metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[μ2-1,4-bis­­(imidazol-1-ylmethyl)­benzene](μ4-3,5,9,11-tetra­oxo-4,10-di­aza­tetra­cyclo­[5.5.2.02,6.08,12]tetra­dec-13-ene-4,10-diido)disilver(I)]

aSchool of Chemistry and Life Science, Anshan Normal University, Anshan, Liaoning 114000, People's Republic of China
*Correspondence e-mail: chemzhangym@163.com

(Received 4 September 2012; accepted 18 September 2012; online 22 September 2012)

In the title complex, [Ag2(C12H8N2O4)(C14H14N4)]n, one AgI ion, lying on a twofold rotation axis, is coordinated by two N atoms from two 3,5,9,11-tetra­oxo-4,10-diaza­tetra­cyclo­[5.5.2.02,6.08,12]tetra­dec-13-ene-4,10-diide (L) ligands in a nearly linear arrangement. The other AgI ion, lying on an inversion center, is coordinated by two O atoms from two L ligands and two N atoms from two 1,4-bis­(imidazol-1-ylmeth­yl)benzene ligands in a distorted square-planar geometry. An additional Ag⋯Ag [3.0119 (3) Å] inter­action links the AgI ions into a chain along [010]. The two types of ligands have mirror symmetry and connect the AgI ions into a layer parallel to (100).

Related literature

For the design and synthesis of coordination polymers, see: Liao et al. (2008[Liao, C. Y., Chan, K. T., Chiu, P. L., Chen, C. Y. & Lee, H. M. (2008). Inorg. Chim. Acta, 361, 2973-2978.]); Song et al. (2012[Song, X.-Z., Qin, C., Guan, W., Song, S.-Y. & Zhang, H.-J. (2012). New J. Chem. 36, 877-882.]); Wang et al. (2009[Wang, G.-H., Li, Z.-G., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2009). Acta Cryst. E65, m1568-m1569.]). For the van der Waals radius of the Ag atom, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C12H8N2O4)(C14H14N4)]

  • Mr = 698.24

  • Orthorhombic, P b c m

  • a = 10.1480 (11) Å

  • b = 11.0016 (11) Å

  • c = 21.183 (2) Å

  • V = 2365.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.71 mm−1

  • T = 296 K

  • 0.27 × 0.21 × 0.17 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.656, Tmax = 0.760

  • 12177 measured reflections

  • 2402 independent reflections

  • 1454 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.094

  • S = 1.00

  • 2402 reflections

  • 180 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Selected bond lengths (Å)

Ag1—N1 2.078 (4)
Ag2—N2 2.141 (4)
Ag2—O2 2.693 (3)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL .

Supporting information


Comment top

Metal-organic frameworks (MOFs) are an emerging class of periodic crystalline solid-state materials constructed from metal ions or polynuclear metal-oxygen clusters and multidentate organic ligands. Recently, chemists have devoted themselves to the design and syntheses of coordination polymers, not only owing to their potential applications in the realm of gas adsorption and separation, catalysis, magnetism, luminescence and host–guest chemistry and etc, but also for their aesthetic and often complicated architectures and topologies (Liao et al., 2008; Song et al., 2012; Wang et al., 2009). Bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxydiimide (H2L), prepared by the ammonolysis of bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, contains two kinds of possible coordination donors (N and O) to ligate metal atoms. Herein, we report a coordination polymer by simultaneous use of the H2L ligand and a neutral ligand, 1,4-bis(imidazol-l-ylmethyl)benzene.

As shown in Fig. 1 and Table 1, the title complex contains two crystallographically unique AgI ions. The Ag1 atom, lying on a twofold rotation axis, is coordinated by two N atoms from two 3,5,9,11-tetraoxo-4,10-diazatetracyclo [5.5.2.02,6.08,12]tetradec-13-ene-4,10-diido (L1) ligands in a nearly linear arrangement. The Ag2 atom, lying on an inversion center, is coordinated by two O atoms from two L1 ligands and two N atoms from two 1,4-bis(imidazol-1-ylmethyl)benzene (L2) ligands in a distorted square-planar geometry. The Ag···Ag separation [3.0119 (3) Å] is shorter than the sum of van der Waals radii for two silver atoms (3.44 Å) (Bondi, 1964), which indicates relatively strong argentophilicity. The L1 and L2 ligands, both have a mirror symmetry, connect the AgI ions into a layer structure parallel to (1 0 0) (Fig. 2).

Related literature top

For the design and synthesis of coordination polymers, see: Liao et al. (2008); Song et al. (2012); Wang et al. (2009). For the van der Waals radius of the Ag atom, see: Bondi (1964).

Experimental top

A mixture of bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (0.2 mmol, 0.050 g), 1,4-bis(imidazol-l-ylmethyl)benzene (0.2 mmol, 0.048 g), silver nitrate (0.4 mmol, 0.068 g) and H2O (25 ml) was stirred for ten minutes. Dilute ammonia was dropwised into the mixture until the mixture turned to transparent. Colorless block crystals of the title compound were isolated after evaporation of ammonia.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.98 (CH) and 0.97 (CH2) Å and with Uiso(H) = 1.2Ueq(C).

Structure description top

Metal-organic frameworks (MOFs) are an emerging class of periodic crystalline solid-state materials constructed from metal ions or polynuclear metal-oxygen clusters and multidentate organic ligands. Recently, chemists have devoted themselves to the design and syntheses of coordination polymers, not only owing to their potential applications in the realm of gas adsorption and separation, catalysis, magnetism, luminescence and host–guest chemistry and etc, but also for their aesthetic and often complicated architectures and topologies (Liao et al., 2008; Song et al., 2012; Wang et al., 2009). Bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxydiimide (H2L), prepared by the ammonolysis of bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, contains two kinds of possible coordination donors (N and O) to ligate metal atoms. Herein, we report a coordination polymer by simultaneous use of the H2L ligand and a neutral ligand, 1,4-bis(imidazol-l-ylmethyl)benzene.

As shown in Fig. 1 and Table 1, the title complex contains two crystallographically unique AgI ions. The Ag1 atom, lying on a twofold rotation axis, is coordinated by two N atoms from two 3,5,9,11-tetraoxo-4,10-diazatetracyclo [5.5.2.02,6.08,12]tetradec-13-ene-4,10-diido (L1) ligands in a nearly linear arrangement. The Ag2 atom, lying on an inversion center, is coordinated by two O atoms from two L1 ligands and two N atoms from two 1,4-bis(imidazol-1-ylmethyl)benzene (L2) ligands in a distorted square-planar geometry. The Ag···Ag separation [3.0119 (3) Å] is shorter than the sum of van der Waals radii for two silver atoms (3.44 Å) (Bondi, 1964), which indicates relatively strong argentophilicity. The L1 and L2 ligands, both have a mirror symmetry, connect the AgI ions into a layer structure parallel to (1 0 0) (Fig. 2).

For the design and synthesis of coordination polymers, see: Liao et al. (2008); Song et al. (2012); Wang et al. (2009). For the van der Waals radius of the Ag atom, see: Bondi (1964).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) x, y, 1/2 - z; (ii) x, y, 3/2 - z; (iii) -x, -y, 1 - z.]
[Figure 2] Fig. 2. View of the layer structure of the title compound.
Poly[[µ2-1,4-bis(imidazol-1-ylmethyl)benzene](µ4-3,5,9,11-tetraoxo- 4,10-diazatetracyclo[5.5.2.02,6.08,12]tetradec-13-ene-4,10- diido)disilver(I)] top
Crystal data top
[Ag2(C12H8N2O4)(C14H14N4)]F(000) = 1384
Mr = 698.24Dx = 1.961 Mg m3
Orthorhombic, PbcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2c 2bCell parameters from 3256 reflections
a = 10.1480 (11) Åθ = 2.8–25.9°
b = 11.0016 (11) ŵ = 1.71 mm1
c = 21.183 (2) ÅT = 296 K
V = 2365.0 (4) Å3Block, colorless
Z = 40.27 × 0.21 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
2402 independent reflections
Radiation source: fine-focus sealed tube1454 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
φ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1212
Tmin = 0.656, Tmax = 0.760k = 613
12177 measured reflectionsl = 2624
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0389P)2 + 3.7137P]
where P = (Fo2 + 2Fc2)/3
2402 reflections(Δ/σ)max < 0.001
180 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Ag2(C12H8N2O4)(C14H14N4)]V = 2365.0 (4) Å3
Mr = 698.24Z = 4
Orthorhombic, PbcmMo Kα radiation
a = 10.1480 (11) ŵ = 1.71 mm1
b = 11.0016 (11) ÅT = 296 K
c = 21.183 (2) Å0.27 × 0.21 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
2402 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1454 reflections with I > 2σ(I)
Tmin = 0.656, Tmax = 0.760Rint = 0.056
12177 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.00Δρmax = 0.58 e Å3
2402 reflectionsΔρmin = 0.59 e Å3
180 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2448 (5)0.2484 (5)0.3711 (2)0.0310 (10)
C20.2537 (5)0.1795 (4)0.3080 (2)0.0280 (11)
H20.33200.12740.30760.034*
C30.2545 (7)0.2650 (6)0.25000.0272 (16)
H30.33150.31880.25000.033*
C40.1301 (8)0.3340 (7)0.25000.0347 (18)
H40.12800.41850.25000.042*
C50.0208 (7)0.2669 (7)0.25000.0340 (19)
H50.06330.30060.25000.041*
C60.0445 (7)0.1334 (7)0.25000.0281 (17)
H60.03850.08790.25000.034*
C70.1291 (5)0.1015 (4)0.3074 (2)0.0272 (11)
H70.15210.01500.30700.033*
C80.0604 (5)0.1346 (5)0.3690 (2)0.0301 (12)
C90.1964 (5)0.1716 (5)0.5666 (2)0.0318 (13)
H90.12680.22260.57720.038*
C100.3079 (5)0.0219 (5)0.5312 (3)0.0331 (13)
H100.32960.05120.51180.040*
C110.3947 (5)0.0980 (5)0.5586 (3)0.0352 (13)
H110.48530.08740.56190.042*
C120.3719 (5)0.3029 (5)0.6131 (2)0.0289 (11)
H12A0.32080.37260.59940.035*
H12B0.46250.31640.60030.035*
C130.3669 (4)0.2965 (4)0.6840 (2)0.0236 (10)
C140.3774 (5)0.1894 (5)0.7176 (2)0.0308 (12)
H140.38450.11610.69600.037*
C150.3563 (5)0.4041 (4)0.7176 (2)0.0308 (12)
H150.34900.47740.69590.037*
N10.1358 (4)0.2134 (4)0.40402 (18)0.0290 (10)
N20.1828 (4)0.0679 (4)0.53608 (19)0.0276 (10)
N30.3223 (4)0.1942 (4)0.58061 (18)0.0267 (9)
O10.3267 (4)0.3211 (4)0.38995 (17)0.0445 (10)
O20.0466 (3)0.0946 (3)0.38487 (16)0.0346 (9)
Ag10.12096 (5)0.25000.50000.02695 (15)
Ag20.00000.00000.50000.03030 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.030 (2)0.043 (3)0.020 (2)0.001 (3)0.005 (2)0.005 (3)
C20.028 (3)0.030 (3)0.026 (3)0.005 (2)0.001 (2)0.000 (2)
C30.029 (4)0.038 (5)0.015 (3)0.014 (4)0.0000.000
C40.042 (5)0.027 (4)0.036 (5)0.005 (4)0.0000.000
C50.030 (4)0.046 (6)0.026 (4)0.006 (4)0.0000.000
C60.030 (4)0.038 (5)0.017 (4)0.008 (4)0.0000.000
C70.035 (3)0.022 (3)0.024 (3)0.000 (2)0.001 (2)0.000 (2)
C80.040 (3)0.035 (3)0.015 (3)0.000 (3)0.001 (2)0.006 (2)
C90.030 (3)0.035 (3)0.031 (3)0.002 (2)0.010 (2)0.001 (2)
C100.033 (3)0.035 (3)0.032 (3)0.005 (2)0.003 (2)0.007 (2)
C110.020 (3)0.044 (3)0.042 (3)0.004 (2)0.000 (2)0.008 (3)
C120.033 (3)0.029 (3)0.024 (3)0.008 (2)0.008 (2)0.001 (2)
C130.018 (2)0.029 (3)0.024 (2)0.002 (2)0.003 (2)0.000 (2)
C140.038 (3)0.023 (3)0.031 (3)0.002 (2)0.004 (2)0.011 (2)
C150.041 (3)0.022 (3)0.029 (3)0.004 (2)0.000 (2)0.003 (2)
N10.032 (2)0.040 (3)0.015 (2)0.0025 (19)0.0010 (18)0.0032 (17)
N20.031 (2)0.029 (2)0.022 (2)0.0052 (19)0.0065 (18)0.0016 (19)
N30.030 (2)0.029 (2)0.020 (2)0.0038 (19)0.0018 (19)0.0005 (19)
O10.036 (2)0.065 (3)0.033 (2)0.016 (2)0.0056 (18)0.014 (2)
O20.033 (2)0.047 (2)0.0235 (19)0.0068 (18)0.0057 (16)0.0033 (17)
Ag10.0308 (3)0.0334 (3)0.0167 (3)0.0000.0000.0039 (2)
Ag20.0293 (3)0.0300 (3)0.0316 (3)0.0038 (2)0.0104 (3)0.0022 (3)
Geometric parameters (Å, º) top
C1—O11.221 (6)C9—N31.334 (6)
C1—N11.363 (6)C9—H90.9300
C1—C21.538 (6)C10—C111.347 (7)
C2—C71.527 (7)C10—N21.370 (6)
C2—C31.548 (6)C10—H100.9300
C2—H20.9800C11—N31.370 (6)
C3—C41.473 (10)C11—H110.9300
C3—C2i1.548 (6)C12—N31.469 (6)
C3—H30.9800C12—C131.505 (6)
C4—C51.333 (10)C12—H12A0.9700
C4—H40.9300C12—H12B0.9700
C5—C61.487 (9)C13—C141.381 (7)
C5—H50.9300C13—C151.385 (7)
C6—C7i1.530 (6)C14—C14ii1.372 (10)
C6—C71.530 (6)C14—H140.9300
C6—H60.9800C15—C15ii1.373 (10)
C7—C81.524 (7)C15—H150.9300
C7—H70.9800Ag1—N12.078 (4)
C8—O21.218 (6)Ag2—N22.141 (4)
C8—N11.374 (6)Ag2—O22.693 (3)
C9—N21.319 (6)Ag1—Ag23.0119 (3)
O1—C1—N1124.7 (4)N2—C10—H10124.9
O1—C1—C2124.5 (5)C10—C11—N3106.0 (5)
N1—C1—C2110.7 (4)C10—C11—H11127.0
C7—C2—C1103.6 (4)N3—C11—H11127.0
C7—C2—C3109.8 (4)N3—C12—C13114.7 (4)
C1—C2—C3113.0 (4)N3—C12—H12A108.6
C7—C2—H2110.1C13—C12—H12A108.6
C1—C2—H2110.1N3—C12—H12B108.6
C3—C2—H2110.1C13—C12—H12B108.6
C4—C3—C2i108.0 (4)H12A—C12—H12B107.6
C4—C3—C2108.0 (4)C14—C13—C15118.1 (5)
C2i—C3—C2105.1 (5)C14—C13—C12123.5 (5)
C4—C3—H3111.8C15—C13—C12118.4 (4)
C2i—C3—H3111.8C14ii—C14—C13121.0 (3)
C2—C3—H3111.8C14ii—C14—H14119.5
C5—C4—C3115.3 (7)C13—C14—H14119.5
C5—C4—H4122.3C15ii—C15—C13120.9 (3)
C3—C4—H4122.3C15ii—C15—H15119.6
C4—C5—C6114.3 (7)C13—C15—H15119.6
C4—C5—H5122.8C1—N1—C8110.7 (4)
C6—C5—H5122.8C1—N1—Ag1120.4 (3)
C5—C6—C7i108.5 (4)C8—N1—Ag1127.6 (3)
C5—C6—C7108.5 (4)C9—N2—C10105.0 (4)
C7i—C6—C7105.4 (6)C9—N2—Ag2124.6 (3)
C5—C6—H6111.4C10—N2—Ag2130.3 (3)
C7i—C6—H6111.4C9—N3—C11107.1 (4)
C7—C6—H6111.4C9—N3—C12125.8 (4)
C8—C7—C2103.8 (4)C11—N3—C12127.2 (4)
C8—C7—C6111.7 (4)N1—Ag1—N1iii171.7 (2)
C2—C7—C6110.0 (4)N1—Ag1—Ag2iii101.91 (12)
C8—C7—H7110.4N1iii—Ag1—Ag2iii81.53 (11)
C2—C7—H7110.4N1—Ag1—Ag281.53 (11)
C6—C7—H7110.4N1iii—Ag1—Ag2101.91 (11)
O2—C8—N1125.1 (5)Ag2iii—Ag1—Ag2131.898 (18)
O2—C8—C7123.9 (5)N2—Ag2—N2iv180.00 (11)
N1—C8—C7110.9 (4)N2—Ag2—Ag1iv88.01 (11)
N2—C9—N3111.7 (5)N2iv—Ag2—Ag1iv91.99 (11)
N2—C9—H9124.1N2—Ag2—Ag191.99 (11)
N3—C9—H9124.1N2iv—Ag2—Ag188.01 (11)
C11—C10—N2110.1 (5)N2—Ag2—O292.08 (13)
C11—C10—H10124.9O2—Ag2—N2iv87.92 (13)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z+3/2; (iii) x, y+1/2, z+1; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Ag2(C12H8N2O4)(C14H14N4)]
Mr698.24
Crystal system, space groupOrthorhombic, Pbcm
Temperature (K)296
a, b, c (Å)10.1480 (11), 11.0016 (11), 21.183 (2)
V3)2365.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.71
Crystal size (mm)0.27 × 0.21 × 0.17
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.656, 0.760
No. of measured, independent and
observed [I > 2σ(I)] reflections
12177, 2402, 1454
Rint0.056
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.094, 1.00
No. of reflections2402
No. of parameters180
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.59

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ag1—N12.078 (4)Ag2—O22.693 (3)
Ag2—N22.141 (4)
 

Acknowledgements

The author thanks Anshan Normal University, Liaoning, China, for supporting this work.

References

First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiao, C. Y., Chan, K. T., Chiu, P. L., Chen, C. Y. & Lee, H. M. (2008). Inorg. Chim. Acta, 361, 2973–2978.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, X.-Z., Qin, C., Guan, W., Song, S.-Y. & Zhang, H.-J. (2012). New J. Chem. 36, 877–882.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, G.-H., Li, Z.-G., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2009). Acta Cryst. E65, m1568–m1569.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds