metal-organic compounds
Poly[[μ2-1,4-bis(imidazol-1-ylmethyl)benzene](μ4-3,5,9,11-tetraoxo-4,10-diazatetracyclo[5.5.2.02,6.08,12]tetradec-13-ene-4,10-diido)disilver(I)]
aSchool of Chemistry and Life Science, Anshan Normal University, Anshan, Liaoning 114000, People's Republic of China
*Correspondence e-mail: chemzhangym@163.com
In the title complex, [Ag2(C12H8N2O4)(C14H14N4)]n, one AgI ion, lying on a twofold rotation axis, is coordinated by two N atoms from two 3,5,9,11-tetraoxo-4,10-diazatetracyclo[5.5.2.02,6.08,12]tetradec-13-ene-4,10-diide (L) ligands in a nearly linear arrangement. The other AgI ion, lying on an inversion center, is coordinated by two O atoms from two L ligands and two N atoms from two 1,4-bis(imidazol-1-ylmethyl)benzene ligands in a distorted square-planar geometry. An additional Ag⋯Ag [3.0119 (3) Å] interaction links the AgI ions into a chain along [010]. The two types of ligands have mirror symmetry and connect the AgI ions into a layer parallel to (100).
Related literature
For the design and synthesis of coordination polymers, see: Liao et al. (2008); Song et al. (2012); Wang et al. (2009). For the van der Waals radius of the Ag atom, see: Bondi (1964).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL .
Supporting information
https://doi.org/10.1107/S1600536812039669/ng5293sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812039669/ng5293Isup2.hkl
A mixture of bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (0.2 mmol, 0.050 g), 1,4-bis(imidazol-l-ylmethyl)benzene (0.2 mmol, 0.048 g), silver nitrate (0.4 mmol, 0.068 g) and H2O (25 ml) was stirred for ten minutes. Dilute ammonia was dropwised into the mixture until the mixture turned to transparent. Colorless block crystals of the title compound were isolated after evaporation of ammonia.
H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.98 (CH) and 0.97 (CH2) Å and with Uiso(H) = 1.2Ueq(C).
Metal-organic frameworks (MOFs) are an emerging class of periodic crystalline solid-state materials constructed from metal ions or polynuclear metal-oxygen clusters and multidentate organic ligands. Recently, chemists have devoted themselves to the design and syntheses of coordination polymers, not only owing to their potential applications in the realm of gas adsorption and separation, catalysis, magnetism, luminescence and host–guest chemistry and etc, but also for their aesthetic and often complicated architectures and topologies (Liao et al., 2008; Song et al., 2012; Wang et al., 2009). Bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxydiimide (H2L), prepared by the ammonolysis of bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, contains two kinds of possible coordination donors (N and O) to ligate metal atoms. Herein, we report a coordination polymer by simultaneous use of the H2L ligand and a neutral ligand, 1,4-bis(imidazol-l-ylmethyl)benzene.
As shown in Fig. 1 and Table 1, the title complex contains two crystallographically unique AgI ions. The Ag1 atom, lying on a twofold rotation axis, is coordinated by two N atoms from two 3,5,9,11-tetraoxo-4,10-diazatetracyclo [5.5.2.02,6.08,12]tetradec-13-ene-4,10-diido (L1) ligands in a nearly linear arrangement. The Ag2 atom, lying on an inversion center, is coordinated by two O atoms from two L1 ligands and two N atoms from two 1,4-bis(imidazol-1-ylmethyl)benzene (L2) ligands in a distorted square-planar geometry. The Ag···Ag separation [3.0119 (3) Å] is shorter than the sum of van der Waals radii for two silver atoms (3.44 Å) (Bondi, 1964), which indicates relatively strong argentophilicity. The L1 and L2 ligands, both have a mirror symmetry, connect the AgI ions into a layer structure parallel to (1 0 0) (Fig. 2).
For the design and synthesis of coordination polymers, see: Liao et al. (2008); Song et al. (2012); Wang et al. (2009). For the van der Waals radius of the Ag atom, see: Bondi (1964).
Data collection: APEX2 (Bruker, 2007); cell
SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Ag2(C12H8N2O4)(C14H14N4)] | F(000) = 1384 |
Mr = 698.24 | Dx = 1.961 Mg m−3 |
Orthorhombic, Pbcm | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2c 2b | Cell parameters from 3256 reflections |
a = 10.1480 (11) Å | θ = 2.8–25.9° |
b = 11.0016 (11) Å | µ = 1.71 mm−1 |
c = 21.183 (2) Å | T = 296 K |
V = 2365.0 (4) Å3 | Block, colorless |
Z = 4 | 0.27 × 0.21 × 0.17 mm |
Bruker APEXII CCD diffractometer | 2402 independent reflections |
Radiation source: fine-focus sealed tube | 1454 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.056 |
φ and ω scans | θmax = 26.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −12→12 |
Tmin = 0.656, Tmax = 0.760 | k = −6→13 |
12177 measured reflections | l = −26→24 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.094 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0389P)2 + 3.7137P] where P = (Fo2 + 2Fc2)/3 |
2402 reflections | (Δ/σ)max < 0.001 |
180 parameters | Δρmax = 0.58 e Å−3 |
0 restraints | Δρmin = −0.59 e Å−3 |
[Ag2(C12H8N2O4)(C14H14N4)] | V = 2365.0 (4) Å3 |
Mr = 698.24 | Z = 4 |
Orthorhombic, Pbcm | Mo Kα radiation |
a = 10.1480 (11) Å | µ = 1.71 mm−1 |
b = 11.0016 (11) Å | T = 296 K |
c = 21.183 (2) Å | 0.27 × 0.21 × 0.17 mm |
Bruker APEXII CCD diffractometer | 2402 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1454 reflections with I > 2σ(I) |
Tmin = 0.656, Tmax = 0.760 | Rint = 0.056 |
12177 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.094 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.58 e Å−3 |
2402 reflections | Δρmin = −0.59 e Å−3 |
180 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.2448 (5) | 0.2484 (5) | 0.3711 (2) | 0.0310 (10) | |
C2 | −0.2537 (5) | 0.1795 (4) | 0.3080 (2) | 0.0280 (11) | |
H2 | −0.3320 | 0.1274 | 0.3076 | 0.034* | |
C3 | −0.2545 (7) | 0.2650 (6) | 0.2500 | 0.0272 (16) | |
H3 | −0.3315 | 0.3188 | 0.2500 | 0.033* | |
C4 | −0.1301 (8) | 0.3340 (7) | 0.2500 | 0.0347 (18) | |
H4 | −0.1280 | 0.4185 | 0.2500 | 0.042* | |
C5 | −0.0208 (7) | 0.2669 (7) | 0.2500 | 0.0340 (19) | |
H5 | 0.0633 | 0.3006 | 0.2500 | 0.041* | |
C6 | −0.0445 (7) | 0.1334 (7) | 0.2500 | 0.0281 (17) | |
H6 | 0.0385 | 0.0879 | 0.2500 | 0.034* | |
C7 | −0.1291 (5) | 0.1015 (4) | 0.3074 (2) | 0.0272 (11) | |
H7 | −0.1521 | 0.0150 | 0.3070 | 0.033* | |
C8 | −0.0604 (5) | 0.1346 (5) | 0.3690 (2) | 0.0301 (12) | |
C9 | 0.1964 (5) | 0.1716 (5) | 0.5666 (2) | 0.0318 (13) | |
H9 | 0.1268 | 0.2226 | 0.5772 | 0.038* | |
C10 | 0.3079 (5) | 0.0219 (5) | 0.5312 (3) | 0.0331 (13) | |
H10 | 0.3296 | −0.0512 | 0.5118 | 0.040* | |
C11 | 0.3947 (5) | 0.0980 (5) | 0.5586 (3) | 0.0352 (13) | |
H11 | 0.4853 | 0.0874 | 0.5619 | 0.042* | |
C12 | 0.3719 (5) | 0.3029 (5) | 0.6131 (2) | 0.0289 (11) | |
H12A | 0.3208 | 0.3726 | 0.5994 | 0.035* | |
H12B | 0.4625 | 0.3164 | 0.6003 | 0.035* | |
C13 | 0.3669 (4) | 0.2965 (4) | 0.6840 (2) | 0.0236 (10) | |
C14 | 0.3774 (5) | 0.1894 (5) | 0.7176 (2) | 0.0308 (12) | |
H14 | 0.3845 | 0.1161 | 0.6960 | 0.037* | |
C15 | 0.3563 (5) | 0.4041 (4) | 0.7176 (2) | 0.0308 (12) | |
H15 | 0.3490 | 0.4774 | 0.6959 | 0.037* | |
N1 | −0.1358 (4) | 0.2134 (4) | 0.40402 (18) | 0.0290 (10) | |
N2 | 0.1828 (4) | 0.0679 (4) | 0.53608 (19) | 0.0276 (10) | |
N3 | 0.3223 (4) | 0.1942 (4) | 0.58061 (18) | 0.0267 (9) | |
O1 | −0.3267 (4) | 0.3211 (4) | 0.38995 (17) | 0.0445 (10) | |
O2 | 0.0466 (3) | 0.0946 (3) | 0.38487 (16) | 0.0346 (9) | |
Ag1 | −0.12096 (5) | 0.2500 | 0.5000 | 0.02695 (15) | |
Ag2 | 0.0000 | 0.0000 | 0.5000 | 0.03030 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.030 (2) | 0.043 (3) | 0.020 (2) | −0.001 (3) | 0.005 (2) | −0.005 (3) |
C2 | 0.028 (3) | 0.030 (3) | 0.026 (3) | −0.005 (2) | −0.001 (2) | 0.000 (2) |
C3 | 0.029 (4) | 0.038 (5) | 0.015 (3) | 0.014 (4) | 0.000 | 0.000 |
C4 | 0.042 (5) | 0.027 (4) | 0.036 (5) | −0.005 (4) | 0.000 | 0.000 |
C5 | 0.030 (4) | 0.046 (6) | 0.026 (4) | −0.006 (4) | 0.000 | 0.000 |
C6 | 0.030 (4) | 0.038 (5) | 0.017 (4) | 0.008 (4) | 0.000 | 0.000 |
C7 | 0.035 (3) | 0.022 (3) | 0.024 (3) | 0.000 (2) | −0.001 (2) | 0.000 (2) |
C8 | 0.040 (3) | 0.035 (3) | 0.015 (3) | 0.000 (3) | 0.001 (2) | 0.006 (2) |
C9 | 0.030 (3) | 0.035 (3) | 0.031 (3) | 0.002 (2) | −0.010 (2) | 0.001 (2) |
C10 | 0.033 (3) | 0.035 (3) | 0.032 (3) | −0.005 (2) | 0.003 (2) | −0.007 (2) |
C11 | 0.020 (3) | 0.044 (3) | 0.042 (3) | −0.004 (2) | 0.000 (2) | −0.008 (3) |
C12 | 0.033 (3) | 0.029 (3) | 0.024 (3) | −0.008 (2) | −0.008 (2) | 0.001 (2) |
C13 | 0.018 (2) | 0.029 (3) | 0.024 (2) | −0.002 (2) | −0.003 (2) | 0.000 (2) |
C14 | 0.038 (3) | 0.023 (3) | 0.031 (3) | −0.002 (2) | 0.004 (2) | −0.011 (2) |
C15 | 0.041 (3) | 0.022 (3) | 0.029 (3) | 0.004 (2) | 0.000 (2) | 0.003 (2) |
N1 | 0.032 (2) | 0.040 (3) | 0.015 (2) | 0.0025 (19) | 0.0010 (18) | −0.0032 (17) |
N2 | 0.031 (2) | 0.029 (2) | 0.022 (2) | −0.0052 (19) | −0.0065 (18) | 0.0016 (19) |
N3 | 0.030 (2) | 0.029 (2) | 0.020 (2) | −0.0038 (19) | −0.0018 (19) | −0.0005 (19) |
O1 | 0.036 (2) | 0.065 (3) | 0.033 (2) | 0.016 (2) | 0.0056 (18) | −0.014 (2) |
O2 | 0.033 (2) | 0.047 (2) | 0.0235 (19) | 0.0068 (18) | −0.0057 (16) | 0.0033 (17) |
Ag1 | 0.0308 (3) | 0.0334 (3) | 0.0167 (3) | 0.000 | 0.000 | −0.0039 (2) |
Ag2 | 0.0293 (3) | 0.0300 (3) | 0.0316 (3) | −0.0038 (2) | −0.0104 (3) | 0.0022 (3) |
C1—O1 | 1.221 (6) | C9—N3 | 1.334 (6) |
C1—N1 | 1.363 (6) | C9—H9 | 0.9300 |
C1—C2 | 1.538 (6) | C10—C11 | 1.347 (7) |
C2—C7 | 1.527 (7) | C10—N2 | 1.370 (6) |
C2—C3 | 1.548 (6) | C10—H10 | 0.9300 |
C2—H2 | 0.9800 | C11—N3 | 1.370 (6) |
C3—C4 | 1.473 (10) | C11—H11 | 0.9300 |
C3—C2i | 1.548 (6) | C12—N3 | 1.469 (6) |
C3—H3 | 0.9800 | C12—C13 | 1.505 (6) |
C4—C5 | 1.333 (10) | C12—H12A | 0.9700 |
C4—H4 | 0.9300 | C12—H12B | 0.9700 |
C5—C6 | 1.487 (9) | C13—C14 | 1.381 (7) |
C5—H5 | 0.9300 | C13—C15 | 1.385 (7) |
C6—C7i | 1.530 (6) | C14—C14ii | 1.372 (10) |
C6—C7 | 1.530 (6) | C14—H14 | 0.9300 |
C6—H6 | 0.9800 | C15—C15ii | 1.373 (10) |
C7—C8 | 1.524 (7) | C15—H15 | 0.9300 |
C7—H7 | 0.9800 | Ag1—N1 | 2.078 (4) |
C8—O2 | 1.218 (6) | Ag2—N2 | 2.141 (4) |
C8—N1 | 1.374 (6) | Ag2—O2 | 2.693 (3) |
C9—N2 | 1.319 (6) | Ag1—Ag2 | 3.0119 (3) |
O1—C1—N1 | 124.7 (4) | N2—C10—H10 | 124.9 |
O1—C1—C2 | 124.5 (5) | C10—C11—N3 | 106.0 (5) |
N1—C1—C2 | 110.7 (4) | C10—C11—H11 | 127.0 |
C7—C2—C1 | 103.6 (4) | N3—C11—H11 | 127.0 |
C7—C2—C3 | 109.8 (4) | N3—C12—C13 | 114.7 (4) |
C1—C2—C3 | 113.0 (4) | N3—C12—H12A | 108.6 |
C7—C2—H2 | 110.1 | C13—C12—H12A | 108.6 |
C1—C2—H2 | 110.1 | N3—C12—H12B | 108.6 |
C3—C2—H2 | 110.1 | C13—C12—H12B | 108.6 |
C4—C3—C2i | 108.0 (4) | H12A—C12—H12B | 107.6 |
C4—C3—C2 | 108.0 (4) | C14—C13—C15 | 118.1 (5) |
C2i—C3—C2 | 105.1 (5) | C14—C13—C12 | 123.5 (5) |
C4—C3—H3 | 111.8 | C15—C13—C12 | 118.4 (4) |
C2i—C3—H3 | 111.8 | C14ii—C14—C13 | 121.0 (3) |
C2—C3—H3 | 111.8 | C14ii—C14—H14 | 119.5 |
C5—C4—C3 | 115.3 (7) | C13—C14—H14 | 119.5 |
C5—C4—H4 | 122.3 | C15ii—C15—C13 | 120.9 (3) |
C3—C4—H4 | 122.3 | C15ii—C15—H15 | 119.6 |
C4—C5—C6 | 114.3 (7) | C13—C15—H15 | 119.6 |
C4—C5—H5 | 122.8 | C1—N1—C8 | 110.7 (4) |
C6—C5—H5 | 122.8 | C1—N1—Ag1 | 120.4 (3) |
C5—C6—C7i | 108.5 (4) | C8—N1—Ag1 | 127.6 (3) |
C5—C6—C7 | 108.5 (4) | C9—N2—C10 | 105.0 (4) |
C7i—C6—C7 | 105.4 (6) | C9—N2—Ag2 | 124.6 (3) |
C5—C6—H6 | 111.4 | C10—N2—Ag2 | 130.3 (3) |
C7i—C6—H6 | 111.4 | C9—N3—C11 | 107.1 (4) |
C7—C6—H6 | 111.4 | C9—N3—C12 | 125.8 (4) |
C8—C7—C2 | 103.8 (4) | C11—N3—C12 | 127.2 (4) |
C8—C7—C6 | 111.7 (4) | N1—Ag1—N1iii | 171.7 (2) |
C2—C7—C6 | 110.0 (4) | N1—Ag1—Ag2iii | 101.91 (12) |
C8—C7—H7 | 110.4 | N1iii—Ag1—Ag2iii | 81.53 (11) |
C2—C7—H7 | 110.4 | N1—Ag1—Ag2 | 81.53 (11) |
C6—C7—H7 | 110.4 | N1iii—Ag1—Ag2 | 101.91 (11) |
O2—C8—N1 | 125.1 (5) | Ag2iii—Ag1—Ag2 | 131.898 (18) |
O2—C8—C7 | 123.9 (5) | N2—Ag2—N2iv | 180.00 (11) |
N1—C8—C7 | 110.9 (4) | N2—Ag2—Ag1iv | 88.01 (11) |
N2—C9—N3 | 111.7 (5) | N2iv—Ag2—Ag1iv | 91.99 (11) |
N2—C9—H9 | 124.1 | N2—Ag2—Ag1 | 91.99 (11) |
N3—C9—H9 | 124.1 | N2iv—Ag2—Ag1 | 88.01 (11) |
C11—C10—N2 | 110.1 (5) | N2—Ag2—O2 | 92.08 (13) |
C11—C10—H10 | 124.9 | O2—Ag2—N2iv | 87.92 (13) |
Symmetry codes: (i) x, y, −z+1/2; (ii) x, y, −z+3/2; (iii) x, −y+1/2, −z+1; (iv) −x, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ag2(C12H8N2O4)(C14H14N4)] |
Mr | 698.24 |
Crystal system, space group | Orthorhombic, Pbcm |
Temperature (K) | 296 |
a, b, c (Å) | 10.1480 (11), 11.0016 (11), 21.183 (2) |
V (Å3) | 2365.0 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.71 |
Crystal size (mm) | 0.27 × 0.21 × 0.17 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.656, 0.760 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12177, 2402, 1454 |
Rint | 0.056 |
(sin θ/λ)max (Å−1) | 0.618 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.094, 1.00 |
No. of reflections | 2402 |
No. of parameters | 180 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.58, −0.59 |
Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).
Acknowledgements
The author thanks Anshan Normal University, Liaoning, China, for supporting this work.
References
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Liao, C. Y., Chan, K. T., Chiu, P. L., Chen, C. Y. & Lee, H. M. (2008). Inorg. Chim. Acta, 361, 2973–2978. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Song, X.-Z., Qin, C., Guan, W., Song, S.-Y. & Zhang, H.-J. (2012). New J. Chem. 36, 877–882. Web of Science CSD CrossRef CAS Google Scholar
Wang, G.-H., Li, Z.-G., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2009). Acta Cryst. E65, m1568–m1569. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metal-organic frameworks (MOFs) are an emerging class of periodic crystalline solid-state materials constructed from metal ions or polynuclear metal-oxygen clusters and multidentate organic ligands. Recently, chemists have devoted themselves to the design and syntheses of coordination polymers, not only owing to their potential applications in the realm of gas adsorption and separation, catalysis, magnetism, luminescence and host–guest chemistry and etc, but also for their aesthetic and often complicated architectures and topologies (Liao et al., 2008; Song et al., 2012; Wang et al., 2009). Bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxydiimide (H2L), prepared by the ammonolysis of bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, contains two kinds of possible coordination donors (N and O) to ligate metal atoms. Herein, we report a coordination polymer by simultaneous use of the H2L ligand and a neutral ligand, 1,4-bis(imidazol-l-ylmethyl)benzene.
As shown in Fig. 1 and Table 1, the title complex contains two crystallographically unique AgI ions. The Ag1 atom, lying on a twofold rotation axis, is coordinated by two N atoms from two 3,5,9,11-tetraoxo-4,10-diazatetracyclo [5.5.2.02,6.08,12]tetradec-13-ene-4,10-diido (L1) ligands in a nearly linear arrangement. The Ag2 atom, lying on an inversion center, is coordinated by two O atoms from two L1 ligands and two N atoms from two 1,4-bis(imidazol-1-ylmethyl)benzene (L2) ligands in a distorted square-planar geometry. The Ag···Ag separation [3.0119 (3) Å] is shorter than the sum of van der Waals radii for two silver atoms (3.44 Å) (Bondi, 1964), which indicates relatively strong argentophilicity. The L1 and L2 ligands, both have a mirror symmetry, connect the AgI ions into a layer structure parallel to (1 0 0) (Fig. 2).