metal-organic compounds
Poly[μ3-aqua-aqua(μ3-3,5-dinitrobenzoato-κO1:O3:O5)caesium]
aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au
In the structure of the title complex, [Cs(C7H3N2O6)(H2O)2]n, the Cs salt of 3,5-dinitrobenzoic acid, the metal complex centres have have irregular CsO8 coordination, comprising two water molecules (one triply bridging and the other monodentate) and four O-atom donors from two nitro groups and one bridging carboxylate O-atom donor from the ligand. Intra-unit O—H⋯O hydrogen-bonding interactions involving both water molecules are observed in the three-dimensional polymeric complex structure.
Related literature
For exanples of structures of alkali metal complexes with 3,5-dinitrobenzoic acid, see: Yang & Ng (2007) (Li, Na); Tiekink et al. (1990); Jones et al. (2005); Madej et al. (2007) (Na); Miao & Fan (2011); Miao et al. (2011) (Rb). For examples of Cs complexes with nitrobenzoic acids, see: Smith & Wermuth (2011a,b).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.
Supporting information
https://doi.org/10.1107/S1600536812037130/ng5289sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812037130/ng5289Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812037130/ng5289Isup3.cml
The title compound was synthesized by heating together under reflux for 10 minutes, 0.5 mmol of caesium hydroxide and 0.5 mmol of 3,5-dinitrobenzoic acid in 20 ml of 10% ethanol–water. Room temperature evaporation of the solution to incipient dryness gave yellow needle crystals of the title complex from which a specimen was cleaved for the X-ray analysis.
Hydrogen atoms of the coordinated water molecules were located in a difference-Fourier synthesis and both positional and isotropic displacement parameters were allowed to refine. Other H-atoms were included at calculated positions and were allowed to ride, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).
3,5-Dinitrobenzoic acid (DNBA) has been a popular ligand used alone or in mixed-ligand applications for metal complexation and the structures of a large number of its complexes have been reported. With the alkali metals the structures of the complex salts with Li and Na (Yang & Ng, 2007; Jones et al., 2005): the complex salt adduct with Na (Tiekink et al., 1990; Madej et al., 2007) and the Rb complex salt and salt adduct (Miao & Fan, 2011; Miao et al., 2011) are known but the structure of the Cs complex salt has not been reported. The reaction of 3,5-dinitrobenzoic acid with caesium hydroxide in aqueous ethanol gave crystals of the title compound [Cs(C7H3N2O6)(H2O)2]n and the structure is reported here. In the Rb and Cs complexes with the nitro-substituted aromatic
expanded metal coordination spheres together with polymeric structures are common, in which ligands are bridging, e.g. anhydrous rubidium 3,5-dinitrobenzoate (8-coordinate) (Miao & Fan, 2011); tetracaesium bis(5-nitroisophthalate) heptahydrate (6- and 8-coordinate) (Smith & Wermuth, 2011a) and caesium bis(2-nitroanthranilate) dihydrate (7- and 9-coordinate) (Smith & Wermuth, 2011b).In the structure of the title compound the CsO8 complex unit (Fig. 1) is irregular 8-coordinate [Cs—O range, 3.087 (2)–3.346 (2) Å] (Table 1), comprising two water molecules (one triply bridging, the other monodentate) and four O-donors from two nitro groups and one bridging carboxyl-O donor group from the ligand. In the three-dimensional polymeric complex structure (Fig. 2), the rings of the DNBA ligands layer down the short b axis of the
with a ring centroid separation of 4.6223 (1) Å (the b cell dimension) (Fig. 3). Present also are intra-polymer O—H···O hydrogen-bonding interactions involving both water molecules (Table 2).For exanples of structures of alkali metal complexes with 3,5-dinitrobenzoic acid, see: Yang & Ng (2007) (Li, Na); Tiekink et al. (1990); Jones et al. (2005); Madej et al. (2007) (Na); Miao & Fan (2011); Miao et al. (2011) (Rb). For examples of Cs complexes with nitrobenzoic acids, see: Smith & Wermuth (2011a,b).
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. The molecular configuration and atom-numbering scheme for the title compound, with non-H atoms drawn as 50% probability ellipsoids. For symmetry codes: see Table 1. | |
Fig. 2. A section of the three-dimensional coordination polymer showing inter-unit Cs···Cs associations and 30% probability ellipsoids. | |
Fig. 3. The packing in the unit cell viewed down the the b axial direction showing intra-unit hydrogen-bonding associations as dashed lines. Non-interactive H atoms are omitted. For symmetry codes, see Fig. 1 and Table 2. |
[Cs(C7H3N2O6)(H2O)2] | F(000) = 728 |
Mr = 380.06 | Dx = 2.217 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3275 reflections |
a = 15.1249 (5) Å | θ = 3.2–28.8° |
b = 4.6223 (1) Å | µ = 3.29 mm−1 |
c = 17.1024 (6) Å | T = 200 K |
β = 107.782 (4)° | Needle, yellow |
V = 1138.54 (7) Å3 | 0.28 × 0.15 × 0.06 mm |
Z = 4 |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 2652 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 2336 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
Detector resolution: 16.077 pixels mm-1 | θmax = 28.9°, θmin = 3.2° |
ω scans | h = −20→20 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | k = −6→5 |
Tmin = 0.792, Tmax = 0.980 | l = −22→22 |
7596 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.048 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0172P)2] where P = (Fo2 + 2Fc2)/3 |
2652 reflections | (Δ/σ)max = 0.001 |
179 parameters | Δρmax = 0.47 e Å−3 |
0 restraints | Δρmin = −0.56 e Å−3 |
[Cs(C7H3N2O6)(H2O)2] | V = 1138.54 (7) Å3 |
Mr = 380.06 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 15.1249 (5) Å | µ = 3.29 mm−1 |
b = 4.6223 (1) Å | T = 200 K |
c = 17.1024 (6) Å | 0.28 × 0.15 × 0.06 mm |
β = 107.782 (4)° |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 2652 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | 2336 reflections with I > 2σ(I) |
Tmin = 0.792, Tmax = 0.980 | Rint = 0.030 |
7596 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 0 restraints |
wR(F2) = 0.048 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.47 e Å−3 |
2652 reflections | Δρmin = −0.56 e Å−3 |
179 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cs1 | 0.63127 (1) | 0.11431 (3) | 0.94980 (1) | 0.0232 (1) | |
O1W | 0.57824 (16) | −0.3598 (5) | 1.05448 (13) | 0.0315 (7) | |
O2W | 0.69998 (16) | 0.0306 (5) | 1.14991 (13) | 0.0311 (7) | |
O11 | 0.37491 (13) | 0.6190 (4) | 0.75558 (11) | 0.0278 (6) | |
O12 | 0.52278 (14) | 0.6236 (3) | 0.83580 (11) | 0.0266 (6) | |
O31 | 0.74660 (14) | 0.3113 (4) | 0.68972 (12) | 0.0315 (6) | |
O32 | 0.71260 (15) | −0.0756 (4) | 0.61600 (12) | 0.0351 (7) | |
O51 | 0.39421 (16) | −0.3890 (4) | 0.51426 (12) | 0.0351 (7) | |
O52 | 0.28880 (15) | −0.1482 (4) | 0.54804 (12) | 0.0381 (7) | |
N3 | 0.69218 (16) | 0.1222 (4) | 0.65482 (13) | 0.0234 (7) | |
N5 | 0.36953 (17) | −0.2001 (5) | 0.55368 (12) | 0.0246 (7) | |
C1 | 0.48439 (18) | 0.3386 (5) | 0.71545 (14) | 0.0169 (7) | |
C2 | 0.57543 (18) | 0.3203 (5) | 0.71383 (14) | 0.0177 (7) | |
C3 | 0.59685 (18) | 0.1317 (5) | 0.65956 (15) | 0.0186 (7) | |
C4 | 0.53156 (19) | −0.0458 (5) | 0.60715 (14) | 0.0191 (7) | |
C5 | 0.44224 (19) | −0.0198 (5) | 0.60976 (14) | 0.0187 (7) | |
C6 | 0.41608 (18) | 0.1685 (5) | 0.66192 (14) | 0.0187 (7) | |
C11 | 0.45850 (19) | 0.5455 (5) | 0.77413 (15) | 0.0186 (7) | |
H2 | 0.62150 | 0.43370 | 0.74890 | 0.0210* | |
H4 | 0.54740 | −0.17570 | 0.57210 | 0.0230* | |
H6 | 0.35450 | 0.18100 | 0.66120 | 0.0220* | |
H11W | 0.616 (3) | −0.280 (7) | 1.091 (2) | 0.038 (10)* | |
H12W | 0.559 (3) | −0.478 (7) | 1.081 (2) | 0.055 (12)* | |
H21W | 0.677 (3) | 0.124 (6) | 1.180 (2) | 0.052 (12)* | |
H22W | 0.750 (3) | −0.041 (6) | 1.1818 (19) | 0.037 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cs1 | 0.0226 (1) | 0.0231 (1) | 0.0235 (1) | −0.0002 (1) | 0.0063 (1) | 0.0030 (1) |
O1W | 0.0308 (13) | 0.0405 (12) | 0.0214 (10) | −0.0117 (10) | 0.0053 (9) | 0.0000 (10) |
O2W | 0.0259 (12) | 0.0355 (11) | 0.0284 (11) | 0.0046 (10) | 0.0032 (10) | −0.0094 (10) |
O11 | 0.0174 (10) | 0.0373 (11) | 0.0279 (10) | 0.0052 (8) | 0.0059 (8) | −0.0072 (8) |
O12 | 0.0229 (11) | 0.0330 (10) | 0.0210 (9) | −0.0005 (8) | 0.0023 (8) | −0.0092 (8) |
O31 | 0.0204 (11) | 0.0385 (11) | 0.0356 (11) | −0.0040 (9) | 0.0084 (9) | −0.0042 (9) |
O32 | 0.0310 (12) | 0.0442 (12) | 0.0324 (11) | 0.0130 (9) | 0.0130 (10) | −0.0079 (9) |
O51 | 0.0492 (15) | 0.0248 (10) | 0.0266 (10) | −0.0040 (9) | 0.0045 (10) | −0.0093 (8) |
O52 | 0.0252 (12) | 0.0548 (13) | 0.0342 (11) | −0.0143 (10) | 0.0089 (9) | −0.0132 (10) |
N3 | 0.0223 (13) | 0.0294 (12) | 0.0180 (11) | 0.0075 (10) | 0.0055 (9) | 0.0042 (9) |
N5 | 0.0304 (15) | 0.0246 (11) | 0.0169 (11) | −0.0075 (10) | 0.0044 (10) | −0.0012 (9) |
C1 | 0.0203 (14) | 0.0179 (11) | 0.0128 (11) | −0.0002 (10) | 0.0055 (10) | 0.0013 (9) |
C2 | 0.0171 (13) | 0.0182 (11) | 0.0161 (12) | −0.0004 (10) | 0.0024 (10) | 0.0025 (10) |
C3 | 0.0188 (14) | 0.0198 (12) | 0.0178 (12) | 0.0039 (10) | 0.0067 (10) | 0.0057 (10) |
C4 | 0.0278 (15) | 0.0153 (11) | 0.0141 (12) | 0.0013 (10) | 0.0063 (10) | −0.0001 (9) |
C5 | 0.0244 (15) | 0.0175 (11) | 0.0130 (11) | −0.0039 (11) | 0.0039 (10) | −0.0005 (10) |
C6 | 0.0197 (14) | 0.0207 (12) | 0.0152 (11) | −0.0023 (10) | 0.0048 (10) | 0.0034 (10) |
C11 | 0.0220 (14) | 0.0192 (12) | 0.0168 (12) | −0.0014 (10) | 0.0091 (10) | 0.0022 (10) |
Cs1—O1W | 3.087 (2) | O1W—H11W | 0.80 (4) |
Cs1—O2W | 3.282 (2) | O2W—H21W | 0.83 (4) |
Cs1—O12 | 3.1751 (16) | O2W—H22W | 0.85 (4) |
Cs1—O12i | 3.1120 (17) | N3—C3 | 1.469 (4) |
Cs1—O1Wii | 3.261 (2) | N5—C5 | 1.476 (3) |
Cs1—O32iii | 3.244 (2) | C1—C2 | 1.388 (4) |
Cs1—O1Wiv | 3.346 (2) | C1—C6 | 1.395 (3) |
Cs1—O52v | 3.271 (2) | C1—C11 | 1.522 (3) |
O11—C11 | 1.253 (4) | C2—C3 | 1.382 (3) |
O12—C11 | 1.250 (3) | C3—C4 | 1.382 (4) |
O31—N3 | 1.224 (3) | C4—C5 | 1.371 (4) |
O32—N3 | 1.224 (3) | C5—C6 | 1.388 (3) |
O51—N5 | 1.229 (3) | C2—H2 | 0.9300 |
O52—N5 | 1.219 (4) | C4—H4 | 0.9300 |
O1W—H12W | 0.82 (4) | C6—H6 | 0.9300 |
O1W—Cs1—O2W | 50.74 (6) | H11W—O1W—H12W | 100 (4) |
O1W—Cs1—O12 | 134.87 (6) | Cs1i—O1W—H11W | 123 (3) |
O1W—Cs1—O12i | 70.44 (5) | Cs1iv—O1W—H11W | 108 (3) |
O1W—Cs1—O1Wii | 93.43 (6) | Cs1i—O1W—H12W | 90 (3) |
O1W—Cs1—O32iii | 149.39 (6) | Cs1iv—O1W—H12W | 75 (3) |
O1W—Cs1—O1Wiv | 80.87 (6) | Cs1—O1W—H11W | 83 (2) |
O1W—Cs1—O52v | 60.79 (6) | H21W—O2W—H22W | 105 (3) |
O2W—Cs1—O12 | 131.87 (5) | Cs1—O2W—H22W | 131 (2) |
O2W—Cs1—O12i | 120.39 (5) | Cs1—O2W—H21W | 122 (2) |
O1Wii—Cs1—O2W | 64.41 (6) | O32—N3—C3 | 117.8 (2) |
O2W—Cs1—O32iii | 112.44 (6) | O31—N3—C3 | 118.5 (2) |
O1Wiv—Cs1—O2W | 93.38 (6) | O31—N3—O32 | 123.7 (3) |
O2W—Cs1—O52v | 55.78 (6) | O51—N5—O52 | 124.1 (2) |
O12—Cs1—O12i | 94.64 (4) | O51—N5—C5 | 117.8 (2) |
O1Wii—Cs1—O12 | 67.47 (5) | O52—N5—C5 | 118.0 (2) |
O12—Cs1—O32iii | 75.75 (5) | C6—C1—C11 | 119.9 (2) |
O1Wiv—Cs1—O12 | 55.02 (5) | C2—C1—C6 | 119.5 (2) |
O12—Cs1—O52v | 164.29 (6) | C2—C1—C11 | 120.5 (2) |
O1Wii—Cs1—O12i | 135.75 (6) | C1—C2—C3 | 119.3 (2) |
O12i—Cs1—O32iii | 113.90 (5) | C2—C3—C4 | 122.8 (3) |
O1Wiv—Cs1—O12i | 85.35 (5) | N3—C3—C2 | 119.4 (2) |
O12i—Cs1—O52v | 90.21 (5) | N3—C3—C4 | 117.7 (2) |
O1Wii—Cs1—O32iii | 100.85 (5) | C3—C4—C5 | 116.3 (2) |
O1Wii—Cs1—O1Wiv | 50.88 (6) | C4—C5—C6 | 123.6 (2) |
O1Wii—Cs1—O52v | 118.15 (5) | N5—C5—C6 | 118.0 (3) |
O1Wiv—Cs1—O32iii | 128.87 (5) | N5—C5—C4 | 118.4 (2) |
O32iii—Cs1—O52v | 88.62 (5) | C1—C6—C5 | 118.4 (3) |
O1Wiv—Cs1—O52v | 140.47 (5) | O11—C11—O12 | 126.9 (2) |
Cs1—O1W—Cs1i | 93.43 (6) | O11—C11—C1 | 116.5 (2) |
Cs1—O1W—Cs1iv | 99.13 (6) | O12—C11—C1 | 116.6 (2) |
Cs1i—O1W—Cs1iv | 129.12 (7) | C1—C2—H2 | 120.00 |
Cs1—O12—C11 | 115.28 (13) | C3—C2—H2 | 120.00 |
Cs1—O12—Cs1ii | 94.64 (5) | C3—C4—H4 | 122.00 |
Cs1ii—O12—C11 | 149.86 (14) | C5—C4—H4 | 122.00 |
Cs1vi—O32—N3 | 148.16 (18) | C1—C6—H6 | 121.00 |
Cs1vii—O52—N5 | 117.78 (15) | C5—C6—H6 | 121.00 |
Cs1—O1W—H12W | 174 (3) | ||
O2W—Cs1—O1W—Cs1i | −127.44 (9) | O1W—Cs1—O1Wiv—Cs1iv | 0.00 (6) |
O2W—Cs1—O1W—Cs1iv | 102.04 (8) | O2W—Cs1—O1Wiv—Cs1iv | −49.33 (6) |
O12—Cs1—O1W—Cs1i | 118.81 (6) | O12—Cs1—O1Wiv—Cs1iv | 169.89 (8) |
O12—Cs1—O1W—Cs1iv | −11.71 (9) | O1W—Cs1—O52v—N5v | −167.08 (18) |
O12i—Cs1—O1W—Cs1i | 42.25 (5) | O2W—Cs1—O52v—N5v | −106.86 (18) |
O12i—Cs1—O1W—Cs1iv | −88.27 (6) | Cs1—O12—C11—O11 | 122.9 (2) |
O1Wii—Cs1—O1W—Cs1i | 179.98 (9) | Cs1—O12—C11—C1 | −57.0 (3) |
O1Wii—Cs1—O1W—Cs1iv | 49.48 (6) | Cs1ii—O12—C11—O11 | −49.7 (5) |
O32iii—Cs1—O1W—Cs1i | −61.86 (12) | Cs1ii—O12—C11—C1 | 130.5 (3) |
O32iii—Cs1—O1W—Cs1iv | 167.61 (7) | Cs1vi—O32—N3—O31 | −0.6 (4) |
O1Wiv—Cs1—O1W—Cs1i | 130.53 (6) | Cs1vi—O32—N3—C3 | 179.48 (19) |
O1Wiv—Cs1—O1W—Cs1iv | −0.02 (12) | Cs1vii—O52—N5—O51 | 12.2 (3) |
O52v—Cs1—O1W—Cs1i | −59.47 (6) | Cs1vii—O52—N5—C5 | −169.48 (15) |
O52v—Cs1—O1W—Cs1iv | 170.01 (8) | O31—N3—C3—C2 | −11.0 (3) |
O1W—Cs1—O12—C11 | −63.1 (2) | O31—N3—C3—C4 | 167.3 (2) |
O1W—Cs1—O12—Cs1ii | 113.15 (7) | O32—N3—C3—C2 | 169.0 (2) |
O2W—Cs1—O12—C11 | −135.23 (18) | O32—N3—C3—C4 | −12.7 (3) |
O2W—Cs1—O12—Cs1ii | 41.03 (9) | O51—N5—C5—C4 | 8.4 (3) |
O12i—Cs1—O12—C11 | 3.7 (2) | O51—N5—C5—C6 | −172.0 (2) |
O12i—Cs1—O12—Cs1ii | −180.00 (7) | O52—N5—C5—C4 | −170.0 (2) |
O1Wii—Cs1—O12—C11 | −134.4 (2) | O52—N5—C5—C6 | 9.6 (3) |
O1Wii—Cs1—O12—Cs1ii | 41.90 (6) | C6—C1—C2—C3 | −0.5 (3) |
O32iii—Cs1—O12—C11 | 117.2 (2) | C11—C1—C2—C3 | −179.6 (2) |
O32iii—Cs1—O12—Cs1ii | −66.50 (5) | C2—C1—C6—C5 | 1.5 (3) |
O1Wiv—Cs1—O12—C11 | −77.3 (2) | C11—C1—C6—C5 | −179.4 (2) |
O1Wiv—Cs1—O12—Cs1ii | 98.99 (7) | C2—C1—C11—O11 | 158.1 (2) |
O1W—Cs1—O12i—Cs1i | −43.76 (6) | C2—C1—C11—O12 | −22.1 (3) |
O1W—Cs1—O12i—C11i | 129.5 (4) | C6—C1—C11—O11 | −21.0 (3) |
O2W—Cs1—O12i—Cs1i | −34.52 (8) | C6—C1—C11—O12 | 158.9 (2) |
O2W—Cs1—O12i—C11i | 138.7 (4) | C1—C2—C3—N3 | 177.0 (2) |
O12—Cs1—O12i—Cs1i | 180.00 (7) | C1—C2—C3—C4 | −1.2 (4) |
O12—Cs1—O12i—C11i | −6.8 (4) | N3—C3—C4—C5 | −176.4 (2) |
O1W—Cs1—O1Wii—Cs1ii | 179.98 (9) | C2—C3—C4—C5 | 1.9 (4) |
O2W—Cs1—O1Wii—Cs1ii | 137.03 (8) | C3—C4—C5—N5 | 178.7 (2) |
O12—Cs1—O1Wii—Cs1ii | −42.25 (5) | C3—C4—C5—C6 | −0.9 (4) |
O1W—Cs1—O32iii—N3iii | −174.4 (3) | N5—C5—C6—C1 | 179.7 (2) |
O2W—Cs1—O32iii—N3iii | −124.7 (3) | C4—C5—C6—C1 | −0.8 (4) |
O12—Cs1—O32iii—N3iii | 5.1 (3) |
Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z; (iii) −x+3/2, y+1/2, −z+3/2; (iv) −x+1, −y, −z+2; (v) x+1/2, −y−1/2, z+1/2; (vi) −x+3/2, y−1/2, −z+3/2; (vii) x−1/2, −y−1/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H11W···O2W | 0.80 (4) | 1.98 (4) | 2.734 (3) | 159 (3) |
O1W—H12W···O12iv | 0.83 (4) | 2.25 (4) | 3.016 (3) | 155 (4) |
O2W—H21W···O11viii | 0.83 (4) | 1.94 (4) | 2.764 (3) | 174 (3) |
O2W—H22W···O11ix | 0.85 (4) | 1.96 (4) | 2.797 (3) | 168 (3) |
Symmetry codes: (iv) −x+1, −y, −z+2; (viii) −x+1, −y+1, −z+2; (ix) x+1/2, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cs(C7H3N2O6)(H2O)2] |
Mr | 380.06 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 200 |
a, b, c (Å) | 15.1249 (5), 4.6223 (1), 17.1024 (6) |
β (°) | 107.782 (4) |
V (Å3) | 1138.54 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.29 |
Crystal size (mm) | 0.28 × 0.15 × 0.06 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini-S CCD-detector |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2012) |
Tmin, Tmax | 0.792, 0.980 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7596, 2652, 2336 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.680 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.048, 1.05 |
No. of reflections | 2652 |
No. of parameters | 179 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.47, −0.56 |
Computer programs: CrysAlis PRO (Agilent, 2012), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).
Cs1—O1W | 3.087 (2) | Cs1—O1Wii | 3.261 (2) |
Cs1—O2W | 3.282 (2) | Cs1—O32iii | 3.244 (2) |
Cs1—O12 | 3.1751 (16) | Cs1—O1Wiv | 3.346 (2) |
Cs1—O12i | 3.1120 (17) | Cs1—O52v | 3.271 (2) |
Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z; (iii) −x+3/2, y+1/2, −z+3/2; (iv) −x+1, −y, −z+2; (v) x+1/2, −y−1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H11W···O2W | 0.80 (4) | 1.98 (4) | 2.734 (3) | 159 (3) |
O1W—H12W···O12iv | 0.83 (4) | 2.25 (4) | 3.016 (3) | 155 (4) |
O2W—H21W···O11vi | 0.83 (4) | 1.94 (4) | 2.764 (3) | 174 (3) |
O2W—H22W···O11vii | 0.85 (4) | 1.96 (4) | 2.797 (3) | 168 (3) |
Symmetry codes: (iv) −x+1, −y, −z+2; (vi) −x+1, −y+1, −z+2; (vii) x+1/2, −y+1/2, z+1/2. |
References
Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Jones, H. P., Gillon, A. L. & Davey, R. J. (2005). Acta Cryst. E61, m1131–m1132. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Madej, A., Oleksin, B. J. & Śliwiński, J. (2007). Pol. J. Chem. 81, 1201–1218. CAS Google Scholar
Miao, Y. & Fan, T. (2011). Acta Cryst. E67, m1040. Web of Science CSD CrossRef IUCr Journals Google Scholar
Miao, Y., Zhang, X. & Liu, C. (2011). Acta Cryst. E67, m1002. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G. & Wermuth, U. D. (2011a). J. Chem. Crystallogr. 41, 688–692. Web of Science CSD CrossRef CAS Google Scholar
Smith, G. & Wermuth, U. D. (2011b). Acta Cryst. E67, m1047–m1048. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tiekink, E. R. T., Hundal, M. S., Sood, G., Kapoor, P. & Poonia, N. S. (1990). Z. Kristallogr. 192, 103–109. CAS Google Scholar
Yang, G. & Ng, S. W. (2007). Cryst. Res. Technol. 42, 201–206. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
3,5-Dinitrobenzoic acid (DNBA) has been a popular ligand used alone or in mixed-ligand applications for metal complexation and the structures of a large number of its complexes have been reported. With the alkali metals the structures of the complex salts with Li and Na (Yang & Ng, 2007; Jones et al., 2005): the complex salt adduct with Na (Tiekink et al., 1990; Madej et al., 2007) and the Rb complex salt and salt adduct (Miao & Fan, 2011; Miao et al., 2011) are known but the structure of the Cs complex salt has not been reported. The reaction of 3,5-dinitrobenzoic acid with caesium hydroxide in aqueous ethanol gave crystals of the title compound [Cs(C7H3N2O6)(H2O)2]n and the structure is reported here. In the Rb and Cs complexes with the nitro-substituted aromatic carboxylic acids, expanded metal coordination spheres together with polymeric structures are common, in which ligands are bridging, e.g. anhydrous rubidium 3,5-dinitrobenzoate (8-coordinate) (Miao & Fan, 2011); tetracaesium bis(5-nitroisophthalate) heptahydrate (6- and 8-coordinate) (Smith & Wermuth, 2011a) and caesium bis(2-nitroanthranilate) dihydrate (7- and 9-coordinate) (Smith & Wermuth, 2011b).
In the structure of the title compound the CsO8 complex unit (Fig. 1) is irregular 8-coordinate [Cs—O range, 3.087 (2)–3.346 (2) Å] (Table 1), comprising two water molecules (one triply bridging, the other monodentate) and four O-donors from two nitro groups and one bridging carboxyl-O donor group from the ligand. In the three-dimensional polymeric complex structure (Fig. 2), the rings of the DNBA ligands layer down the short b axis of the unit cell with a ring centroid separation of 4.6223 (1) Å (the b cell dimension) (Fig. 3). Present also are intra-polymer O—H···O hydrogen-bonding interactions involving both water molecules (Table 2).