.001 (2)
C30.050 (2)0.075 (3)0.081 (2)0.0068 (19)0.0296 (17)0.001 (2)
C150.0577 (19)0.068 (2)0.069 (2)0.0031 (19)0.0217 (17)0.001 (2)
C80.0463 (18)0.081 (3)0.076 (2)0.0073 (19)0.0246 (16)0.008 (2)
C40.051 (2)0.154 (5)0.174 (5)0.001 (3)0.039 (3)0.047 (5)
C160.0574 (19)0.064 (2)0.065 (2)0.005 (2)0.0137 (16)0.001 (2)
C210.065 (2)0.088 (3)0.065 (2)0.009 (2)0.0157 (18)0.005 (2)
C170.076 (2)0.075 (3)0.081 (3)0.001 (2)0.018 (2)0.000 (2)
N20.110 (3)0.137 (4)0.110 (3)0.035 (3)0.068 (2)0.031 (3)
C200.075 (3)0.104 (4)0.084 (3)0.010 (3)0.020 (2)0.018 (3)
C180.078 (2)0.074 (3)0.103 (3)0.001 (2)0.004 (2)0.002 (3)
C20.090 (3)0.089 (3)0.151 (4)0.014 (3)0.052 (3)0.001 (4)
C90.068 (2)0.133 (5)0.139 (4)0.033 (3)0.039 (3)0.061 (4)
C190.088 (3)0.098 (4)0.083 (3)0.017 (3)0.001 (2)0.025 (3)
C110.0501 (19)0.115 (4)0.087 (3)0.003 (2)0.0198 (18)0.015 (3)
C10.096 (3)0.162 (6)0.111 (3)0.032 (4)0.063 (3)0.026 (4)
C100.069 (2)0.091 (3)0.101 (3)0.014 (2)0.027 (2)0.013 (3)
Geometric parameters (Å, º) top
O1—C121.357 (4)C21—N21.376 (6)
O1—H1A0.8200C21—C201.378 (6)
N1—C151.284 (4)C17—C181.379 (6)
N1—C161.416 (5)C17—H17A0.9300
C7—C61.393 (4)N2—H2A0.8600
C7—C121.410 (5)N2—H2B0.8600
C7—C81.534 (5)C20—C191.373 (7)
C6—C51.397 (4)C20—H20A0.9300
C6—H6A0.9300C18—C191.370 (6)
C13—C121.400 (5)C18—H18A0.9300
C13—C141.401 (5)C2—H2C0.9600
C13—C151.442 (5)C2—H2D0.9600
C5—C141.368 (5)C2—H2E0.9600
C5—C31.537 (5)C9—H9A0.9600
C14—H14A0.9300C9—H9B0.9600
C3—C11.504 (6)C9—H9C0.9600
C3—C41.517 (6)C19—H19A0.9300
C3—C21.530 (7)C11—H11A0.9600
C15—H15A0.9300C11—H11B0.9600
C8—C91.520 (6)C11—H11C0.9600
C8—C111.528 (6)C1—H1C0.9600
C8—C101.526 (6)C1—H1D0.9600
C4—H4A0.9600C1—H1E0.9600
C4—H4B0.9600C10—H10A0.9600
C4—H4C0.9600C10—H10B0.9600
C16—C171.384 (6)C10—H10C0.9600
C16—C211.399 (5)
C12—O1—H1A109.5C20—C21—C16119.2 (4)
C15—N1—C16120.3 (3)C18—C17—C16120.7 (4)
C6—C7—C12116.3 (3)C18—C17—H17A119.6
C6—C7—C8121.6 (3)C16—C17—H17A119.6
C12—C7—C8122.0 (3)C21—N2—H2A120.0
C7—C6—C5124.7 (3)C21—N2—H2B120.0
C7—C6—H6A117.6H2A—N2—H2B120.0
C5—C6—H6A117.6C19—C20—C21120.4 (4)
C12—C13—C14119.6 (3)C19—C20—H20A119.8
C12—C13—C15121.9 (3)C21—C20—H20A119.8
C14—C13—C15118.5 (3)C19—C18—C17119.3 (5)
O1—C12—C13119.8 (3)C19—C18—H18A120.4
O1—C12—C7119.5 (3)C17—C18—H18A120.4
C13—C12—C7120.6 (3)C3—C2—H2C109.5
C14—C5—C6116.9 (3)C3—C2—H2D109.5
C14—C5—C3122.8 (3)H2C—C2—H2D109.5
C6—C5—C3120.3 (3)C3—C2—H2E109.5
C5—C14—C13121.9 (3)H2C—C2—H2E109.5
C5—C14—H14A119.1H2D—C2—H2E109.5
C13—C14—H14A119.1C8—C9—H9A109.5
C1—C3—C4110.4 (4)C8—C9—H9B109.5
C1—C3—C2107.3 (5)H9A—C9—H9B109.5
C4—C3—C2107.6 (4)C8—C9—H9C109.5
C1—C3—C5109.7 (3)H9A—C9—H9C109.5
C4—C3—C5111.5 (3)H9B—C9—H9C109.5
C2—C3—C5110.2 (4)C18—C19—C20121.0 (5)
N1—C15—C13123.7 (3)C18—C19—H19A119.5
N1—C15—H15A118.2C20—C19—H19A119.5
C13—C15—H15A118.2C8—C11—H11A109.5
C9—C8—C11107.2 (3)C8—C11—H11B109.5
C9—C8—C10108.2 (4)H11A—C11—H11B109.5
C11—C8—C10108.6 (3)C8—C11—H11C109.5
C9—C8—C7111.7 (3)H11A—C11—H11C109.5
C11—C8—C7110.0 (4)H11B—C11—H11C109.5
C10—C8—C7111.0 (3)C3—C1—H1C109.5
C3—C4—H4A109.5C3—C1—H1D109.5
C3—C4—H4B109.5H1C—C1—H1D109.5
H4A—C4—H4B109.5C3—C1—H1E109.5
C3—C4—H4C109.5H1C—C1—H1E109.5
H4A—C4—H4C109.5H1D—C1—H1E109.5
H4B—C4—H4C109.5C8—C10—H10A109.5
C17—C16—C21119.4 (4)C8—C10—H10B109.5
C17—C16—N1123.2 (3)H10A—C10—H10B109.5
C21—C16—N1117.3 (4)C8—C10—H10C109.5
N2—C21—C20120.6 (4)H10A—C10—H10C109.5
N2—C21—C16120.2 (4)H10B—C10—H10C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.872.608 (4)149
N2—H2A···O1i0.862.543.342 (4)155
Symmetry code: (i) x+1, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC21H28N2O
Mr324.45
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)10.898 (5), 6.230 (3), 15.095 (8)
β (°) 108.928 (6)
V3)969.5 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.38 × 0.26 × 0.20
Data collection
DiffractometerBruker SMART 1K CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.979, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
3718, 1357, 1224
Rint0.025
θmax (°)22.2
(sin θ/λ)max1)0.531
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.129, 1.10
No. of reflections1357
No. of parameters218
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.15

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.872.608 (4)149.4
N2—H2A···O1i0.862.543.342 (4)154.7
Symmetry code: (i) x+1, y+1/2, z+2.
 

Acknowledgements

This project was Supported Scientific Research Program Funded by Shaanxi Provincial Education Department (program Nos. 11 J K0605, 11 J K0588, 11 J K0606) and the Natural Science Basic Research Plan in Shaanxi Province of China (program Nos. 2012JM2011, 2011JQ2011).

References

First citationBelmonte, M. M., Wezenberg, S. J., Haak, R. M., Anselmo, D., Escudero-Adán, E. C., Benet-Buchholza, J. & Kleij, A. W. (2010). Dalton Trans. 39, 4541–4550.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKochem, A., Orio, M., Jarjayes, O., Neeseb, F. & Thomas, F. (2010). Chem. Commun. 46, 6765–6767.  Web of Science CrossRef CAS Google Scholar
First citationLiu, P., Feng, X. J. & He, R. (2010). Tetrahedron, 66, 631–636.  Web of Science CSD CrossRef CAS Google Scholar
First citationMuñoz-Hernández, M. A., Keizer, T. S., Parkin, S., Patrick, B. & Patrick, D. A. (2000). Organometallics, 19, 4416–4421.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds