metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ3-aqua-aqua(μ3-3,5-di­nitro­benzoato-κO1:O3:O5)caesium]

aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 21 August 2012; accepted 28 August 2012; online 5 September 2012)

In the structure of the title complex, [Cs(C7H3N2O6)(H2O)2]n, the Cs salt of 3,5-dinitro­benzoic acid, the metal complex centres have have irregular CsO8 coordination, comprising two water mol­ecules (one triply bridging and the other monodentate) and four O-atom donors from two nitro groups and one bridging carboxyl­ate O-atom donor from the ligand. Intra-unit O—H⋯O hydrogen-bonding inter­actions involving both water mol­ecules are observed in the three-dimensional polymeric complex structure.

Related literature

For exanples of structures of alkali metal complexes with 3,5-dinitro­benzoic acid, see: Yang & Ng (2007[Yang, G. & Ng, S. W. (2007). Cryst. Res. Technol. 42, 201-206.]) (Li, Na); Tiekink et al. (1990[Tiekink, E. R. T., Hundal, M. S., Sood, G., Kapoor, P. & Poonia, N. S. (1990). Z. Kristallogr. 192, 103-109.]); Jones et al. (2005[Jones, H. P., Gillon, A. L. & Davey, R. J. (2005). Acta Cryst. E61, m1131-m1132.]); Madej et al. (2007[Madej, A., Oleksin, B. J. & Śliwiński, J. (2007). Pol. J. Chem. 81, 1201-1218.]) (Na); Miao & Fan (2011[Miao, Y. & Fan, T. (2011). Acta Cryst. E67, m1040.]); Miao et al. (2011[Miao, Y., Zhang, X. & Liu, C. (2011). Acta Cryst. E67, m1002.]) (Rb). For examples of Cs complexes with nitro­benzoic acids, see: Smith & Wermuth (2011a[Smith, G. & Wermuth, U. D. (2011a). J. Chem. Crystallogr. 41, 688-692.],b[Smith, G. & Wermuth, U. D. (2011b). Acta Cryst. E67, m1047-m1048.]).

[Scheme 1]

Experimental

Crystal data
  • [Cs(C7H3N2O6)(H2O)2]

  • Mr = 380.06

  • Monoclinic, P 21 /n

  • a = 15.1249 (5) Å

  • b = 4.6223 (1) Å

  • c = 17.1024 (6) Å

  • β = 107.782 (4)°

  • V = 1138.54 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.29 mm−1

  • T = 200 K

  • 0.28 × 0.15 × 0.06 mm

Data collection
  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.792, Tmax = 0.980

  • 7596 measured reflections

  • 2652 independent reflections

  • 2336 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.048

  • S = 1.05

  • 2652 reflections

  • 179 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Selected bond lengths (Å)

Cs1—O1W 3.087 (2)
Cs1—O2W 3.282 (2)
Cs1—O12 3.1751 (16)
Cs1—O12i 3.1120 (17)
Cs1—O1Wii 3.261 (2)
Cs1—O32iii 3.244 (2)
Cs1—O1Wiv 3.346 (2)
Cs1—O52v 3.271 (2)
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x+1, -y, -z+2; (v) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11W⋯O2W 0.80 (4) 1.98 (4) 2.734 (3) 159 (3)
O1W—H12W⋯O12iv 0.83 (4) 2.25 (4) 3.016 (3) 155 (4)
O2W—H21W⋯O11vi 0.83 (4) 1.94 (4) 2.764 (3) 174 (3)
O2W—H22W⋯O11vii 0.85 (4) 1.96 (4) 2.797 (3) 168 (3)
Symmetry codes: (iv) -x+1, -y, -z+2; (vi) -x+1, -y+1, -z+2; (vii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

3,5-Dinitrobenzoic acid (DNBA) has been a popular ligand used alone or in mixed-ligand applications for metal complexation and the structures of a large number of its complexes have been reported. With the alkali metals the structures of the complex salts with Li and Na (Yang & Ng, 2007; Jones et al., 2005): the complex salt adduct with Na (Tiekink et al., 1990; Madej et al., 2007) and the Rb complex salt and salt adduct (Miao & Fan, 2011; Miao et al., 2011) are known but the structure of the Cs complex salt has not been reported. The reaction of 3,5-dinitrobenzoic acid with caesium hydroxide in aqueous ethanol gave crystals of the title compound [Cs(C7H3N2O6)(H2O)2]n and the structure is reported here. In the Rb and Cs complexes with the nitro-substituted aromatic carboxylic acids, expanded metal coordination spheres together with polymeric structures are common, in which ligands are bridging, e.g. anhydrous rubidium 3,5-dinitrobenzoate (8-coordinate) (Miao & Fan, 2011); tetracaesium bis(5-nitroisophthalate) heptahydrate (6- and 8-coordinate) (Smith & Wermuth, 2011a) and caesium bis(2-nitroanthranilate) dihydrate (7- and 9-coordinate) (Smith & Wermuth, 2011b).

In the structure of the title compound the CsO8 complex unit (Fig. 1) is irregular 8-coordinate [Cs—O range, 3.087 (2)–3.346 (2) Å] (Table 1), comprising two water molecules (one triply bridging, the other monodentate) and four O-donors from two nitro groups and one bridging carboxyl-O donor group from the ligand. In the three-dimensional polymeric complex structure (Fig. 2), the rings of the DNBA ligands layer down the short b axis of the unit cell with a ring centroid separation of 4.6223 (1) Å (the b cell dimension) (Fig. 3). Present also are intra-polymer O—H···O hydrogen-bonding interactions involving both water molecules (Table 2).

Related literature top

For exanples of structures of alkali metal complexes with 3,5-dinitrobenzoic acid, see: Yang & Ng (2007) (Li, Na); Tiekink et al. (1990); Jones et al. (2005); Madej et al. (2007) (Na); Miao & Fan (2011); Miao et al. (2011) (Rb). For examples of Cs complexes with nitrobenzoic acids, see: Smith & Wermuth (2011a,b).

Experimental top

The title compound was synthesized by heating together under reflux for 10 minutes, 0.5 mmol of caesium hydroxide and 0.5 mmol of 3,5-dinitrobenzoic acid in 20 ml of 10% ethanol–water. Room temperature evaporation of the solution to incipient dryness gave yellow needle crystals of the title complex from which a specimen was cleaved for the X-ray analysis.

Refinement top

Hydrogen atoms of the coordinated water molecules were located in a difference-Fourier synthesis and both positional and isotropic displacement parameters were allowed to refine. Other H-atoms were included at calculated positions and were allowed to ride, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

3,5-Dinitrobenzoic acid (DNBA) has been a popular ligand used alone or in mixed-ligand applications for metal complexation and the structures of a large number of its complexes have been reported. With the alkali metals the structures of the complex salts with Li and Na (Yang & Ng, 2007; Jones et al., 2005): the complex salt adduct with Na (Tiekink et al., 1990; Madej et al., 2007) and the Rb complex salt and salt adduct (Miao & Fan, 2011; Miao et al., 2011) are known but the structure of the Cs complex salt has not been reported. The reaction of 3,5-dinitrobenzoic acid with caesium hydroxide in aqueous ethanol gave crystals of the title compound [Cs(C7H3N2O6)(H2O)2]n and the structure is reported here. In the Rb and Cs complexes with the nitro-substituted aromatic carboxylic acids, expanded metal coordination spheres together with polymeric structures are common, in which ligands are bridging, e.g. anhydrous rubidium 3,5-dinitrobenzoate (8-coordinate) (Miao & Fan, 2011); tetracaesium bis(5-nitroisophthalate) heptahydrate (6- and 8-coordinate) (Smith & Wermuth, 2011a) and caesium bis(2-nitroanthranilate) dihydrate (7- and 9-coordinate) (Smith & Wermuth, 2011b).

In the structure of the title compound the CsO8 complex unit (Fig. 1) is irregular 8-coordinate [Cs—O range, 3.087 (2)–3.346 (2) Å] (Table 1), comprising two water molecules (one triply bridging, the other monodentate) and four O-donors from two nitro groups and one bridging carboxyl-O donor group from the ligand. In the three-dimensional polymeric complex structure (Fig. 2), the rings of the DNBA ligands layer down the short b axis of the unit cell with a ring centroid separation of 4.6223 (1) Å (the b cell dimension) (Fig. 3). Present also are intra-polymer O—H···O hydrogen-bonding interactions involving both water molecules (Table 2).

For exanples of structures of alkali metal complexes with 3,5-dinitrobenzoic acid, see: Yang & Ng (2007) (Li, Na); Tiekink et al. (1990); Jones et al. (2005); Madej et al. (2007) (Na); Miao & Fan (2011); Miao et al. (2011) (Rb). For examples of Cs complexes with nitrobenzoic acids, see: Smith & Wermuth (2011a,b).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme for the title compound, with non-H atoms drawn as 50% probability ellipsoids. For symmetry codes: see Table 1.
[Figure 2] Fig. 2. A section of the three-dimensional coordination polymer showing inter-unit Cs···Cs associations and 30% probability ellipsoids.
[Figure 3] Fig. 3. The packing in the unit cell viewed down the the b axial direction showing intra-unit hydrogen-bonding associations as dashed lines. Non-interactive H atoms are omitted. For symmetry codes, see Fig. 1 and Table 2.
Poly[µ3-aqua-aqua(µ3-3,5-dinitrobenzoato- κO1:O3:O5)caesium] top
Crystal data top
[Cs(C7H3N2O6)(H2O)2]F(000) = 728
Mr = 380.06Dx = 2.217 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3275 reflections
a = 15.1249 (5) Åθ = 3.2–28.8°
b = 4.6223 (1) ŵ = 3.29 mm1
c = 17.1024 (6) ÅT = 200 K
β = 107.782 (4)°Needle, yellow
V = 1138.54 (7) Å30.28 × 0.15 × 0.06 mm
Z = 4
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2652 independent reflections
Radiation source: Enhance (Mo) X-ray source2336 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 16.077 pixels mm-1θmax = 28.9°, θmin = 3.2°
ω scansh = 2020
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 65
Tmin = 0.792, Tmax = 0.980l = 2222
7596 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0172P)2]
where P = (Fo2 + 2Fc2)/3
2652 reflections(Δ/σ)max = 0.001
179 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Cs(C7H3N2O6)(H2O)2]V = 1138.54 (7) Å3
Mr = 380.06Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.1249 (5) ŵ = 3.29 mm1
b = 4.6223 (1) ÅT = 200 K
c = 17.1024 (6) Å0.28 × 0.15 × 0.06 mm
β = 107.782 (4)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2652 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2336 reflections with I > 2σ(I)
Tmin = 0.792, Tmax = 0.980Rint = 0.030
7596 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.47 e Å3
2652 reflectionsΔρmin = 0.56 e Å3
179 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.63127 (1)0.11431 (3)0.94980 (1)0.0232 (1)
O1W0.57824 (16)0.3598 (5)1.05448 (13)0.0315 (7)
O2W0.69998 (16)0.0306 (5)1.14991 (13)0.0311 (7)
O110.37491 (13)0.6190 (4)0.75558 (11)0.0278 (6)
O120.52278 (14)0.6236 (3)0.83580 (11)0.0266 (6)
O310.74660 (14)0.3113 (4)0.68972 (12)0.0315 (6)
O320.71260 (15)0.0756 (4)0.61600 (12)0.0351 (7)
O510.39421 (16)0.3890 (4)0.51426 (12)0.0351 (7)
O520.28880 (15)0.1482 (4)0.54804 (12)0.0381 (7)
N30.69218 (16)0.1222 (4)0.65482 (13)0.0234 (7)
N50.36953 (17)0.2001 (5)0.55368 (12)0.0246 (7)
C10.48439 (18)0.3386 (5)0.71545 (14)0.0169 (7)
C20.57543 (18)0.3203 (5)0.71383 (14)0.0177 (7)
C30.59685 (18)0.1317 (5)0.65956 (15)0.0186 (7)
C40.53156 (19)0.0458 (5)0.60715 (14)0.0191 (7)
C50.44224 (19)0.0198 (5)0.60976 (14)0.0187 (7)
C60.41608 (18)0.1685 (5)0.66192 (14)0.0187 (7)
C110.45850 (19)0.5455 (5)0.77413 (15)0.0186 (7)
H20.621500.433700.748900.0210*
H40.547400.175700.572100.0230*
H60.354500.181000.661200.0220*
H11W0.616 (3)0.280 (7)1.091 (2)0.038 (10)*
H12W0.559 (3)0.478 (7)1.081 (2)0.055 (12)*
H21W0.677 (3)0.124 (6)1.180 (2)0.052 (12)*
H22W0.750 (3)0.041 (6)1.1818 (19)0.037 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.0226 (1)0.0231 (1)0.0235 (1)0.0002 (1)0.0063 (1)0.0030 (1)
O1W0.0308 (13)0.0405 (12)0.0214 (10)0.0117 (10)0.0053 (9)0.0000 (10)
O2W0.0259 (12)0.0355 (11)0.0284 (11)0.0046 (10)0.0032 (10)0.0094 (10)
O110.0174 (10)0.0373 (11)0.0279 (10)0.0052 (8)0.0059 (8)0.0072 (8)
O120.0229 (11)0.0330 (10)0.0210 (9)0.0005 (8)0.0023 (8)0.0092 (8)
O310.0204 (11)0.0385 (11)0.0356 (11)0.0040 (9)0.0084 (9)0.0042 (9)
O320.0310 (12)0.0442 (12)0.0324 (11)0.0130 (9)0.0130 (10)0.0079 (9)
O510.0492 (15)0.0248 (10)0.0266 (10)0.0040 (9)0.0045 (10)0.0093 (8)
O520.0252 (12)0.0548 (13)0.0342 (11)0.0143 (10)0.0089 (9)0.0132 (10)
N30.0223 (13)0.0294 (12)0.0180 (11)0.0075 (10)0.0055 (9)0.0042 (9)
N50.0304 (15)0.0246 (11)0.0169 (11)0.0075 (10)0.0044 (10)0.0012 (9)
C10.0203 (14)0.0179 (11)0.0128 (11)0.0002 (10)0.0055 (10)0.0013 (9)
C20.0171 (13)0.0182 (11)0.0161 (12)0.0004 (10)0.0024 (10)0.0025 (10)
C30.0188 (14)0.0198 (12)0.0178 (12)0.0039 (10)0.0067 (10)0.0057 (10)
C40.0278 (15)0.0153 (11)0.0141 (12)0.0013 (10)0.0063 (10)0.0001 (9)
C50.0244 (15)0.0175 (11)0.0130 (11)0.0039 (11)0.0039 (10)0.0005 (10)
C60.0197 (14)0.0207 (12)0.0152 (11)0.0023 (10)0.0048 (10)0.0034 (10)
C110.0220 (14)0.0192 (12)0.0168 (12)0.0014 (10)0.0091 (10)0.0022 (10)
Geometric parameters (Å, º) top
Cs1—O1W3.087 (2)O1W—H11W0.80 (4)
Cs1—O2W3.282 (2)O2W—H21W0.83 (4)
Cs1—O123.1751 (16)O2W—H22W0.85 (4)
Cs1—O12i3.1120 (17)N3—C31.469 (4)
Cs1—O1Wii3.261 (2)N5—C51.476 (3)
Cs1—O32iii3.244 (2)C1—C21.388 (4)
Cs1—O1Wiv3.346 (2)C1—C61.395 (3)
Cs1—O52v3.271 (2)C1—C111.522 (3)
O11—C111.253 (4)C2—C31.382 (3)
O12—C111.250 (3)C3—C41.382 (4)
O31—N31.224 (3)C4—C51.371 (4)
O32—N31.224 (3)C5—C61.388 (3)
O51—N51.229 (3)C2—H20.9300
O52—N51.219 (4)C4—H40.9300
O1W—H12W0.82 (4)C6—H60.9300
O1W—Cs1—O2W50.74 (6)H11W—O1W—H12W100 (4)
O1W—Cs1—O12134.87 (6)Cs1i—O1W—H11W123 (3)
O1W—Cs1—O12i70.44 (5)Cs1iv—O1W—H11W108 (3)
O1W—Cs1—O1Wii93.43 (6)Cs1i—O1W—H12W90 (3)
O1W—Cs1—O32iii149.39 (6)Cs1iv—O1W—H12W75 (3)
O1W—Cs1—O1Wiv80.87 (6)Cs1—O1W—H11W83 (2)
O1W—Cs1—O52v60.79 (6)H21W—O2W—H22W105 (3)
O2W—Cs1—O12131.87 (5)Cs1—O2W—H22W131 (2)
O2W—Cs1—O12i120.39 (5)Cs1—O2W—H21W122 (2)
O1Wii—Cs1—O2W64.41 (6)O32—N3—C3117.8 (2)
O2W—Cs1—O32iii112.44 (6)O31—N3—C3118.5 (2)
O1Wiv—Cs1—O2W93.38 (6)O31—N3—O32123.7 (3)
O2W—Cs1—O52v55.78 (6)O51—N5—O52124.1 (2)
O12—Cs1—O12i94.64 (4)O51—N5—C5117.8 (2)
O1Wii—Cs1—O1267.47 (5)O52—N5—C5118.0 (2)
O12—Cs1—O32iii75.75 (5)C6—C1—C11119.9 (2)
O1Wiv—Cs1—O1255.02 (5)C2—C1—C6119.5 (2)
O12—Cs1—O52v164.29 (6)C2—C1—C11120.5 (2)
O1Wii—Cs1—O12i135.75 (6)C1—C2—C3119.3 (2)
O12i—Cs1—O32iii113.90 (5)C2—C3—C4122.8 (3)
O1Wiv—Cs1—O12i85.35 (5)N3—C3—C2119.4 (2)
O12i—Cs1—O52v90.21 (5)N3—C3—C4117.7 (2)
O1Wii—Cs1—O32iii100.85 (5)C3—C4—C5116.3 (2)
O1Wii—Cs1—O1Wiv50.88 (6)C4—C5—C6123.6 (2)
O1Wii—Cs1—O52v118.15 (5)N5—C5—C6118.0 (3)
O1Wiv—Cs1—O32iii128.87 (5)N5—C5—C4118.4 (2)
O32iii—Cs1—O52v88.62 (5)C1—C6—C5118.4 (3)
O1Wiv—Cs1—O52v140.47 (5)O11—C11—O12126.9 (2)
Cs1—O1W—Cs1i93.43 (6)O11—C11—C1116.5 (2)
Cs1—O1W—Cs1iv99.13 (6)O12—C11—C1116.6 (2)
Cs1i—O1W—Cs1iv129.12 (7)C1—C2—H2120.00
Cs1—O12—C11115.28 (13)C3—C2—H2120.00
Cs1—O12—Cs1ii94.64 (5)C3—C4—H4122.00
Cs1ii—O12—C11149.86 (14)C5—C4—H4122.00
Cs1vi—O32—N3148.16 (18)C1—C6—H6121.00
Cs1vii—O52—N5117.78 (15)C5—C6—H6121.00
Cs1—O1W—H12W174 (3)
O2W—Cs1—O1W—Cs1i127.44 (9)O1W—Cs1—O1Wiv—Cs1iv0.00 (6)
O2W—Cs1—O1W—Cs1iv102.04 (8)O2W—Cs1—O1Wiv—Cs1iv49.33 (6)
O12—Cs1—O1W—Cs1i118.81 (6)O12—Cs1—O1Wiv—Cs1iv169.89 (8)
O12—Cs1—O1W—Cs1iv11.71 (9)O1W—Cs1—O52v—N5v167.08 (18)
O12i—Cs1—O1W—Cs1i42.25 (5)O2W—Cs1—O52v—N5v106.86 (18)
O12i—Cs1—O1W—Cs1iv88.27 (6)Cs1—O12—C11—O11122.9 (2)
O1Wii—Cs1—O1W—Cs1i179.98 (9)Cs1—O12—C11—C157.0 (3)
O1Wii—Cs1—O1W—Cs1iv49.48 (6)Cs1ii—O12—C11—O1149.7 (5)
O32iii—Cs1—O1W—Cs1i61.86 (12)Cs1ii—O12—C11—C1130.5 (3)
O32iii—Cs1—O1W—Cs1iv167.61 (7)Cs1vi—O32—N3—O310.6 (4)
O1Wiv—Cs1—O1W—Cs1i130.53 (6)Cs1vi—O32—N3—C3179.48 (19)
O1Wiv—Cs1—O1W—Cs1iv0.02 (12)Cs1vii—O52—N5—O5112.2 (3)
O52v—Cs1—O1W—Cs1i59.47 (6)Cs1vii—O52—N5—C5169.48 (15)
O52v—Cs1—O1W—Cs1iv170.01 (8)O31—N3—C3—C211.0 (3)
O1W—Cs1—O12—C1163.1 (2)O31—N3—C3—C4167.3 (2)
O1W—Cs1—O12—Cs1ii113.15 (7)O32—N3—C3—C2169.0 (2)
O2W—Cs1—O12—C11135.23 (18)O32—N3—C3—C412.7 (3)
O2W—Cs1—O12—Cs1ii41.03 (9)O51—N5—C5—C48.4 (3)
O12i—Cs1—O12—C113.7 (2)O51—N5—C5—C6172.0 (2)
O12i—Cs1—O12—Cs1ii180.00 (7)O52—N5—C5—C4170.0 (2)
O1Wii—Cs1—O12—C11134.4 (2)O52—N5—C5—C69.6 (3)
O1Wii—Cs1—O12—Cs1ii41.90 (6)C6—C1—C2—C30.5 (3)
O32iii—Cs1—O12—C11117.2 (2)C11—C1—C2—C3179.6 (2)
O32iii—Cs1—O12—Cs1ii66.50 (5)C2—C1—C6—C51.5 (3)
O1Wiv—Cs1—O12—C1177.3 (2)C11—C1—C6—C5179.4 (2)
O1Wiv—Cs1—O12—Cs1ii98.99 (7)C2—C1—C11—O11158.1 (2)
O1W—Cs1—O12i—Cs1i43.76 (6)C2—C1—C11—O1222.1 (3)
O1W—Cs1—O12i—C11i129.5 (4)C6—C1—C11—O1121.0 (3)
O2W—Cs1—O12i—Cs1i34.52 (8)C6—C1—C11—O12158.9 (2)
O2W—Cs1—O12i—C11i138.7 (4)C1—C2—C3—N3177.0 (2)
O12—Cs1—O12i—Cs1i180.00 (7)C1—C2—C3—C41.2 (4)
O12—Cs1—O12i—C11i6.8 (4)N3—C3—C4—C5176.4 (2)
O1W—Cs1—O1Wii—Cs1ii179.98 (9)C2—C3—C4—C51.9 (4)
O2W—Cs1—O1Wii—Cs1ii137.03 (8)C3—C4—C5—N5178.7 (2)
O12—Cs1—O1Wii—Cs1ii42.25 (5)C3—C4—C5—C60.9 (4)
O1W—Cs1—O32iii—N3iii174.4 (3)N5—C5—C6—C1179.7 (2)
O2W—Cs1—O32iii—N3iii124.7 (3)C4—C5—C6—C10.8 (4)
O12—Cs1—O32iii—N3iii5.1 (3)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+3/2, y+1/2, z+3/2; (iv) x+1, y, z+2; (v) x+1/2, y1/2, z+1/2; (vi) x+3/2, y1/2, z+3/2; (vii) x1/2, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O2W0.80 (4)1.98 (4)2.734 (3)159 (3)
O1W—H12W···O12iv0.83 (4)2.25 (4)3.016 (3)155 (4)
O2W—H21W···O11viii0.83 (4)1.94 (4)2.764 (3)174 (3)
O2W—H22W···O11ix0.85 (4)1.96 (4)2.797 (3)168 (3)
Symmetry codes: (iv) x+1, y, z+2; (viii) x+1, y+1, z+2; (ix) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cs(C7H3N2O6)(H2O)2]
Mr380.06
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)15.1249 (5), 4.6223 (1), 17.1024 (6)
β (°) 107.782 (4)
V3)1138.54 (7)
Z4
Radiation typeMo Kα
µ (mm1)3.29
Crystal size (mm)0.28 × 0.15 × 0.06
Data collection
DiffractometerOxford Diffraction Gemini-S CCD-detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.792, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
7596, 2652, 2336
Rint0.030
(sin θ/λ)max1)0.680
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.048, 1.05
No. of reflections2652
No. of parameters179
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.56

Computer programs: CrysAlis PRO (Agilent, 2012), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).

Selected bond lengths (Å) top
Cs1—O1W3.087 (2)Cs1—O1Wii3.261 (2)
Cs1—O2W3.282 (2)Cs1—O32iii3.244 (2)
Cs1—O123.1751 (16)Cs1—O1Wiv3.346 (2)
Cs1—O12i3.1120 (17)Cs1—O52v3.271 (2)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+3/2, y+1/2, z+3/2; (iv) x+1, y, z+2; (v) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O2W0.80 (4)1.98 (4)2.734 (3)159 (3)
O1W—H12W···O12iv0.83 (4)2.25 (4)3.016 (3)155 (4)
O2W—H21W···O11vi0.83 (4)1.94 (4)2.764 (3)174 (3)
O2W—H22W···O11vii0.85 (4)1.96 (4)2.797 (3)168 (3)
Symmetry codes: (iv) x+1, y, z+2; (vi) x+1, y+1, z+2; (vii) x+1/2, y+1/2, z+1/2.
 

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJones, H. P., Gillon, A. L. & Davey, R. J. (2005). Acta Cryst. E61, m1131–m1132.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMadej, A., Oleksin, B. J. & Śliwiński, J. (2007). Pol. J. Chem. 81, 1201–1218.  CAS Google Scholar
First citationMiao, Y. & Fan, T. (2011). Acta Cryst. E67, m1040.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMiao, Y., Zhang, X. & Liu, C. (2011). Acta Cryst. E67, m1002.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2011a). J. Chem. Crystallogr. 41, 688–692.  Web of Science CSD CrossRef CAS Google Scholar
First citationSmith, G. & Wermuth, U. D. (2011b). Acta Cryst. E67, m1047–m1048.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T., Hundal, M. S., Sood, G., Kapoor, P. & Poonia, N. S. (1990). Z. Kristallogr. 192, 103–109.  CAS Google Scholar
First citationYang, G. & Ng, S. W. (2007). Cryst. Res. Technol. 42, 201–206.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds