organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Intra- and inter­molecular proton transfer in 2,6-di­amino­pyridinium 4-hy­dr­oxy­pyridin-1-ium-2,6-di­carboxyl­ate

aInstitut für Organische Chemie und Chemische Biologie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany, and bInstitut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

(Received 30 August 2012; accepted 31 August 2012; online 5 September 2012)

Chelidamic acid (4-hy­droxy­pyridine-2,6-dicarb­oxy­lic acid) and 2,6-diamino­pyridine react to form the title salt, C5H8N3+·C7H4NO5; there are two formula units in the asymmetric unit. The pyridine N atom of 2,6-diamino­pyridine is protonated whereas chelidamic acid is deprotonated at both carboxyl­ate groups but protonated at the N atom; the reaction involves intra- and inter­molecular proton transfer. In the crystal, each 2,6-diamino­pyridinium cation participates in five strong N—H⋯O hydrogen bonds (including one bifurcated hydrogen bond). The crystal structure also features strong O—H⋯O hydrogen bonds between the chelidamate anions, leading to chains along the a axis.

Related literature

For chelidamic acid, see: Tutughamiarso et al. (2012[Tutughamiarso, M., Pisternick, T. & Egert, E. (2012). Acta Cryst. C68, o344-o350.]). For chelidamic acid monohydrate, see: Hall et al. (2000[Hall, A. K., Harrowfield, J. M., Skelton, B. W. & White, A. H. (2000). Acta Cryst. C56, 448-450.]). For inter­action of chelidamic acid with heavy metal ions, see: Norkus et al. (2003[Norkus, E., Stalnioniene, I. & Crans, D. C. (2003). Heteroat. Chem. 14, 625-632.]). For supermolecular structures, see: Aakeröy et al. (2005[Aakeröy, B. C., Desper, J. & Urbina, F. J. (2005). Chem. Commun. pp. 2820-2822.]); Brunsveld et al. (2001[Brunsveld, L., Folmer, B. J. B., Meijer, E. W. & Sijbesma, R. P. (2001). Chem. Rev. 101, 4071-4097.]); Prins et al. (2001[Prins, L. J., Reinhoudt, D. N. & Timmerman, P. (2001). Angew. Chem. Int. Ed. Engl. 40, 2382-2426.]); Schmid & Mann (1954[Schmid, L. & Mann, H. (1954). Chem. Monthly, 85, 864-871.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C5H8N3+·C7H4NO5

  • Mr = 292.26

  • Orthorhombic, P c a 21

  • a = 14.963 (3) Å

  • b = 8.500 (2) Å

  • c = 20.385 (4) Å

  • V = 2592.7 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 173 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • 33672 measured reflections

  • 2510 independent reflections

  • 2243 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.083

  • S = 1.04

  • 2510 reflections

  • 417 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—HO5⋯O3i 0.84 1.67 2.495 (3) 169
O5′—HO5′⋯O3′ii 0.84 1.67 2.487 (3) 163
N21—H21B⋯O2iii 0.88 (5) 2.00 (5) 2.869 (4) 170 (4)
N22—H22B⋯O1′iv 0.86 (5) 2.04 (5) 2.892 (4) 169 (4)
N22′—H22D⋯O2′v 0.96 (4) 1.98 (4) 2.928 (4) 170 (4)
N1—H1N⋯O1 0.88 (3) 2.25 (3) 2.660 (3) 108 (3)
N1—H1N⋯O2 0.88 (3) 2.39 (4) 2.702 (4) 101 (2)
N1′—H1′N⋯O1′ 0.87 (3) 2.32 (3) 2.669 (3) 104 (3)
N1′—H1′N⋯O2′ 0.87 (3) 2.30 (4) 2.675 (4) 106 (2)
N11—H11A⋯O4 1.01 (4) 1.71 (3) 2.691 (4) 163 (4)
N11′—H11B⋯O4′ 0.86 (3) 1.88 (3) 2.707 (4) 161 (4)
N21—H21A⋯O4 0.84 (5) 2.42 (5) 3.109 (4) 140 (5)
N21′—H21C⋯O2′ 0.84 (5) 2.13 (6) 2.964 (4) 170 (5)
N21′—H21D⋯O1 0.90 (4) 2.03 (4) 2.916 (4) 169 (4)
N22—H22A⋯O2 1.03 (4) 2.01 (4) 3.040 (4) 177 (4)
N22′—H22C⋯O4′ 0.94 (5) 2.40 (4) 3.130 (4) 134 (4)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+1, z]; (ii) [x+{\script{1\over 2}}, -y+2, z]; (iii) [x-{\script{1\over 2}}, -y, z]; (iv) x, y-1, z; (v) [x+{\script{1\over 2}}, -y+1, z].

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip (2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The synthesis of new compounds by breaking and forming covalent bonds is conventional. A new challenge is creating materials consolidated by weak hydrogen bonds (Aakeröy et al., 2005). The stability of these materials results mainly from the assembly of hydrogen-bonded networks within the structure or arises by cooperative effects as it has been exemplified in the manner of DNA or supramolecular polymers (Prins et al., 2001; Brunsveld et al., 2001). The object of this investigation was the co-crystallization of chelidamic acid Ia and 2,6-diaminopyridine II in order to obtain the co-crystal III with an ADA/DAD pattern (A: hydrogen-bond acceptor, D: hydrogen-bond donor). However, the two components formed a salt (Fig. 1), which is reasonable considering the acid-base properties of the starting components. Chelidamic acid can exist in two tautomeric forms Ia and Ib. A search of the Cambridge Structural Database (CSD, Version 5.33 of November 2011, plus two updates; Allen, 2002) yielded no hits for chelidamic acid as neutral 4-hydroxypyridine or 4-pyridone tautomer. The structure of chelidamic acid monohydrate has been found to be zwitterionic [refcode KIXCUP (Hall et al., 2000)] and two crystal structures involve chelidamic acid in coordination complexes (refcodes FEZHEY and FEZHIC). A recent study of three pseudopolymorphs of chelidamic acid has been carried out by Tutughamiarso et al. (2012). In general the different forms of chelidamic acid depend on the pKa values (Norkus et al., 2003). In this study chelidamic acid is doubly deprotonated. The first proton transfer is assumed to be intramolecular (Hall et al., 2000) while the second deprotonation is suggested to occur intermolecular with 2,6-diaminopyridine as proton acceptor. Compound II is known to be reactive in the presence of dicarboxylic acid anhydrides (Schmid & Mann, 1954) but a reaction with dicarboxylic acids without activation is not expected in this case. In the crystal structure of the title compound two one-dimensional hydrogen-bond networks are observed, connecting symmetry-equivalent chelidamates (generated by an a glide plane) via O—H···O chains, whilst those fragments are twisted approximately by 60° with respect to each other (Fig. 2). When comparing the symmetry-independent chelidamates with each other, a slight difference in planarity is noticeable. The plane stretching over all non-hydrogen atoms in the N1 or N1' unit shows a mean deviation of 0.053 Å and 0.078 Å [significant outliers: O3 = -0.109 (2), O4 = -0.121 (2) and O1' = -0.105 (2), O3' = 0.178 (2), O4' = 0.155 (2) Å], respectively. The H atom at O5 atom lies in the plane whereas the other H atom at O5' deviates by 0.125 (2) Å from it. In these two cases the aromatic ring atoms including the hydroxy groups were used for the definition of the plane [mean deviation from plane: 0.013 Å for O5 unit and 0.061 Å for O5' unit]. The planarity of the two symmetry-independent 2,6-diaminopyridinium cations is remarkable. A least-squares plane through all atoms of the N11 or N11' fragment yielded a mean deviation of 0.054 and 0.075 Å, respectively. The deviations of the H atoms H11B [0.19 (3) Å] and H22C [–0.17 (2) Å] from the mean plane are probably caused by bifurcated hydrogen bonds with the (also slightly out of plane drifted) O5' atom of chelidamate (Fig. 3). A further investigation of the crystal packing indicates a finite three-dimensional network between the four charged entities in the asymmetric unit, which run along the a-axis in a zigzag alignment (Fig. 4).

Related literature top

For chelidamic acid, see: Tutughamiarso et al. (2012). For chelidamic acid monohydrate, see: Hall et al. (2000). For interaction of chelidamic acid with heavy metal ions, see: Norkus et al. (2003). For supermolecular structures, see: Aakeröy et al. (2005); Brunsveld et al. (2001); Prins et al. (2001); Schmid & Mann (1954). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Chelidamic acid and 2,6-diaminopyridine are commercially available. Chelidamic acid was utilized without purification while 2,6-diaminopyridine had to be sublimed before use. A small amount of each compound was dissolved separately in approximately 15 drops of dimethyl sulfoxide (DMSO) before they were combined in a flask and set aside at room temperature. From the green-yellow mixture, block shaped crystals were obtained after several weeks.

Refinement top

Due to the absence of anomalous scatterers, 2351 Friedel pairs were merged. All H atoms were initially located by difference Fourier synthesis. Subsequently, H atoms bonded to C and O atoms were refined using a riding model, with C—H = 0.95 Å and O—H = 0.84 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O), respectively; H atoms bonded to O atoms were allowed to rotate about the C—O bond. H atoms bonded to N atoms were refined isotropically with Uiso(H) = 1.2Ueq(N).

Structure description top

The synthesis of new compounds by breaking and forming covalent bonds is conventional. A new challenge is creating materials consolidated by weak hydrogen bonds (Aakeröy et al., 2005). The stability of these materials results mainly from the assembly of hydrogen-bonded networks within the structure or arises by cooperative effects as it has been exemplified in the manner of DNA or supramolecular polymers (Prins et al., 2001; Brunsveld et al., 2001). The object of this investigation was the co-crystallization of chelidamic acid Ia and 2,6-diaminopyridine II in order to obtain the co-crystal III with an ADA/DAD pattern (A: hydrogen-bond acceptor, D: hydrogen-bond donor). However, the two components formed a salt (Fig. 1), which is reasonable considering the acid-base properties of the starting components. Chelidamic acid can exist in two tautomeric forms Ia and Ib. A search of the Cambridge Structural Database (CSD, Version 5.33 of November 2011, plus two updates; Allen, 2002) yielded no hits for chelidamic acid as neutral 4-hydroxypyridine or 4-pyridone tautomer. The structure of chelidamic acid monohydrate has been found to be zwitterionic [refcode KIXCUP (Hall et al., 2000)] and two crystal structures involve chelidamic acid in coordination complexes (refcodes FEZHEY and FEZHIC). A recent study of three pseudopolymorphs of chelidamic acid has been carried out by Tutughamiarso et al. (2012). In general the different forms of chelidamic acid depend on the pKa values (Norkus et al., 2003). In this study chelidamic acid is doubly deprotonated. The first proton transfer is assumed to be intramolecular (Hall et al., 2000) while the second deprotonation is suggested to occur intermolecular with 2,6-diaminopyridine as proton acceptor. Compound II is known to be reactive in the presence of dicarboxylic acid anhydrides (Schmid & Mann, 1954) but a reaction with dicarboxylic acids without activation is not expected in this case. In the crystal structure of the title compound two one-dimensional hydrogen-bond networks are observed, connecting symmetry-equivalent chelidamates (generated by an a glide plane) via O—H···O chains, whilst those fragments are twisted approximately by 60° with respect to each other (Fig. 2). When comparing the symmetry-independent chelidamates with each other, a slight difference in planarity is noticeable. The plane stretching over all non-hydrogen atoms in the N1 or N1' unit shows a mean deviation of 0.053 Å and 0.078 Å [significant outliers: O3 = -0.109 (2), O4 = -0.121 (2) and O1' = -0.105 (2), O3' = 0.178 (2), O4' = 0.155 (2) Å], respectively. The H atom at O5 atom lies in the plane whereas the other H atom at O5' deviates by 0.125 (2) Å from it. In these two cases the aromatic ring atoms including the hydroxy groups were used for the definition of the plane [mean deviation from plane: 0.013 Å for O5 unit and 0.061 Å for O5' unit]. The planarity of the two symmetry-independent 2,6-diaminopyridinium cations is remarkable. A least-squares plane through all atoms of the N11 or N11' fragment yielded a mean deviation of 0.054 and 0.075 Å, respectively. The deviations of the H atoms H11B [0.19 (3) Å] and H22C [–0.17 (2) Å] from the mean plane are probably caused by bifurcated hydrogen bonds with the (also slightly out of plane drifted) O5' atom of chelidamate (Fig. 3). A further investigation of the crystal packing indicates a finite three-dimensional network between the four charged entities in the asymmetric unit, which run along the a-axis in a zigzag alignment (Fig. 4).

For chelidamic acid, see: Tutughamiarso et al. (2012). For chelidamic acid monohydrate, see: Hall et al. (2000). For interaction of chelidamic acid with heavy metal ions, see: Norkus et al. (2003). For supermolecular structures, see: Aakeröy et al. (2005); Brunsveld et al. (2001); Prins et al. (2001); Schmid & Mann (1954). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008) and XP (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip (2010).

Figures top
[Figure 1] Fig. 1. A perspective view of the title compound, showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. Four planes generated by chelidamates each gliding along the a-axis with at least four fragments. The planes are stretched over the defined N1 and O5 atoms (red or green) or N1' and O5' atoms (yellow or blue) whilst two planes are made up of symmetric chelidamates, which enclose angles of approximately 60°.
[Figure 3] Fig. 3. DDDAA hydrogen bond interaction between atoms N1' and N11' of chelidamates and 2,6-diaminopyridininium (left). The out-of-plane drifted hydrogen atoms H11B and H22C; this effect is caused by a strong hydrogen-bond interaction with O4' (right). Red dashed lines indicate hydrogen bonds
[Figure 4] Fig. 4. Crystal packing of the title compound viewed along the a-axis. Red dashed lines indicate the hydrogen-bond network which interlinks two chelidamates and two 2,6-diaminopyridinium cations to an entity that glides along the a-axis.
2,6-Diaminopyridinium 4-hydroxypyridin-1-ium-2,6-dicarboxylate top
Crystal data top
C5H8N3+·C7H4NO5F(000) = 1216
Mr = 292.26Dx = 1.497 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 35668 reflections
a = 14.963 (3) Åθ = 3.4–25.6°
b = 8.500 (2) ŵ = 0.12 mm1
c = 20.385 (4) ÅT = 173 K
V = 2592.7 (9) Å3Block, colourless
Z = 80.40 × 0.30 × 0.20 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
2243 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.071
Graphite monochromatorθmax = 25.6°, θmin = 3.4°
ω scansh = 1818
33672 measured reflectionsk = 1010
2510 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0555P)2]
where P = (Fo2 + 2Fc2)/3
2510 reflections(Δ/σ)max < 0.001
417 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.23 e Å3
Crystal data top
C5H8N3+·C7H4NO5V = 2592.7 (9) Å3
Mr = 292.26Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 14.963 (3) ŵ = 0.12 mm1
b = 8.500 (2) ÅT = 173 K
c = 20.385 (4) Å0.40 × 0.30 × 0.20 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
2243 reflections with I > 2σ(I)
33672 measured reflectionsRint = 0.071
2510 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.16 e Å3
2510 reflectionsΔρmin = 0.23 e Å3
417 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.28490 (16)0.3325 (3)0.29385 (13)0.0189 (5)
H1N0.327 (2)0.296 (4)0.3201 (19)0.023*
O10.45940 (13)0.3882 (3)0.28520 (12)0.0274 (5)
O20.23936 (14)0.1442 (3)0.39526 (12)0.0290 (5)
O30.44259 (14)0.5304 (3)0.19256 (12)0.0247 (5)
O40.09524 (13)0.1412 (3)0.36286 (12)0.0284 (5)
O50.10342 (13)0.5135 (3)0.16602 (12)0.0218 (5)
HO50.05140.48680.17670.033*
C20.31328 (18)0.4270 (3)0.24492 (15)0.0179 (6)
C30.2527 (2)0.4901 (4)0.20125 (18)0.0188 (7)
H30.27260.55670.16680.023*
C40.16070 (18)0.4548 (4)0.20811 (16)0.0180 (6)
C50.13420 (18)0.3556 (4)0.26059 (15)0.0179 (6)
H50.07280.33110.26670.021*
C60.19726 (18)0.2947 (4)0.30257 (14)0.0180 (6)
C70.41412 (18)0.4510 (4)0.24134 (15)0.0199 (6)
C80.17574 (19)0.1826 (4)0.35877 (15)0.0216 (7)
N110.05045 (16)0.0540 (3)0.46143 (14)0.0211 (6)
H11A0.077 (3)0.005 (4)0.426 (2)0.025*
N210.0790 (2)0.0368 (4)0.40028 (18)0.0333 (7)
H21A0.051 (3)0.024 (6)0.375 (3)0.040*
H21B0.136 (3)0.060 (5)0.395 (2)0.040*
N220.18961 (18)0.0644 (4)0.51078 (16)0.0298 (7)
H22A0.209 (3)0.006 (5)0.472 (2)0.036*
H22B0.222 (3)0.080 (5)0.545 (2)0.036*
C120.0384 (2)0.0884 (4)0.45527 (17)0.0229 (7)
C130.0804 (2)0.1742 (4)0.50451 (18)0.0297 (8)
H130.14270.19580.50270.036*
C140.0283 (2)0.2278 (4)0.55677 (17)0.0310 (8)
H140.05610.28720.59060.037*
C150.0634 (2)0.1973 (4)0.56117 (16)0.0283 (7)
H150.09790.23750.59650.034*
C160.1027 (2)0.1060 (4)0.51205 (16)0.0226 (7)
N1'0.45633 (16)0.8257 (3)0.62319 (13)0.0193 (5)
H1'N0.420 (2)0.782 (4)0.5953 (19)0.023*
O1'0.27918 (14)0.8557 (3)0.63201 (12)0.0289 (5)
O2'0.50769 (14)0.6478 (3)0.52175 (12)0.0322 (6)
O3'0.29024 (14)0.9805 (3)0.72949 (13)0.0273 (6)
O4'0.65252 (14)0.6636 (3)0.55187 (13)0.0323 (6)
O5'0.62710 (14)1.0323 (3)0.75228 (13)0.0272 (6)
HO5'0.67941.03500.73730.041*
C2'0.42327 (18)0.9094 (4)0.67481 (15)0.0190 (6)
C3'0.47987 (19)0.9782 (4)0.71856 (18)0.0195 (7)
H3'0.45691.03560.75480.023*
C4'0.57377 (18)0.9632 (4)0.70940 (15)0.0180 (6)
C5'0.60514 (18)0.8727 (4)0.65626 (16)0.0208 (7)
H5'0.66750.85970.64940.025*
C6'0.54480 (19)0.8037 (4)0.61458 (15)0.0188 (6)
C7'0.32115 (18)0.9150 (4)0.67830 (16)0.0193 (6)
C8'0.57095 (19)0.6954 (4)0.55701 (16)0.0222 (7)
N11'0.69417 (17)0.4557 (3)0.45602 (14)0.0216 (6)
H11B0.670 (3)0.530 (5)0.482 (2)0.026*
N21'0.55525 (19)0.4508 (4)0.40698 (16)0.0290 (6)
H21C0.538 (3)0.514 (5)0.436 (3)0.035*
H21D0.520 (3)0.426 (5)0.373 (2)0.035*
N22'0.82341 (19)0.4676 (4)0.51780 (17)0.0304 (7)
H22C0.788 (3)0.512 (5)0.551 (3)0.036*
H22D0.886 (3)0.442 (5)0.517 (2)0.036*
C12'0.6415 (2)0.4059 (4)0.40541 (16)0.0221 (6)
C13'0.6800 (2)0.3114 (4)0.35694 (16)0.0279 (7)
H13'0.64520.27230.32150.034*
C14'0.7703 (2)0.2761 (4)0.36190 (18)0.0314 (8)
H14'0.79710.21400.32850.038*
C15'0.8230 (2)0.3275 (4)0.41358 (18)0.0298 (8)
H15'0.88490.30270.41540.036*
C16'0.7828 (2)0.4164 (4)0.46261 (16)0.0225 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0105 (11)0.0253 (14)0.0208 (13)0.0001 (10)0.0017 (10)0.0004 (11)
O10.0146 (10)0.0403 (14)0.0275 (12)0.0003 (9)0.0053 (9)0.0016 (10)
O20.0183 (10)0.0420 (15)0.0267 (12)0.0010 (9)0.0020 (9)0.0121 (11)
O30.0119 (10)0.0352 (13)0.0269 (13)0.0014 (8)0.0029 (8)0.0075 (10)
O40.0162 (10)0.0398 (14)0.0292 (12)0.0061 (9)0.0008 (9)0.0118 (11)
O50.0100 (10)0.0319 (13)0.0233 (13)0.0007 (8)0.0011 (9)0.0082 (9)
C20.0142 (13)0.0207 (15)0.0187 (14)0.0009 (10)0.0006 (11)0.0032 (12)
C30.0167 (15)0.0236 (17)0.0162 (17)0.0003 (12)0.0007 (12)0.0026 (12)
C40.0130 (14)0.0209 (16)0.0202 (16)0.0043 (11)0.0004 (11)0.0016 (13)
C50.0106 (12)0.0206 (15)0.0225 (15)0.0015 (10)0.0003 (11)0.0018 (12)
C60.0114 (13)0.0218 (16)0.0208 (15)0.0005 (11)0.0010 (11)0.0010 (12)
C70.0106 (12)0.0265 (16)0.0224 (15)0.0010 (11)0.0006 (11)0.0038 (13)
C80.0201 (15)0.0253 (17)0.0195 (16)0.0008 (12)0.0025 (12)0.0001 (13)
N110.0178 (12)0.0252 (15)0.0203 (15)0.0013 (10)0.0005 (10)0.0053 (12)
N210.0213 (14)0.0440 (19)0.0345 (18)0.0053 (14)0.0044 (12)0.0115 (17)
N220.0223 (14)0.0395 (19)0.0276 (17)0.0028 (12)0.0058 (12)0.0064 (15)
C120.0200 (14)0.0222 (17)0.0264 (16)0.0006 (12)0.0004 (12)0.0014 (14)
C130.0250 (15)0.0327 (19)0.0315 (19)0.0076 (13)0.0048 (13)0.0032 (16)
C140.0383 (18)0.031 (2)0.0241 (18)0.0091 (15)0.0017 (15)0.0039 (15)
C150.0333 (17)0.0291 (19)0.0226 (18)0.0006 (14)0.0017 (14)0.0035 (14)
C160.0253 (15)0.0232 (16)0.0193 (16)0.0026 (13)0.0032 (12)0.0000 (14)
N1'0.0141 (11)0.0254 (14)0.0183 (13)0.0019 (10)0.0012 (10)0.0032 (11)
O1'0.0160 (9)0.0417 (15)0.0289 (13)0.0004 (9)0.0073 (9)0.0017 (11)
O2'0.0238 (11)0.0443 (15)0.0286 (13)0.0032 (10)0.0007 (10)0.0118 (11)
O3'0.0122 (10)0.0409 (14)0.0288 (14)0.0006 (9)0.0015 (9)0.0072 (11)
O4'0.0194 (10)0.0435 (15)0.0341 (13)0.0019 (10)0.0035 (10)0.0177 (12)
O5'0.0110 (9)0.0443 (14)0.0263 (14)0.0065 (9)0.0008 (9)0.0127 (11)
C2'0.0137 (13)0.0208 (15)0.0225 (15)0.0011 (11)0.0015 (12)0.0036 (13)
C3'0.0112 (13)0.0237 (16)0.0237 (19)0.0010 (11)0.0025 (12)0.0017 (13)
C4'0.0132 (14)0.0249 (16)0.0159 (16)0.0005 (12)0.0008 (11)0.0007 (13)
C5'0.0121 (14)0.0257 (16)0.0247 (16)0.0008 (12)0.0032 (11)0.0001 (13)
C6'0.0142 (13)0.0207 (16)0.0215 (16)0.0002 (11)0.0039 (11)0.0018 (12)
C7'0.0138 (13)0.0216 (15)0.0225 (15)0.0005 (11)0.0011 (12)0.0037 (13)
C8'0.0185 (14)0.0269 (17)0.0213 (16)0.0038 (12)0.0019 (12)0.0049 (13)
N11'0.0196 (13)0.0227 (15)0.0225 (15)0.0015 (11)0.0006 (10)0.0039 (13)
N21'0.0238 (14)0.0394 (18)0.0239 (16)0.0041 (12)0.0062 (12)0.0083 (14)
N22'0.0180 (14)0.0435 (18)0.0297 (18)0.0012 (13)0.0043 (12)0.0067 (16)
C12'0.0264 (15)0.0209 (16)0.0190 (16)0.0027 (12)0.0018 (12)0.0029 (14)
C13'0.0363 (17)0.0253 (18)0.0222 (17)0.0002 (14)0.0042 (13)0.0022 (14)
C14'0.0385 (19)0.0288 (19)0.0269 (18)0.0083 (14)0.0077 (14)0.0056 (15)
C15'0.0248 (15)0.0298 (19)0.035 (2)0.0060 (13)0.0028 (14)0.0004 (15)
C16'0.0214 (14)0.0202 (16)0.0258 (17)0.0016 (11)0.0026 (12)0.0019 (14)
Geometric parameters (Å, º) top
N1—C21.349 (4)N1'—C6'1.348 (4)
N1—C61.362 (4)N1'—C2'1.363 (4)
N1—H1N0.88 (4)N1'—H1'N0.87 (4)
O1—C71.242 (4)O1'—C7'1.241 (4)
O2—C81.251 (4)O2'—C8'1.256 (4)
O3—C71.275 (4)O3'—C7'1.270 (4)
O4—C81.258 (4)O4'—C8'1.254 (4)
O5—C41.311 (4)O5'—C4'1.322 (4)
O5—HO50.8400O5'—HO5'0.8400
C2—C31.379 (4)C2'—C3'1.362 (5)
C2—C71.524 (4)C2'—C7'1.530 (4)
C3—C41.416 (4)C3'—C4'1.423 (4)
C3—H30.9500C3'—H3'0.9500
C4—C51.419 (5)C4'—C5'1.409 (4)
C5—C61.375 (4)C5'—C6'1.372 (4)
C5—H50.9500C5'—H5'0.9500
C6—C81.524 (4)C6'—C8'1.542 (4)
N11—C121.367 (4)N11'—C12'1.365 (4)
N11—C161.368 (4)N11'—C16'1.374 (4)
N11—H11A0.97 (4)N11'—H11B0.90 (4)
N21—C121.349 (5)N21'—C12'1.346 (4)
N21—H21A0.84 (5)N21'—H21C0.84 (5)
N21—H21B0.88 (5)N21'—H21D0.89 (5)
N22—C161.349 (4)N22'—C16'1.351 (5)
N22—H22A1.04 (5)N22'—H22C0.94 (5)
N22—H22B0.86 (5)N22'—H22D0.96 (4)
C12—C131.391 (5)C12'—C13'1.398 (5)
C13—C141.397 (5)C13'—C14'1.388 (5)
C13—H130.9500C13'—H13'0.9500
C14—C151.399 (5)C14'—C15'1.387 (5)
C14—H140.9500C14'—H14'0.9500
C15—C161.396 (5)C15'—C16'1.390 (5)
C15—H150.9500C15'—H15'0.9500
C2—N1—C6122.7 (3)C6'—N1'—C2'121.9 (3)
C2—N1—H1N116 (2)C6'—N1'—H1'N118 (2)
C6—N1—H1N121 (2)C2'—N1'—H1'N120 (2)
C4—O5—HO5109.5C4'—O5'—HO5'109.5
N1—C2—C3120.1 (3)C3'—C2'—N1'120.3 (3)
N1—C2—C7115.2 (3)C3'—C2'—C7'125.3 (3)
C3—C2—C7124.6 (3)N1'—C2'—C7'114.5 (3)
C2—C3—C4119.5 (3)C2'—C3'—C4'119.3 (3)
C2—C3—H3120.2C2'—C3'—H3'120.3
C4—C3—H3120.2C4'—C3'—H3'120.3
O5—C4—C3119.4 (3)O5'—C4'—C5'123.4 (3)
O5—C4—C5122.5 (3)O5'—C4'—C3'118.0 (3)
C3—C4—C5118.2 (3)C5'—C4'—C3'118.6 (3)
C6—C5—C4120.1 (2)C6'—C5'—C4'119.4 (3)
C6—C5—H5120.0C6'—C5'—H5'120.3
C4—C5—H5120.0C4'—C5'—H5'120.3
N1—C6—C5119.4 (3)N1'—C6'—C5'120.4 (3)
N1—C6—C8116.7 (2)N1'—C6'—C8'115.5 (3)
C5—C6—C8123.9 (3)C5'—C6'—C8'124.0 (3)
O1—C7—O3127.3 (3)O1'—C7'—O3'128.2 (3)
O1—C7—C2116.6 (3)O1'—C7'—C2'117.2 (3)
O3—C7—C2116.0 (3)O3'—C7'—C2'114.5 (3)
O2—C8—O4128.1 (3)O4'—C8'—O2'128.0 (3)
O2—C8—C6116.7 (3)O4'—C8'—C6'116.0 (3)
O4—C8—C6115.3 (3)O2'—C8'—C6'115.9 (3)
C12—N11—C16123.8 (3)C12'—N11'—C16'123.7 (3)
C12—N11—H11A116 (2)C12'—N11'—H11B116 (3)
C16—N11—H11A120 (2)C16'—N11'—H11B120 (3)
C12—N21—H21A119 (3)C12'—N21'—H21C120 (3)
C12—N21—H21B117 (3)C12'—N21'—H21D118 (3)
H21A—N21—H21B123 (5)H21C—N21'—H21D121 (4)
C16—N22—H22A116 (2)C16'—N22'—H22C118 (3)
C16—N22—H22B119 (3)C16'—N22'—H22D110 (3)
H22A—N22—H22B123 (4)H22C—N22'—H22D131 (4)
N21—C12—N11116.4 (3)N21'—C12'—N11'116.6 (3)
N21—C12—C13124.6 (3)N21'—C12'—C13'125.0 (3)
N11—C12—C13119.0 (3)N11'—C12'—C13'118.4 (3)
C12—C13—C14118.0 (3)C14'—C13'—C12'118.2 (3)
C12—C13—H13121.0C14'—C13'—H13'120.9
C14—C13—H13121.0C12'—C13'—H13'120.9
C13—C14—C15122.4 (3)C15'—C14'—C13'122.8 (3)
C13—C14—H14118.8C15'—C14'—H14'118.6
C15—C14—H14118.8C13'—C14'—H14'118.6
C16—C15—C14118.0 (3)C14'—C15'—C16'118.1 (3)
C16—C15—H15121.0C14'—C15'—H15'121.0
C14—C15—H15121.0C16'—C15'—H15'121.0
N22—C16—N11116.9 (3)N22'—C16'—N11'115.9 (3)
N22—C16—C15124.4 (3)N22'—C16'—C15'125.4 (3)
N11—C16—C15118.7 (3)N11'—C16'—C15'118.7 (3)
C6—N1—C2—C30.2 (4)C6'—N1'—C2'—C3'2.1 (5)
C6—N1—C2—C7177.7 (3)C6'—N1'—C2'—C7'177.1 (3)
N1—C2—C3—C40.1 (5)N1'—C2'—C3'—C4'0.7 (5)
C7—C2—C3—C4177.7 (3)C7'—C2'—C3'—C4'179.8 (3)
C2—C3—C4—O5179.2 (3)C2'—C3'—C4'—O5'179.4 (3)
C2—C3—C4—C50.4 (5)C2'—C3'—C4'—C5'2.1 (5)
O5—C4—C5—C6178.7 (3)O5'—C4'—C5'—C6'179.3 (3)
C3—C4—C5—C60.9 (5)C3'—C4'—C5'—C6'0.8 (5)
C2—N1—C6—C50.7 (4)C2'—N1'—C6'—C5'3.4 (5)
C2—N1—C6—C8178.2 (3)C2'—N1'—C6'—C8'175.3 (3)
C4—C5—C6—N11.0 (4)C4'—C5'—C6'—N1'1.9 (5)
C4—C5—C6—C8177.8 (3)C4'—C5'—C6'—C8'176.7 (3)
N1—C2—C7—O13.3 (4)C3'—C2'—C7'—O1'175.0 (3)
C3—C2—C7—O1178.8 (3)N1'—C2'—C7'—O1'5.8 (4)
N1—C2—C7—O3175.0 (3)C3'—C2'—C7'—O3'5.3 (4)
C3—C2—C7—O32.8 (4)N1'—C2'—C7'—O3'173.9 (3)
N1—C6—C8—O25.3 (4)N1'—C6'—C8'—O4'174.3 (3)
C5—C6—C8—O2175.9 (3)C5'—C6'—C8'—O4'4.4 (5)
N1—C6—C8—O4175.3 (3)N1'—C6'—C8'—O2'4.5 (4)
C5—C6—C8—O43.5 (5)C5'—C6'—C8'—O2'176.8 (3)
C16—N11—C12—N21175.8 (3)C16'—N11'—C12'—N21'178.1 (3)
C16—N11—C12—C133.5 (5)C16'—N11'—C12'—C13'0.9 (5)
N21—C12—C13—C14176.2 (4)N21'—C12'—C13'—C14'179.6 (3)
N11—C12—C13—C143.0 (5)N11'—C12'—C13'—C14'1.5 (5)
C12—C13—C14—C150.4 (5)C12'—C13'—C14'—C15'1.6 (5)
C13—C14—C15—C161.8 (5)C13'—C14'—C15'—C16'0.9 (5)
C12—N11—C16—N22178.9 (3)C12'—N11'—C16'—N22'175.9 (3)
C12—N11—C16—C151.2 (5)C12'—N11'—C16'—C15'3.4 (5)
C14—C15—C16—N22178.4 (3)C14'—C15'—C16'—N22'176.0 (3)
C14—C15—C16—N111.4 (5)C14'—C15'—C16'—N11'3.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—HO5···O3i0.841.672.495 (3)169
O5—HO5···O3ii0.841.672.487 (3)163
N21—H21B···O2iii0.88 (5)2.00 (5)2.869 (4)170 (4)
N22—H22B···O1iv0.86 (5)2.04 (5)2.892 (4)169 (4)
N22—H22D···O2v0.96 (4)1.98 (4)2.928 (4)170 (4)
N1—H1N···O10.88 (3)2.25 (3)2.660 (3)108 (3)
N1—H1N···O20.88 (3)2.39 (4)2.702 (4)101 (2)
N1—H1N···O10.87 (3)2.32 (3)2.669 (3)104 (3)
N1—H1N···O20.87 (3)2.30 (4)2.675 (4)106 (2)
N11—H11A···O41.01 (4)1.71 (3)2.691 (4)163 (4)
N11—H11B···O40.86 (3)1.88 (3)2.707 (4)161 (4)
N21—H21A···O40.84 (5)2.42 (5)3.109 (4)140 (5)
N21—H21C···O20.84 (5)2.13 (6)2.964 (4)170 (5)
N21—H21D···O10.90 (4)2.03 (4)2.916 (4)169 (4)
N22—H22A···O21.03 (4)2.01 (4)3.040 (4)177 (4)
N22—H22C···O40.94 (5)2.40 (4)3.130 (4)134 (4)
Symmetry codes: (i) x1/2, y+1, z; (ii) x+1/2, y+2, z; (iii) x1/2, y, z; (iv) x, y1, z; (v) x+1/2, y+1, z.

Experimental details

Crystal data
Chemical formulaC5H8N3+·C7H4NO5
Mr292.26
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)173
a, b, c (Å)14.963 (3), 8.500 (2), 20.385 (4)
V3)2592.7 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerStoe IPDS II two-circle
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
33672, 2510, 2243
Rint0.071
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.083, 1.04
No. of reflections2510
No. of parameters417
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.23

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008) and XP (Sheldrick, 2008), publCIF (Westrip (2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—HO5···O3i0.841.672.495 (3)168.5
O5'—HO5'···O3'ii0.841.672.487 (3)163.0
N21—H21B···O2iii0.88 (5)2.00 (5)2.869 (4)170 (4)
N22—H22B···O1'iv0.86 (5)2.04 (5)2.892 (4)169 (4)
N22'—H22D···O2'v0.96 (4)1.98 (4)2.928 (4)170 (4)
N1—H1N···O10.88 (3)2.25 (3)2.660 (3)108 (3)
N1—H1N···O20.88 (3)2.39 (4)2.702 (4)101 (2)
N1'—H1'N···O1'0.87 (3)2.32 (3)2.669 (3)104 (3)
N1'—H1'N···O2'0.87 (3)2.30 (4)2.675 (4)106 (2)
N11—H11A···O41.01 (4)1.71 (3)2.691 (4)163 (4)
N11'—H11B···O4'0.86 (3)1.88 (3)2.707 (4)161 (4)
N21—H21A···O40.84 (5)2.42 (5)3.109 (4)140 (5)
N21'—H21C···O2'0.84 (5)2.13 (6)2.964 (4)170 (5)
N21'—H21D···O10.90 (4)2.03 (4)2.916 (4)169 (4)
N22—H22A···O21.03 (4)2.01 (4)3.040 (4)177 (4)
N22'—H22C···O4'0.94 (5)2.40 (4)3.130 (4)134 (4)
Symmetry codes: (i) x1/2, y+1, z; (ii) x+1/2, y+2, z; (iii) x1/2, y, z; (iv) x, y1, z; (v) x+1/2, y+1, z.
 

Acknowledgements

We thank Professor Dr Ernst Egert for fruitful advice and support.

References

First citationAakeröy, B. C., Desper, J. & Urbina, F. J. (2005). Chem. Commun. pp. 2820–2822.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrunsveld, L., Folmer, B. J. B., Meijer, E. W. & Sijbesma, R. P. (2001). Chem. Rev. 101, 4071–4097.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHall, A. K., Harrowfield, J. M., Skelton, B. W. & White, A. H. (2000). Acta Cryst. C56, 448–450.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNorkus, E., Stalnioniene, I. & Crans, D. C. (2003). Heteroat. Chem. 14, 625–632.  Web of Science CrossRef CAS Google Scholar
First citationPrins, L. J., Reinhoudt, D. N. & Timmerman, P. (2001). Angew. Chem. Int. Ed. Engl. 40, 2382–2426.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchmid, L. & Mann, H. (1954). Chem. Monthly, 85, 864–871.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTutughamiarso, M., Pisternick, T. & Egert, E. (2012). Acta Cryst. C68, o344–o350.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds