metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Octa­carbonyldi-μ2-hydrido-[μ3-(1,3,5-tri­methyl­phen­yl)phosphin­idene](tri­phenyl­phosphane)-triangulo-triruthenium

aAcademic Support Center, Kogakuin University, 1-24-2 Nishi-shinjuku, Shinjuku-ku, Tokyo 163-8677, Japan
*Correspondence e-mail: kt13385@ns.kogakuin.ac.jp

(Received 6 September 2012; accepted 17 September 2012; online 22 September 2012)

In the crystal structure of the title compound, [Ru3(C9H11P)H2(C18H15P)(CO)8], the triangular Ru3 unit is capped with one mesitylphosphin­idene ligand. In the trigonal–pyramidal Ru3P core, one RuII atom is coordinated by a triphenyl­phosphane ligand in a terminal fashion. Two hydride ligands bridge over two Ru—Ru bonds. These Ru—Ru bonds [2.9400 (4) and 2.9432 (4) Å] are slightly longer than the nonhydride-bridged Ru—Ru bond [2.8146 (4) Å]. The terminal triphenyl­phosphane ligand coordinates to the RuII atom, which is involved in two hydride bridges.

Related literature

For related literature, see: Kakizawa et al. (2006[Kakizawa, T., Hashimoto, H. & Tobita, H. (2006). J. Organomet. Chem. 691, 726-736.]); Frediani et al. (1997[Frediani, P., Faggi, C., Papaleo, S., Salvini, A., Bianchi, M., Piacenti, F., Ianelli, S. & Nardelli, M. (1997). J. Organomet. Chem. 536-537, 123-138.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru3(C9H11P)H2(C18H15P)(CO)8]

  • Mr = 941.72

  • Triclinic, [P \overline 1]

  • a = 11.5954 (5) Å

  • b = 12.0870 (7) Å

  • c = 13.4304 (1) Å

  • α = 100.224 (2)°

  • β = 94.6231 (17)°

  • γ = 95.0167 (13)°

  • V = 1836.44 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.35 mm−1

  • T = 150 K

  • 0.30 × 0.30 × 0.03 mm

Data collection
  • Rigaku R-AXIS RAPID imaging plate diffractometer

  • Absorption correction: integration (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.687, Tmax = 0.961

  • 17157 measured reflections

  • 8304 independent reflections

  • 7671 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.118

  • S = 1.23

  • 8304 reflections

  • 444 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.74 e Å−3

  • Δρmin = −1.79 e Å−3

Table 1
Selected bond lengths (Å)

Ru1—P1 2.3351 (10)
Ru1—P2 2.3896 (9)
Ru2—P1 2.3143 (10)
Ru3—P1 2.3285 (9)

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2000[Molecular Structure Corporation & Rigaku (2000). TEXSAN. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Previously, we reported the crystal structure of a mesitylphosphinidene-capped triruthenium cluster having a terminal phosphane ligand [Ru3(CO)8(PH2Mes)(µ-H)23-PMes)] (Kakizawa et al., 2006). Here we report an additional structure of this type of compound prepared by photo-irradiation of the toluene solution containing [Ru3(CO)9(µ-H)23-PMes)] (Kakizawa et al., 2006) and PPh3. The geometry of the title compound is similar to those of the related clusters [Ru3(CO)8(PH2Mes)(µ-H)23-PMes)] and [Ru3(CO)8(PPh3)(µ-H)23-PPh)] (Frediani et al., 1997) (Fig. 1). In the trigonal pyramidal Ru3P core, one Ru atom is co-ordinated by a terminal PPh3 ligand. Two hydrido ligands bridge over the Ru(1)–Ru(2) and Ru(1)–Ru(3) bonds. These Ru–Ru bonds (Ru(1)–Ru(2) 2.9400 (4) Å and Ru(1)–Ru(3) 2.9432 (4) Å) are slightly longer than the Ru(2)–Ru(3) bond (2.8146 (4) Å), which has no bridging hydrogen. The existence of two bridging hydrogen atoms was confirmed by the 1H NMR spectrum. A signal was observed at -18.32 ppm as a doublet of doublet owing to the coupling with the phosphorus atoms of the µ3-PMes (JPH = 9.0 Hz) and PPh3 (JPH = 15.0 Hz) ligands. The 31P NMR spectrum shows the signals of µ3-PMes and PPh3 ligands at a low field (231.3 ppm) and a moderately high field (34.7 ppm), respectively.

Related literature top

For related literature, see: Kakizawa et al. (2006); Frediani et al. (1997).

Experimental top

All reactions were performed under a dry nitrogen atmosphere or a high vacuum. Toluene and hexane were distilled from sodium-benzophenone ketyl just before use. A toluene solution (2 ml) of [Ru3(CO)9(µ-H)23-PMes)] (25 mg, 0.035 mmol) and PPh3 (10 mg, 0.038 mmol) was photolysed for 3 h with a 450 W medium pressure Hg arc lamp with stirring at 6°C. During the photo-irradiation, the evolved CO in the reaction vessel was removed by freeze-pump-thaw cycles every 1 h. After the photolysis, the solvent was filtered and evaporated to dryness under a high vacuum. Recrystallization of the residue from hexane at -30°C gave the title compound (29 mg, 0.031 mmol, 88%) as yellow platelets.

Spectral data for the title compound: 1H NMR (300 MHz, CD2Cl2): δ -18.32 (dd, 2H, JPH = 9.0 Hz, JPH = 15.0 Hz, µ-H), 2.32 (s, 3H, p-CH3), 2.77 (s, 6H, o-CH3), 7.04 (s, 2H, ArH), 7.43–7.47 (m, 15H, PPh). 31P NMR (121.5 MHz, CD2Cl2): δ 34.7 (dt, JPP = 116.6 Hz, JPH = 15.0 Hz, PPh3), 231.3 (dt, JPP = 116.6 Hz, JPH = 9.0 Hz, PMes). IR νCO (KBr, cm-1): 2071 (s), 2029 (vs), 2012 (s), 1988 (s), 1968 (s), 1965 (s). Anal. Calcd for C35H28O8P2Ru3: C, 44.64; H 3.00. Found: C, 45.02; H, 3.29.

Refinement top

The positions of two hydrogen atoms bridging Ru–Ru bonds were found on the difference Fourier synthesis and refined with isotropic thermal parameters. All other hydrogen atoms were placed at their geometrically calculated positions with C—H = 0.95 and 0.98 Å and with Uiso(H) values of 1.2 and 1.5 times Ueq(C).

Structure description top

Previously, we reported the crystal structure of a mesitylphosphinidene-capped triruthenium cluster having a terminal phosphane ligand [Ru3(CO)8(PH2Mes)(µ-H)23-PMes)] (Kakizawa et al., 2006). Here we report an additional structure of this type of compound prepared by photo-irradiation of the toluene solution containing [Ru3(CO)9(µ-H)23-PMes)] (Kakizawa et al., 2006) and PPh3. The geometry of the title compound is similar to those of the related clusters [Ru3(CO)8(PH2Mes)(µ-H)23-PMes)] and [Ru3(CO)8(PPh3)(µ-H)23-PPh)] (Frediani et al., 1997) (Fig. 1). In the trigonal pyramidal Ru3P core, one Ru atom is co-ordinated by a terminal PPh3 ligand. Two hydrido ligands bridge over the Ru(1)–Ru(2) and Ru(1)–Ru(3) bonds. These Ru–Ru bonds (Ru(1)–Ru(2) 2.9400 (4) Å and Ru(1)–Ru(3) 2.9432 (4) Å) are slightly longer than the Ru(2)–Ru(3) bond (2.8146 (4) Å), which has no bridging hydrogen. The existence of two bridging hydrogen atoms was confirmed by the 1H NMR spectrum. A signal was observed at -18.32 ppm as a doublet of doublet owing to the coupling with the phosphorus atoms of the µ3-PMes (JPH = 9.0 Hz) and PPh3 (JPH = 15.0 Hz) ligands. The 31P NMR spectrum shows the signals of µ3-PMes and PPh3 ligands at a low field (231.3 ppm) and a moderately high field (34.7 ppm), respectively.

For related literature, see: Kakizawa et al. (2006); Frediani et al. (1997).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
Octacarbonyldi-µ2-hydrido-[µ3-(1,3,5- trimethylphenyl)phosphinidene](triphenylphosphane)-triangulo- triruthenium top
Crystal data top
[Ru3(C9H11P)H2(C18H15P)(CO)8]Z = 2
Mr = 941.72F(000) = 928
Triclinic, P1Dx = 1.703 Mg m3
a = 11.5954 (5) ÅMo Kα radiation, λ = 0.71069 Å
b = 12.0870 (7) ÅCell parameters from 17157 reflections
c = 13.4304 (1) Åθ = 1.6–27.5°
α = 100.224 (2)°µ = 1.35 mm1
β = 94.6231 (17)°T = 150 K
γ = 95.0167 (13)°Platelet, yellow
V = 1836.44 (13) Å30.30 × 0.30 × 0.03 mm
Data collection top
Rigaku R-AXIS RAPID imaging plate
diffractometer
8304 independent reflections
Radiation source: rotation-anode X-ray tube7671 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: integration
(NUMABS; Higashi, 1999)
h = 1515
Tmin = 0.687, Tmax = 0.961k = 1515
17157 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.23 w = 1/[σ2(Fo2) + (0.0542P)2 + 4.2474P]
where P = (Fo2 + 2Fc2)/3
8304 reflections(Δ/σ)max = 0.001
444 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 1.79 e Å3
Crystal data top
[Ru3(C9H11P)H2(C18H15P)(CO)8]γ = 95.0167 (13)°
Mr = 941.72V = 1836.44 (13) Å3
Triclinic, P1Z = 2
a = 11.5954 (5) ÅMo Kα radiation
b = 12.0870 (7) ŵ = 1.35 mm1
c = 13.4304 (1) ÅT = 150 K
α = 100.224 (2)°0.30 × 0.30 × 0.03 mm
β = 94.6231 (17)°
Data collection top
Rigaku R-AXIS RAPID imaging plate
diffractometer
8304 independent reflections
Absorption correction: integration
(NUMABS; Higashi, 1999)
7671 reflections with I > 2σ(I)
Tmin = 0.687, Tmax = 0.961Rint = 0.035
17157 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.23Δρmax = 0.74 e Å3
8304 reflectionsΔρmin = 1.79 e Å3
444 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.77644 (2)0.14550 (2)0.79228 (2)0.02048 (9)
Ru20.59156 (3)0.33293 (3)0.77256 (2)0.02512 (9)
H10.630 (5)0.189 (5)0.822 (4)0.043 (14)*
Ru30.69300 (3)0.29398 (2)0.59681 (2)0.02434 (9)
H20.716 (4)0.161 (4)0.664 (4)0.033 (12)*
P10.78483 (8)0.33959 (8)0.74261 (7)0.02228 (18)
P20.70618 (8)0.03502 (8)0.79537 (7)0.02088 (18)
C10.8183 (3)0.1288 (3)0.9340 (3)0.0269 (7)
C20.9265 (4)0.0988 (3)0.7631 (3)0.0306 (8)
C30.4408 (4)0.2860 (4)0.7289 (3)0.0320 (8)
C40.5779 (4)0.3404 (4)0.9132 (3)0.0373 (9)
C50.5459 (4)0.4889 (4)0.7237 (4)0.0399 (10)
C60.5554 (4)0.2355 (4)0.5397 (3)0.0333 (9)
C70.6632 (4)0.4441 (4)0.5244 (3)0.0388 (10)
C80.8053 (4)0.2472 (3)0.5106 (3)0.0312 (8)
C90.8942 (3)0.4344 (3)0.7652 (3)0.0252 (7)
C100.8906 (4)0.4926 (3)0.8485 (3)0.0309 (8)
C110.9668 (4)0.5748 (4)0.8567 (3)0.0383 (10)
H30.96370.61360.91210.046*
C121.0461 (5)0.6016 (4)0.7874 (3)0.0436 (12)
C131.0541 (4)0.5387 (4)0.7105 (3)0.0365 (10)
H41.11130.55330.66450.044*
C140.9812 (4)0.4547 (3)0.6983 (3)0.0287 (8)
C150.8073 (4)0.4711 (4)0.9287 (3)0.0388 (10)
H50.72980.50820.90150.058*
H60.80350.38950.94850.058*
H70.83450.50160.98830.058*
C161.1215 (7)0.6964 (6)0.7961 (4)0.070 (2)
H81.12340.71250.86520.105*
H91.20060.67370.78150.105*
H101.08910.76430.74730.105*
C171.0015 (4)0.3878 (4)0.6151 (4)0.0399 (10)
H111.07710.40120.59000.060*
H121.00080.30710.64220.060*
H130.93980.41180.55910.060*
C180.5479 (3)0.0334 (3)0.7800 (3)0.0245 (7)
C190.4915 (4)0.0726 (5)0.7008 (4)0.0465 (12)
H140.53440.09930.65090.056*
C200.3700 (5)0.0723 (7)0.6947 (5)0.069 (2)
H150.33060.09900.64030.082*
C210.3075 (4)0.0338 (5)0.7670 (5)0.0525 (13)
H160.22550.03560.76310.063*
C220.3638 (4)0.0074 (4)0.8449 (4)0.0392 (10)
H170.32050.03490.89410.047*
C230.4834 (4)0.0085 (4)0.8511 (3)0.0315 (8)
H180.52180.03800.90430.038*
C240.7488 (3)0.1366 (3)0.9136 (3)0.0232 (7)
C250.6732 (4)0.2097 (3)0.9588 (3)0.0291 (8)
H190.59570.20660.92880.035*
C260.7109 (4)0.2871 (4)1.0476 (3)0.0328 (9)
H200.65880.33621.07820.039*
C270.8236 (4)0.2928 (4)1.0915 (3)0.0347 (9)
H210.84840.34481.15290.042*
C280.9002 (4)0.2232 (4)1.0466 (3)0.0343 (9)
H220.97830.22861.07590.041*
C290.8631 (4)0.1449 (3)0.9579 (3)0.0300 (8)
H230.91600.09670.92730.036*
C300.7549 (3)0.1124 (3)0.6979 (3)0.0267 (7)
C310.7476 (5)0.2290 (4)0.7098 (3)0.0388 (10)
H240.72170.26890.77000.047*
C320.7785 (5)0.2863 (4)0.6328 (4)0.0466 (12)
H250.77310.36530.64080.056*
C330.8165 (5)0.2301 (5)0.5459 (4)0.0471 (12)
H260.83540.26980.49340.056*
C340.8274 (6)0.1174 (5)0.5346 (4)0.0604 (16)
H270.85530.07880.47480.072*
C350.7975 (5)0.0585 (4)0.6113 (4)0.0491 (13)
H280.80670.01980.60350.059*
O10.8423 (3)0.1182 (3)1.0195 (2)0.0401 (7)
O21.0180 (3)0.0709 (3)0.7446 (3)0.0548 (10)
O30.3513 (3)0.2646 (3)0.7010 (3)0.0446 (8)
O40.5720 (3)0.3418 (4)0.9975 (3)0.0570 (10)
O50.5191 (4)0.5828 (3)0.6956 (3)0.0588 (10)
O60.4761 (3)0.2000 (3)0.5072 (3)0.0483 (9)
O70.6459 (4)0.5347 (3)0.4812 (3)0.0559 (10)
O80.8706 (3)0.2151 (3)0.4616 (3)0.0486 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.02143 (15)0.02131 (15)0.01840 (14)0.00346 (11)0.00047 (10)0.00297 (10)
Ru20.02299 (16)0.02734 (16)0.02496 (16)0.00086 (12)0.00005 (11)0.00655 (11)
Ru30.02974 (17)0.02460 (16)0.01801 (14)0.00426 (12)0.00216 (11)0.00352 (11)
P10.0253 (5)0.0222 (4)0.0197 (4)0.0046 (3)0.0004 (3)0.0047 (3)
P20.0216 (4)0.0220 (4)0.0188 (4)0.0031 (3)0.0011 (3)0.0035 (3)
C10.0270 (18)0.0274 (18)0.0261 (18)0.0083 (14)0.0008 (14)0.0028 (14)
C20.030 (2)0.0299 (19)0.0289 (19)0.0016 (16)0.0012 (15)0.0014 (15)
C30.030 (2)0.035 (2)0.0291 (19)0.0013 (16)0.0006 (16)0.0037 (16)
C40.030 (2)0.050 (3)0.036 (2)0.0110 (19)0.0062 (17)0.0142 (19)
C50.038 (2)0.043 (3)0.040 (2)0.0051 (19)0.0022 (19)0.0110 (19)
C60.040 (2)0.033 (2)0.0247 (18)0.0009 (17)0.0045 (16)0.0056 (16)
C70.051 (3)0.039 (2)0.027 (2)0.012 (2)0.0044 (18)0.0065 (17)
C80.041 (2)0.031 (2)0.0216 (17)0.0076 (17)0.0027 (16)0.0046 (15)
C90.0301 (19)0.0206 (16)0.0244 (17)0.0054 (14)0.0020 (14)0.0034 (13)
C100.042 (2)0.0249 (18)0.0246 (18)0.0067 (16)0.0060 (16)0.0032 (14)
C110.054 (3)0.032 (2)0.030 (2)0.0129 (19)0.0071 (19)0.0073 (17)
C120.064 (3)0.036 (2)0.031 (2)0.026 (2)0.006 (2)0.0003 (17)
C130.044 (2)0.037 (2)0.0274 (19)0.0190 (19)0.0018 (17)0.0020 (16)
C140.037 (2)0.0245 (18)0.0236 (17)0.0073 (15)0.0010 (15)0.0002 (14)
C150.045 (3)0.048 (3)0.029 (2)0.010 (2)0.0042 (18)0.0197 (19)
C160.113 (6)0.066 (4)0.041 (3)0.064 (4)0.008 (3)0.012 (3)
C170.048 (3)0.040 (2)0.040 (2)0.021 (2)0.019 (2)0.0162 (19)
C180.0194 (16)0.0239 (17)0.0281 (18)0.0018 (13)0.0012 (13)0.0028 (14)
C190.025 (2)0.072 (3)0.049 (3)0.003 (2)0.0046 (19)0.033 (3)
C200.029 (3)0.110 (5)0.077 (4)0.002 (3)0.012 (3)0.056 (4)
C210.021 (2)0.066 (3)0.073 (4)0.001 (2)0.001 (2)0.024 (3)
C220.034 (2)0.034 (2)0.053 (3)0.0044 (17)0.018 (2)0.0102 (19)
C230.029 (2)0.032 (2)0.035 (2)0.0086 (16)0.0071 (16)0.0093 (16)
C240.0261 (18)0.0209 (16)0.0208 (16)0.0001 (13)0.0009 (13)0.0014 (13)
C250.0280 (19)0.0314 (19)0.0278 (18)0.0081 (15)0.0026 (15)0.0029 (15)
C260.030 (2)0.035 (2)0.0297 (19)0.0040 (16)0.0047 (16)0.0042 (16)
C270.043 (2)0.033 (2)0.0244 (18)0.0028 (18)0.0016 (16)0.0029 (15)
C280.032 (2)0.031 (2)0.035 (2)0.0014 (16)0.0101 (17)0.0008 (16)
C290.031 (2)0.0296 (19)0.0283 (19)0.0087 (16)0.0010 (15)0.0005 (15)
C300.0261 (18)0.0313 (19)0.0236 (17)0.0028 (15)0.0017 (14)0.0083 (14)
C310.056 (3)0.032 (2)0.028 (2)0.0008 (19)0.0010 (19)0.0073 (16)
C320.064 (3)0.033 (2)0.041 (3)0.011 (2)0.006 (2)0.0131 (19)
C330.052 (3)0.049 (3)0.043 (3)0.010 (2)0.007 (2)0.024 (2)
C340.092 (5)0.050 (3)0.045 (3)0.003 (3)0.035 (3)0.014 (2)
C350.075 (4)0.036 (2)0.043 (3)0.008 (2)0.030 (3)0.012 (2)
O10.0461 (18)0.0520 (19)0.0218 (14)0.0159 (15)0.0035 (12)0.0036 (13)
O20.0340 (18)0.058 (2)0.072 (3)0.0023 (16)0.0197 (17)0.0072 (19)
O30.0323 (17)0.058 (2)0.0420 (18)0.0115 (15)0.0036 (14)0.0047 (15)
O40.051 (2)0.094 (3)0.0355 (18)0.025 (2)0.0134 (16)0.0244 (19)
O50.067 (3)0.0280 (18)0.074 (3)0.0083 (17)0.001 (2)0.0006 (17)
O60.0413 (19)0.062 (2)0.0462 (19)0.0120 (16)0.0067 (15)0.0231 (17)
O70.085 (3)0.0313 (18)0.0424 (19)0.0049 (18)0.0144 (19)0.0064 (14)
O80.059 (2)0.053 (2)0.0390 (18)0.0099 (17)0.0203 (16)0.0140 (16)
Geometric parameters (Å, º) top
Ru1—C21.875 (4)C15—H50.9800
Ru1—C11.897 (4)C15—H60.9800
Ru1—P12.3351 (10)C15—H70.9800
Ru1—P22.3896 (9)C16—H80.9800
Ru1—Ru22.9400 (4)C16—H90.9800
Ru1—Ru32.9432 (4)C16—H100.9800
Ru1—H11.83 (5)C17—H110.9800
Ru1—H21.78 (5)C17—H120.9800
Ru2—C51.896 (5)C17—H130.9800
Ru2—C41.925 (4)C18—C191.381 (6)
Ru2—C31.962 (4)C18—C231.396 (6)
Ru2—P12.3143 (10)C19—C201.404 (7)
Ru2—Ru32.8146 (4)C19—H140.9500
Ru2—H11.75 (5)C20—C211.378 (8)
Ru3—C71.889 (5)C20—H150.9500
Ru3—C81.925 (4)C21—C221.378 (7)
Ru3—C61.956 (4)C21—H160.9500
Ru3—P12.3285 (9)C22—C231.384 (6)
Ru3—H21.68 (5)C22—H170.9500
P1—C91.825 (4)C23—H180.9500
P2—C181.828 (4)C24—C251.395 (5)
P2—C241.830 (4)C24—C291.396 (5)
P2—C301.835 (4)C25—C261.392 (6)
C1—O11.141 (5)C25—H190.9500
C2—O21.145 (6)C26—C271.380 (6)
C3—O31.141 (5)C26—H200.9500
C4—O41.143 (6)C27—C281.377 (6)
C5—O51.138 (6)C27—H210.9500
C6—O61.137 (5)C28—C291.396 (5)
C7—O71.136 (6)C28—H220.9500
C8—O81.130 (5)C29—H230.9500
C9—C141.414 (6)C30—C351.379 (6)
C9—C101.423 (5)C30—C311.401 (6)
C10—C111.399 (6)C31—C321.395 (6)
C10—C151.508 (6)C31—H240.9500
C11—C121.378 (7)C32—C331.368 (8)
C11—H30.9500C32—H250.9500
C12—C131.391 (7)C33—C341.362 (8)
C12—C161.516 (6)C33—H260.9500
C13—C141.399 (6)C34—C351.400 (7)
C13—H40.9500C34—H270.9500
C14—C171.513 (6)C35—H280.9500
C2—Ru1—C194.36 (18)C14—C9—C10118.9 (4)
C2—Ru1—P197.08 (13)C14—C9—P1120.6 (3)
C1—Ru1—P1100.02 (12)C10—C9—P1120.5 (3)
C2—Ru1—P294.85 (13)C11—C10—C9119.0 (4)
C1—Ru1—P297.22 (11)C11—C10—C15117.7 (4)
P1—Ru1—P2158.17 (3)C9—C10—C15123.3 (4)
C2—Ru1—Ru2146.84 (12)C12—C11—C10122.6 (4)
C1—Ru1—Ru297.77 (13)C12—C11—H3118.7
P1—Ru1—Ru250.46 (3)C10—C11—H3118.7
P2—Ru1—Ru2113.94 (3)C11—C12—C13117.7 (4)
C2—Ru1—Ru399.08 (12)C11—C12—C16120.4 (5)
C1—Ru1—Ru3148.99 (12)C13—C12—C16121.9 (5)
P1—Ru1—Ru350.77 (2)C12—C13—C14122.7 (4)
P2—Ru1—Ru3109.25 (2)C12—C13—H4118.7
Ru2—Ru1—Ru357.162 (10)C14—C13—H4118.7
C2—Ru1—H1179.1 (18)C13—C14—C9118.9 (4)
C1—Ru1—H185.1 (17)C13—C14—C17118.1 (4)
P1—Ru1—H183.7 (17)C9—C14—C17123.0 (4)
P2—Ru1—H184.6 (17)C10—C15—H5109.5
Ru2—Ru1—H134.0 (17)C10—C15—H6109.5
Ru3—Ru1—H181.7 (17)H5—C15—H6109.5
C2—Ru1—H293.6 (16)C10—C15—H7109.5
C1—Ru1—H2171.7 (16)H5—C15—H7109.5
P1—Ru1—H281.5 (16)H6—C15—H7109.5
P2—Ru1—H279.6 (16)C12—C16—H8109.5
Ru2—Ru1—H276.8 (16)C12—C16—H9109.5
Ru3—Ru1—H230.9 (16)H8—C16—H9109.5
H1—Ru1—H287 (2)C12—C16—H10109.5
C5—Ru2—C495.1 (2)H8—C16—H10109.5
C5—Ru2—C394.16 (19)H9—C16—H10109.5
C4—Ru2—C3102.67 (18)C14—C17—H11109.5
C5—Ru2—P195.85 (15)C14—C17—H12109.5
C4—Ru2—P1108.53 (13)H11—C17—H12109.5
C3—Ru2—P1146.14 (13)C14—C17—H13109.5
C5—Ru2—Ru395.59 (15)H11—C17—H13109.5
C4—Ru2—Ru3159.50 (14)H12—C17—H13109.5
C3—Ru2—Ru393.97 (13)C19—C18—C23119.7 (4)
P1—Ru2—Ru352.91 (2)C19—C18—P2121.8 (3)
C5—Ru2—Ru1146.41 (15)C23—C18—P2118.5 (3)
C4—Ru2—Ru1100.92 (15)C18—C19—C20119.2 (5)
C3—Ru2—Ru1110.60 (13)C18—C19—H14120.4
P1—Ru2—Ru151.09 (2)C20—C19—H14120.4
Ru3—Ru2—Ru161.476 (10)C21—C20—C19120.6 (5)
C5—Ru2—H1177.5 (18)C21—C20—H15119.7
C4—Ru2—H182.7 (18)C19—C20—H15119.7
C3—Ru2—H185.2 (18)C20—C21—C22120.0 (4)
P1—Ru2—H186.0 (18)C20—C21—H16120.0
Ru3—Ru2—H186.9 (18)C22—C21—H16120.0
Ru1—Ru2—H135.7 (18)C21—C22—C23119.9 (4)
C7—Ru3—C895.2 (2)C21—C22—H17120.1
C7—Ru3—C697.59 (19)C23—C22—H17120.1
C8—Ru3—C699.74 (18)C22—C23—C18120.6 (4)
C7—Ru3—P195.81 (13)C22—C23—H18119.7
C8—Ru3—P1110.90 (12)C18—C23—H18119.7
C6—Ru3—P1145.14 (13)C25—C24—C29118.6 (3)
C7—Ru3—Ru296.28 (15)C25—C24—P2122.7 (3)
C8—Ru3—Ru2160.67 (12)C29—C24—P2118.6 (3)
C6—Ru3—Ru294.07 (13)C26—C25—C24120.3 (4)
P1—Ru3—Ru252.45 (3)C26—C25—H19119.8
C7—Ru3—Ru1146.42 (13)C24—C25—H19119.8
C8—Ru3—Ru1101.19 (12)C27—C26—C25120.4 (4)
C6—Ru3—Ru1108.09 (12)C27—C26—H20119.8
P1—Ru3—Ru150.97 (2)C25—C26—H20119.8
Ru2—Ru3—Ru161.362 (10)C28—C27—C26120.1 (4)
C7—Ru3—H2178.1 (17)C28—C27—H21119.9
C8—Ru3—H286.7 (17)C26—C27—H21119.9
C6—Ru3—H281.8 (17)C27—C28—C29120.0 (4)
P1—Ru3—H283.7 (17)C27—C28—H22120.0
Ru2—Ru3—H282.0 (17)C29—C28—H22120.0
Ru1—Ru3—H232.9 (17)C28—C29—C24120.6 (4)
C9—P1—Ru2134.38 (14)C28—C29—H23119.7
C9—P1—Ru3133.92 (13)C24—C29—H23119.7
Ru2—P1—Ru374.63 (3)C35—C30—C31118.3 (4)
C9—P1—Ru1133.56 (13)C35—C30—P2121.8 (3)
Ru2—P1—Ru178.45 (3)C31—C30—P2120.0 (3)
Ru3—P1—Ru178.26 (3)C32—C31—C30119.8 (4)
C18—P2—C24103.24 (17)C32—C31—H24120.1
C18—P2—C30103.62 (17)C30—C31—H24120.1
C24—P2—C30102.91 (18)C33—C32—C31120.8 (5)
C18—P2—Ru1115.27 (12)C33—C32—H25119.6
C24—P2—Ru1114.53 (12)C31—C32—H25119.6
C30—P2—Ru1115.62 (13)C34—C33—C32120.1 (4)
O1—C1—Ru1179.2 (4)C34—C33—H26120.0
O2—C2—Ru1179.5 (4)C32—C33—H26120.0
O3—C3—Ru2176.3 (4)C33—C34—C35119.9 (5)
O4—C4—Ru2177.9 (5)C33—C34—H27120.0
O5—C5—Ru2179.1 (5)C35—C34—H27120.0
O6—C6—Ru3179.0 (4)C30—C35—C34121.1 (5)
O7—C7—Ru3179.5 (5)C30—C35—H28119.5
O8—C8—Ru3177.0 (4)C34—C35—H28119.5

Experimental details

Crystal data
Chemical formula[Ru3(C9H11P)H2(C18H15P)(CO)8]
Mr941.72
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)11.5954 (5), 12.0870 (7), 13.4304 (1)
α, β, γ (°)100.224 (2), 94.6231 (17), 95.0167 (13)
V3)1836.44 (13)
Z2
Radiation typeMo Kα
µ (mm1)1.35
Crystal size (mm)0.30 × 0.30 × 0.03
Data collection
DiffractometerRigaku R-AXIS RAPID imaging plate
Absorption correctionIntegration
(NUMABS; Higashi, 1999)
Tmin, Tmax0.687, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
17157, 8304, 7671
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.118, 1.23
No. of reflections8304
No. of parameters444
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.74, 1.79

Computer programs: PROCESS-AUTO (Rigaku, 1998), TEXSAN (Molecular Structure Corporation & Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Ru1—P12.3351 (10)Ru3—P12.3285 (9)
Ru1—P22.3896 (9)P1—C91.825 (4)
Ru1—Ru22.9400 (4)P2—C181.828 (4)
Ru1—Ru32.9432 (4)P2—C241.830 (4)
Ru2—P12.3143 (10)P2—C301.835 (4)
Ru2—Ru32.8146 (4)
P1—Ru1—P2158.17 (3)Ru3—Ru2—Ru161.476 (10)
P1—Ru1—Ru250.46 (3)P1—Ru3—Ru252.45 (3)
P2—Ru1—Ru2113.94 (3)P1—Ru3—Ru150.97 (2)
P1—Ru1—Ru350.77 (2)Ru2—Ru3—Ru161.362 (10)
P2—Ru1—Ru3109.25 (2)Ru2—P1—Ru374.63 (3)
Ru2—Ru1—Ru357.162 (10)Ru2—P1—Ru178.45 (3)
P1—Ru2—Ru352.91 (2)Ru3—P1—Ru178.26 (3)
P1—Ru2—Ru151.09 (2)
 

Acknowledgements

This work was partially supported by a Grant-in-Aid for Young Scientists (B, 24790117) from the Ministry of Education, Culture, Sports, Science and Technology. The author thanks Dr H. Hashimoto and Professor H. Tobita for their useful assistance.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFrediani, P., Faggi, C., Papaleo, S., Salvini, A., Bianchi, M., Piacenti, F., Ianelli, S. & Nardelli, M. (1997). J. Organomet. Chem. 536–537, 123–138.  CSD CrossRef Web of Science Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKakizawa, T., Hashimoto, H. & Tobita, H. (2006). J. Organomet. Chem. 691, 726–736.  Web of Science CSD CrossRef CAS Google Scholar
First citationMolecular Structure Corporation & Rigaku (2000). TEXSAN. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds