organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3-Benzyl-4,6-dibenz­yl­oxy-2-hy­dr­oxy­phen­yl)ethanone

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: tania.hill@gmail.com

(Received 13 August 2012; accepted 15 August 2012; online 5 September 2012)

The title compound, C29H26O4, is essentially planar in the acetophenone portion that includes both the hy­droxy and a benz­yloxy O atoms, with an r.m.s. deviation of 0.0311 Å. The other two substituents inter­sect the plane at 70.45 (3) and 59.55 (4)°. In the molecule there is an intramolecular O—H⋯O hydrogen bond. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, as well as C—H⋯π and π-stacking inter­actions, with centroid–centroid distances 3.6570 (2) Å.

Related literature

For applications of acetophenones, see: Burdock (2010[Burdock, G. A. (2010). Fenaroli's Handbook of Flavor Ingredients, 6th ed. Boca Raton: CRC Press.]); Marais et al. (2005[Marais, J. P. J., Ferreira, D. & Slade, D. (2005). Phytochemistry, 66, 2145-2176.]).

[Scheme 1]

Experimental

Crystal data
  • C29H26O4

  • Mr = 438.5

  • Triclinic, [P \overline 1]

  • a = 8.2349 (5) Å

  • b = 10.5411 (7) Å

  • c = 13.5115 (9) Å

  • α = 93.412 (3)°

  • β = 94.139 (3)°

  • γ = 105.102 (3)°

  • V = 1125.66 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.39 × 0.12 × 0.03 mm

Data collection
  • Bruker X8 APEXII 4K KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin. USA.]) Tmin = 0.968, Tmax = 0.997

  • 22325 measured reflections

  • 5521 independent reflections

  • 4071 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.107

  • S = 1.03

  • 5521 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg3 are the centroids of the C1–C6 and C31–C36 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C56—H56⋯O5 0.95 2.39 2.7282 (15) 101
C67—H67B⋯O5 0.99 2.34 2.7882 (15) 106
O1—H1⋯O2 0.84 1.72 2.4744 (13) 148
C57—H57A⋯O2i 0.99 2.58 3.4592 (16) 148
C23—H23BCg3ii 0.98 2.83 3.6790 (16) 145
C57—H57BCg1ii 0.99 2.64 3.5106 (14) 146
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin. USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

An interesting use of functionalized acetophenones is in the food industry as a flavourant (Burdock, 2010). Acetophenones are also one of the basic reactants for the synthesis of chalcones as discribed by Marais et al. (2005). As part of a study on the benzylation of nucleophilic polyphenols the structure of the undesired C-alkylation product (I) (Fig. 1) was obtained.

The backbone (C1—C6, C22, C23, C67, C37, O1—O3) including the benzyloxy group (C51 –C57, O5) of I was seen to be essentially planar with an r.m.s. deviation of 0.0311 Å, with a maximum deviation of 0.068 (1) Å for atom C23. The intramolecular hydrogen interactions of C56—H56···O5 and C67—H67B···O5 resulted in the benzyloxy group being planar with the backbone (Fig. 2). The angles of intersection between the planar backbone, the benzyl ring and the remaining aromatic ring of the benzyloxy group were found to be 70.45 (3)° and 59.55 (4)°. These angles are further stabilized by H···π interactions, C67—H67A···Ai (centriod C31—C36) and C37—H37A···Cii (centriod C61—C66) with distances of 3.2894 (2) Å and 3.0139 (2) Å, respectively (Fig. 3). Additionally a very weak π···π interaction between rings Dii (centriod C61—C66) and E (centriod C31—C36) with a distance of 4.5790 (2) Å was found.

A third intramolecular hydrogen interaction was observed for the oxygen (O2) of the ketone with the oxygen (O1) of the hydroxy group (Fig. 2). The last hydrogen bond is an intermolecular interaction of the methylene proton (H57A) with the ketone (O2) contributing to the head-to-tail packing of I, this is best seen in Fig. 2. As a result of this interaction, π-stacking is observed between the central aromatic rings with a distance of 3.6570 (2) Å, as further illustrated in Fig.4.

Related literature top

For applications of acetophenones, see: Burdock (2010); Marais et al. (2005).

Experimental top

A mixture of 2,4,6-trihydroxy acetophenone (0.3 g, 1.78 mmol), benzyl chloride (0.431 ml, 3.75 mmol, 2.1 eq) and anhydrous potassium carbonate K2CO3 (0.493 g, 3.57 mmol, 2 eq) in dry DMF (15 ml) was heated at 80 °C for 1 hr with vigorous stirring. After the solid was filtered off, the filtrate was poured into 20 ml water, and extracted with Et2O. The extract was washed with water, brine, and dried over anhydrous MgSO4, and evaporated under reduced pressure. The crude product was purified by PTLC (n-Hexane:Acetone = 7:3, Rf 0.53) to afford 4,6-dibenzyloxy-2-hydroxy acetophenone as a yellow solid (0.153 g, 51%) and the title compound (I) as a yellow solid (0.133 g, 44%).

1H NMR (600 MHz, Acetone-d6) δ (p.p.m.): 7.58–7.11 (m, 15 H, 3xC6H5); 6.53 (s, 1 H, H {H4}); 5.27 (s, 4 H, OCH2Bn); 3.95 (s, 2 H, CH2Bn); 2.55 (s, 3 H, COCH3). 13C NMR (600 MHz, Acetone-d6) δ (p.p.m.): 203.4 (COCH3); 163.7 (Ph {C5}); 162.7 (Ph {C3}); 161.4 (Ph {C1}); 141.6–125.4 (3xC6H5 {Bn}); 109.4 (Ph {C6}); 105.9 (Ph {C2}); 89.3 (Ph {C4}); 71.1 (COCH2Bn); 70.0 (COCH2Bn); 32.8 (COCH3); 27.7 (CCH2Bn).

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 Å and Uiso(H) = 1.2 Ueq(C) for aromatic H atoms, C—H = 0.98 Å and Uiso(H) = 1.5 Ueq(C) for methyl H atoms, C—H = 0.99 Å and Uiso(H) = 1.2 Ueq(C) for methylene H atoms and O—H = 0.84 Å and Uiso(H) = 1.5 Ueq(O) for hydroxyl H atoms. The H atoms of the methyl and hydroxyl groups were allowed to rotate with a fixed angle to fit the experimental electron density.

Structure description top

An interesting use of functionalized acetophenones is in the food industry as a flavourant (Burdock, 2010). Acetophenones are also one of the basic reactants for the synthesis of chalcones as discribed by Marais et al. (2005). As part of a study on the benzylation of nucleophilic polyphenols the structure of the undesired C-alkylation product (I) (Fig. 1) was obtained.

The backbone (C1—C6, C22, C23, C67, C37, O1—O3) including the benzyloxy group (C51 –C57, O5) of I was seen to be essentially planar with an r.m.s. deviation of 0.0311 Å, with a maximum deviation of 0.068 (1) Å for atom C23. The intramolecular hydrogen interactions of C56—H56···O5 and C67—H67B···O5 resulted in the benzyloxy group being planar with the backbone (Fig. 2). The angles of intersection between the planar backbone, the benzyl ring and the remaining aromatic ring of the benzyloxy group were found to be 70.45 (3)° and 59.55 (4)°. These angles are further stabilized by H···π interactions, C67—H67A···Ai (centriod C31—C36) and C37—H37A···Cii (centriod C61—C66) with distances of 3.2894 (2) Å and 3.0139 (2) Å, respectively (Fig. 3). Additionally a very weak π···π interaction between rings Dii (centriod C61—C66) and E (centriod C31—C36) with a distance of 4.5790 (2) Å was found.

A third intramolecular hydrogen interaction was observed for the oxygen (O2) of the ketone with the oxygen (O1) of the hydroxy group (Fig. 2). The last hydrogen bond is an intermolecular interaction of the methylene proton (H57A) with the ketone (O2) contributing to the head-to-tail packing of I, this is best seen in Fig. 2. As a result of this interaction, π-stacking is observed between the central aromatic rings with a distance of 3.6570 (2) Å, as further illustrated in Fig.4.

For applications of acetophenones, see: Burdock (2010); Marais et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids). Selected hydrogen atoms have been omitted.
[Figure 2] Fig. 2. Inter- and Intramolecular hydrogen bond interactions along with π···π interactions are illustrated by dashed bonds. Symmetry code (i) -x + 1, -y + 2, -z + 2. Non-relavent hydrogen atoms have been omitted for clarity.
[Figure 3] Fig. 3. H···π interactions of I as illustrated by dashed bonds.. Symmetry codes (i) 1 - x, 2 - y, 2 - z and (ii) -x, 2 - y, 2 - z. Non-relavent hydrogen atoms have been omitted.
[Figure 4] Fig. 4. A packing diagram of I, illustrating a head-to-tail configuration as viewed along the c axis. The dashed bonds are shown to illustrate the π-stacking. Hydrogen atoms have been omitted.
1-(3-Benzyl-4,6-dibenzyloxy-2-hydroxyphenyl)ethanone top
Crystal data top
C29H26O4Z = 2
Mr = 438.5F(000) = 464
Triclinic, P1Dx = 1.294 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2349 (5) ÅCell parameters from 5873 reflections
b = 10.5411 (7) Åθ = 2.4–28.1°
c = 13.5115 (9) ŵ = 0.09 mm1
α = 93.412 (3)°T = 100 K
β = 94.139 (3)°Plate, colourless
γ = 105.102 (3)°0.39 × 0.12 × 0.03 mm
V = 1125.66 (13) Å3
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
5521 independent reflections
Radiation source: sealed tube4071 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 512 pixels mm-1θmax = 28.3°, θmin = 2.0°
φ and ω scansh = 109
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1413
Tmin = 0.968, Tmax = 0.997l = 1717
22325 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.2817P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.107(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.31 e Å3
5521 reflectionsΔρmin = 0.22 e Å3
300 parameters
Crystal data top
C29H26O4γ = 105.102 (3)°
Mr = 438.5V = 1125.66 (13) Å3
Triclinic, P1Z = 2
a = 8.2349 (5) ÅMo Kα radiation
b = 10.5411 (7) ŵ = 0.09 mm1
c = 13.5115 (9) ÅT = 100 K
α = 93.412 (3)°0.39 × 0.12 × 0.03 mm
β = 94.139 (3)°
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
5521 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4071 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.997Rint = 0.032
22325 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.03Δρmax = 0.31 e Å3
5521 reflectionsΔρmin = 0.22 e Å3
300 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.43123 (15)1.16936 (12)1.05832 (9)0.0158 (3)
C20.43202 (14)1.13497 (12)0.95515 (9)0.0154 (3)
C30.30811 (15)1.01942 (12)0.91394 (9)0.0151 (3)
C40.19200 (14)0.94574 (12)0.97185 (9)0.0158 (3)
H40.10990.86890.94310.019*
C50.19676 (14)0.98530 (12)1.07249 (9)0.0152 (3)
C60.31383 (15)1.09821 (12)1.11786 (9)0.0153 (3)
C220.55812 (15)1.21880 (12)0.89903 (10)0.0170 (3)
C230.56585 (17)1.19593 (13)0.78917 (10)0.0215 (3)
H23A0.65721.26530.76720.032*
H23B0.45811.19760.75410.032*
H23C0.58731.10990.77440.032*
C310.22496 (15)0.85555 (13)0.66335 (9)0.0194 (3)
C320.27035 (17)0.74395 (14)0.63042 (11)0.0254 (3)
H320.27230.67710.67430.031*
C330.3130 (2)0.72889 (16)0.53403 (12)0.0343 (4)
H330.34380.65180.51210.041*
C340.3109 (2)0.82508 (17)0.46990 (12)0.0418 (4)
H340.34150.81510.4040.05*
C350.2642 (3)0.93618 (17)0.50191 (12)0.0454 (5)
H350.26191.00260.45770.054*
C360.2208 (2)0.95114 (15)0.59800 (11)0.0329 (4)
H360.18791.02760.61930.039*
C370.18315 (16)0.87355 (13)0.76859 (10)0.0210 (3)
H37A0.07070.89070.76970.025*
H37B0.1820.79340.80350.025*
C510.11328 (15)0.72877 (12)1.18251 (10)0.0167 (3)
C520.25410 (16)0.62077 (13)1.16099 (10)0.0213 (3)
H520.28970.58811.09370.026*
C530.34264 (17)0.56061 (13)1.23669 (11)0.0250 (3)
H530.43840.48721.22120.03*
C540.29123 (17)0.60767 (13)1.33487 (11)0.0247 (3)
H540.35260.56741.38680.03*
C550.15038 (17)0.71347 (13)1.35738 (10)0.0241 (3)
H550.1140.74491.42480.029*
C560.06189 (16)0.77387 (13)1.28112 (10)0.0210 (3)
H560.03450.84661.29690.025*
C570.02121 (15)0.79066 (12)1.09773 (9)0.0167 (3)
H57A0.04470.73291.070.02*
H57B0.10320.80251.04410.02*
C610.25514 (15)1.26065 (12)1.25126 (9)0.0171 (3)
C620.23856 (17)1.29554 (13)1.35037 (10)0.0237 (3)
H620.27141.24611.4010.028*
C630.17508 (19)1.40109 (14)1.37632 (11)0.0299 (3)
H630.16361.42271.44430.036*
C640.12837 (18)1.47526 (14)1.30383 (11)0.0281 (3)
H640.08451.54751.32170.034*
C650.14603 (17)1.44345 (13)1.20536 (11)0.0240 (3)
H650.1151.49431.15520.029*
C660.20922 (15)1.33692 (12)1.17949 (10)0.0194 (3)
H660.22111.3161.11150.023*
C670.32122 (16)1.14155 (12)1.22660 (9)0.0179 (3)
H67A0.44021.16161.2550.022*
H67B0.25591.06661.26040.022*
O10.54647 (11)1.27487 (9)1.10477 (7)0.0203 (2)
H10.61191.31151.06380.03*
O20.66614 (11)1.31535 (9)0.94318 (7)0.0221 (2)
O30.31270 (10)0.98499 (8)0.81615 (6)0.0183 (2)
O50.08963 (10)0.91597 (8)1.13482 (6)0.0175 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0144 (5)0.0145 (6)0.0184 (7)0.0044 (5)0.0002 (5)0.0005 (5)
C20.0146 (5)0.0159 (6)0.0166 (6)0.0053 (5)0.0023 (5)0.0019 (5)
C30.0151 (5)0.0172 (6)0.0144 (6)0.0069 (5)0.0015 (5)0.0017 (5)
C40.0146 (5)0.0152 (6)0.0174 (7)0.0042 (5)0.0006 (5)0.0002 (5)
C50.0136 (5)0.0171 (6)0.0166 (7)0.0059 (5)0.0029 (5)0.0043 (5)
C60.0164 (6)0.0161 (6)0.0147 (6)0.0065 (5)0.0010 (5)0.0017 (5)
C220.0159 (6)0.0158 (6)0.0207 (7)0.0062 (5)0.0026 (5)0.0034 (5)
C230.0237 (6)0.0194 (6)0.0206 (7)0.0026 (5)0.0074 (5)0.0034 (5)
C310.0176 (6)0.0210 (6)0.0161 (7)0.0004 (5)0.0009 (5)0.0019 (5)
C320.0279 (7)0.0228 (7)0.0239 (8)0.0055 (6)0.0016 (6)0.0016 (6)
C330.0367 (8)0.0356 (9)0.0286 (9)0.0099 (7)0.0021 (7)0.0130 (7)
C340.0515 (10)0.0480 (10)0.0176 (8)0.0010 (8)0.0087 (7)0.0076 (7)
C350.0760 (13)0.0357 (9)0.0200 (8)0.0061 (9)0.0027 (8)0.0075 (7)
C360.0527 (10)0.0259 (8)0.0208 (8)0.0129 (7)0.0005 (7)0.0005 (6)
C370.0188 (6)0.0218 (7)0.0182 (7)0.0010 (5)0.0005 (5)0.0022 (5)
C510.0160 (6)0.0157 (6)0.0203 (7)0.0067 (5)0.0034 (5)0.0039 (5)
C520.0211 (6)0.0182 (6)0.0238 (7)0.0041 (5)0.0016 (5)0.0014 (5)
C530.0220 (6)0.0177 (6)0.0345 (8)0.0022 (5)0.0061 (6)0.0054 (6)
C540.0285 (7)0.0213 (7)0.0284 (8)0.0088 (6)0.0137 (6)0.0109 (6)
C550.0317 (7)0.0227 (7)0.0196 (7)0.0082 (6)0.0066 (6)0.0039 (6)
C560.0227 (6)0.0188 (6)0.0205 (7)0.0028 (5)0.0039 (5)0.0032 (5)
C570.0157 (6)0.0156 (6)0.0174 (7)0.0017 (5)0.0016 (5)0.0001 (5)
C610.0153 (6)0.0157 (6)0.0180 (7)0.0001 (5)0.0022 (5)0.0000 (5)
C620.0291 (7)0.0227 (7)0.0190 (7)0.0058 (6)0.0029 (5)0.0021 (5)
C630.0416 (8)0.0260 (7)0.0230 (8)0.0094 (6)0.0105 (6)0.0022 (6)
C640.0322 (8)0.0185 (7)0.0355 (9)0.0078 (6)0.0120 (6)0.0006 (6)
C650.0229 (7)0.0189 (7)0.0300 (8)0.0041 (5)0.0036 (6)0.0055 (6)
C660.0188 (6)0.0199 (6)0.0181 (7)0.0025 (5)0.0030 (5)0.0011 (5)
C670.0196 (6)0.0181 (6)0.0157 (7)0.0044 (5)0.0010 (5)0.0013 (5)
O10.0191 (4)0.0186 (5)0.0192 (5)0.0016 (3)0.0028 (4)0.0012 (4)
O20.0206 (5)0.0203 (5)0.0223 (5)0.0003 (4)0.0031 (4)0.0018 (4)
O30.0182 (4)0.0204 (5)0.0131 (5)0.0000 (3)0.0027 (3)0.0016 (4)
O50.0176 (4)0.0169 (4)0.0157 (5)0.0001 (3)0.0033 (3)0.0016 (3)
Geometric parameters (Å, º) top
C1—O11.3462 (14)C37—H37B0.99
C1—C61.3966 (17)C51—C561.3852 (18)
C1—C21.4202 (17)C51—C521.3962 (17)
C2—C31.4228 (16)C51—C571.5064 (17)
C2—C221.4660 (17)C52—C531.3870 (19)
C3—O31.3551 (15)C52—H520.95
C3—C41.3867 (17)C53—C541.384 (2)
C4—C51.3931 (17)C53—H530.95
C4—H40.95C54—C551.3843 (19)
C5—O51.3661 (14)C54—H540.95
C5—C61.3970 (16)C55—C561.3938 (18)
C6—C671.5046 (17)C55—H550.95
C22—O21.2499 (15)C56—H560.95
C22—C231.4983 (18)C57—O51.4339 (14)
C23—H23A0.98C57—H57A0.99
C23—H23B0.98C57—H57B0.99
C23—H23C0.98C61—C661.3885 (18)
C31—C321.3829 (19)C61—C621.3933 (18)
C31—C361.384 (2)C61—C671.5217 (18)
C31—C371.4997 (18)C62—C631.3846 (19)
C32—C331.384 (2)C62—H620.95
C32—H320.95C63—C641.383 (2)
C33—C341.375 (2)C63—H630.95
C33—H330.95C64—C651.380 (2)
C34—C351.380 (2)C64—H640.95
C34—H340.95C65—C661.3920 (19)
C35—C361.382 (2)C65—H650.95
C35—H350.95C66—H660.95
C36—H360.95C67—H67A0.99
C37—O31.4454 (14)C67—H67B0.99
C37—H37A0.99O1—H10.84
O1—C1—C6115.78 (11)C56—C51—C52118.79 (12)
O1—C1—C2120.94 (11)C56—C51—C57122.41 (11)
C6—C1—C2123.28 (11)C52—C51—C57118.80 (11)
C1—C2—C3116.48 (11)C53—C52—C51120.78 (13)
C1—C2—C22118.76 (11)C53—C52—H52119.6
C3—C2—C22124.76 (11)C51—C52—H52119.6
O3—C3—C4122.45 (11)C54—C53—C52119.87 (12)
O3—C3—C2116.19 (10)C54—C53—H53120.1
C4—C3—C2121.34 (11)C52—C53—H53120.1
C3—C4—C5119.44 (11)C53—C54—C55119.98 (12)
C3—C4—H4120.3C53—C54—H54120
C5—C4—H4120.3C55—C54—H54120
O5—C5—C4122.82 (11)C54—C55—C56120.00 (13)
O5—C5—C6114.76 (11)C54—C55—H55120
C4—C5—C6122.40 (11)C56—C55—H55120
C1—C6—C5117.01 (11)C51—C56—C55120.58 (12)
C1—C6—C67119.98 (11)C51—C56—H56119.7
C5—C6—C67122.97 (11)C55—C56—H56119.7
O2—C22—C2119.75 (11)O5—C57—C51108.42 (10)
O2—C22—C23116.79 (11)O5—C57—H57A110
C2—C22—C23123.46 (11)C51—C57—H57A110
C22—C23—H23A109.5O5—C57—H57B110
C22—C23—H23B109.5C51—C57—H57B110
H23A—C23—H23B109.5H57A—C57—H57B108.4
C22—C23—H23C109.5C66—C61—C62117.80 (12)
H23A—C23—H23C109.5C66—C61—C67123.21 (11)
H23B—C23—H23C109.5C62—C61—C67118.99 (12)
C32—C31—C36118.94 (13)C63—C62—C61121.13 (13)
C32—C31—C37120.53 (12)C63—C62—H62119.4
C36—C31—C37120.53 (12)C61—C62—H62119.4
C31—C32—C33120.51 (14)C64—C63—C62120.33 (13)
C31—C32—H32119.7C64—C63—H63119.8
C33—C32—H32119.7C62—C63—H63119.8
C34—C33—C32120.27 (15)C65—C64—C63119.43 (13)
C34—C33—H33119.9C65—C64—H64120.3
C32—C33—H33119.9C63—C64—H64120.3
C33—C34—C35119.57 (15)C64—C65—C66120.09 (13)
C33—C34—H34120.2C64—C65—H65120
C35—C34—H34120.2C66—C65—H65120
C34—C35—C36120.26 (16)C61—C66—C65121.21 (12)
C34—C35—H35119.9C61—C66—H66119.4
C36—C35—H35119.9C65—C66—H66119.4
C35—C36—C31120.44 (15)C6—C67—C61116.24 (11)
C35—C36—H36119.8C6—C67—H67A108.2
C31—C36—H36119.8C61—C67—H67A108.2
O3—C37—C31106.67 (10)C6—C67—H67B108.2
O3—C37—H37A110.4C61—C67—H67B108.2
C31—C37—H37A110.4H67A—C67—H67B107.4
O3—C37—H37B110.4C1—O1—H1109.5
C31—C37—H37B110.4C3—O3—C37118.66 (9)
H37A—C37—H37B108.6C5—O5—C57118.65 (9)
O1—C1—C2—C3178.13 (11)C37—C31—C36—C35178.08 (14)
C6—C1—C2—C31.90 (18)C32—C31—C37—O3114.05 (13)
O1—C1—C2—C221.70 (17)C36—C31—C37—O365.12 (16)
C6—C1—C2—C22178.27 (11)C56—C51—C52—C530.88 (19)
C1—C2—C3—O3178.13 (10)C57—C51—C52—C53179.95 (12)
C22—C2—C3—O31.69 (18)C51—C52—C53—C540.1 (2)
C1—C2—C3—C40.70 (17)C52—C53—C54—C550.9 (2)
C22—C2—C3—C4179.48 (12)C53—C54—C55—C561.0 (2)
O3—C3—C4—C5178.61 (11)C52—C51—C56—C550.74 (19)
C2—C3—C4—C50.14 (18)C57—C51—C56—C55179.78 (12)
C3—C4—C5—O5178.20 (11)C54—C55—C56—C510.2 (2)
C3—C4—C5—C60.70 (18)C56—C51—C57—O514.90 (16)
O1—C1—C6—C5177.61 (11)C52—C51—C57—O5166.07 (11)
C2—C1—C6—C52.42 (18)C66—C61—C62—C631.32 (19)
O1—C1—C6—C670.22 (17)C67—C61—C62—C63178.38 (13)
C2—C1—C6—C67179.75 (11)C61—C62—C63—C640.7 (2)
O5—C5—C6—C1177.20 (10)C62—C63—C64—C650.2 (2)
C4—C5—C6—C11.78 (18)C63—C64—C65—C660.5 (2)
O5—C5—C6—C670.56 (17)C62—C61—C66—C651.04 (18)
C4—C5—C6—C67179.54 (11)C67—C61—C66—C65178.65 (12)
C1—C2—C22—O22.78 (18)C64—C65—C66—C610.2 (2)
C3—C2—C22—O2177.04 (12)C1—C6—C67—C6176.07 (15)
C1—C2—C22—C23177.02 (12)C5—C6—C67—C61106.24 (14)
C3—C2—C22—C233.16 (19)C66—C61—C67—C67.73 (17)
C36—C31—C32—C330.8 (2)C62—C61—C67—C6171.96 (11)
C37—C31—C32—C33178.39 (13)C4—C3—O3—C375.21 (17)
C31—C32—C33—C340.1 (2)C2—C3—O3—C37175.98 (11)
C32—C33—C34—C350.7 (3)C31—C37—O3—C3177.49 (10)
C33—C34—C35—C360.4 (3)C4—C5—O5—C576.31 (17)
C34—C35—C36—C310.5 (3)C6—C5—O5—C57172.67 (10)
C32—C31—C36—C351.1 (2)C51—C57—O5—C5174.63 (10)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the C1–C6 and C31–C36 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C56—H56···O50.952.392.7282 (15)101
C67—H67B···O50.992.342.7882 (15)106
O1—H1···O20.841.722.4744 (13)148
C57—H57A···O2i0.992.583.4592 (16)148
C23—H23B···Cg3ii0.982.833.6790 (16)145
C57—H57B···Cg1ii0.992.643.5106 (14)146
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC29H26O4
Mr438.5
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.2349 (5), 10.5411 (7), 13.5115 (9)
α, β, γ (°)93.412 (3), 94.139 (3), 105.102 (3)
V3)1125.66 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.39 × 0.12 × 0.03
Data collection
DiffractometerBruker X8 APEXII 4K KappaCCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.968, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
22325, 5521, 4071
Rint0.032
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.107, 1.03
No. of reflections5521
No. of parameters300
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.22

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the C1–C6 and C31–C36 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C56—H56···O50.952.392.7282 (15)100.7
C67—H67B···O50.992.342.7882 (15)106.4
O1—H1···O20.841.722.4744 (13)148.2
C57—H57A···O2i0.992.583.4592 (16)148.4
C23—H23B···Cg3ii0.982.833.6790 (16)145
C57—H57B···Cg1ii0.992.643.5106 (14)146
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+2, z+2.
 

Acknowledgements

Financial assistance from the University of the Free State (UFS) and in particular the UFS Strategic Academic Research Cluster initiative (Materials and Nanoscience) is gratefully acknowledged. We also express our gratitude to the South African National Research Foundation (SA-NRF/THRIP) and the UFS Inorganic Chemistry research group for financial support of this project. Part of this material is based on work supported by the SA-NRF/THRIP (grant No. GUN 2068915).

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin. USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurdock, G. A. (2010). Fenaroli's Handbook of Flavor Ingredients, 6th ed. Boca Raton: CRC Press.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMarais, J. P. J., Ferreira, D. & Slade, D. (2005). Phytochemistry, 66, 2145–2176.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds