metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­bromidobis(di­cyclo­hexyl­phosphane-κP)digallium(GaGa)

aDepartment of Chemistry and Biochemistry, Chemistry Building 094, University of Maryland, College Park, MD 20742, USA, and bDepartments of Chemistry and Materials Science, Johns Hopkins University, Baltimore, MD 21218, USA
*Correspondence e-mail: eichhorn@umd.edu

(Received 6 July 2012; accepted 15 August 2012; online 5 September 2012)

The title compound, a GaII dimer, [Ga2Br4(C12H23P)2], was synthesized by reaction of GaBr(THF)n (THF is tetra­hydro­furan) with dicyclo­hexyl­phosphine in toluene. At 150 K the crystallographically centrosymmetric molecule exhibits disorder in which one of the two independent cyclo­hexyl groups is modelled over two sites in a 62 (1):38 (1) ratio. In d6-benzene solution, the compound exhibits virtual C2h symmetry as determined by 1H NMR. The coordination environment of the GaII atom is distorted tetrahedral.

Related literature

For references related to the synthesis of the `GaBr' precursor and to cluster formation, see: Schnoeckel (2010[Schnoeckel, H. (2010). Chem. Rev. 110, 4125-4163.]); Steiner et al. (2004[Steiner, J., Stosser, G. & Schnoeckel, H. (2004). Angew. Chem. Int. Ed. 43, 302-305.]). For other Ga—Ga containing compounds, see: Baker et al. (2003[Baker, R. J., Bettentrup, H. & Jones, C. (2003). Eur. J. Inorg. Chem. pp. 2446-2451.]) (the analogous digallium tetra­iodide compound); Uhl et al. (1989[Uhl, W., Layh, M. & Hildenbrand, T. J. (1989). Organomet. Chem. 364, 289-300.]) [the first-reported Ga(II) dimer compound].

[Scheme 1]

Experimental

Crystal data
  • [Ga2Br4(C12H23P)2]

  • Mr = 855.63

  • Monoclinic, P 21 /n

  • a = 9.6095 (11) Å

  • b = 13.7083 (16) Å

  • c = 13.3305 (16) Å

  • β = 109.177 (2)°

  • V = 1658.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.55 mm−1

  • T = 150 K

  • 0.36 × 0.27 × 0.19 mm

Data collection
  • Bruker SMART APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan SADABS (Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.185, Tmax = 0.288

  • 24854 measured reflections

  • 4842 independent reflections

  • 4253 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.068

  • S = 1.00

  • 4842 reflections

  • 168 parameters

  • 60 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.88 e Å−3

  • Δρmin = −0.94 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ga1—Br2 2.3612 (5)
Ga1—Br1 2.3807 (5)
Ga1—P1 2.4164 (7)
Ga1—Ga1i 2.4353 (6)
Br2—Ga1—Br1 107.306 (18)
Br2—Ga1—P1 101.11 (2)
Br1—Ga1—P1 98.25 (2)
Br2—Ga1—Ga1i 114.05 (2)
Br1—Ga1—Ga1i 115.13 (2)
P1—Ga1—Ga1i 118.93 (2)
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2, SAINT and XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XSHELL (Bruker, 2010[Bruker (2010). APEX2, SAINT and XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: APEX2.

Supporting information


Comment top

GaBr(THF)n was generated in a modified metal halide co-condensation reactor (Schnoeckel, 2010) at 900 K and co-condensed with a mixture of toluene:THF (3:1) at 77 K. Upon warming in the presence of dicyclohexylphosphine, the dimeric Ga2Br4(PHCy2)2 forms via a disproportionation reaction (Equation 1). This reaction is similar to the disproportionation of `GaI' in the presence of dicyclohexylphosphine (Baker et al., 2003).

4 GaBr(THF) + 4 Cy2PH Ga2Br4(PHCy2)2 + 2 Ga (Eq. 1)

Ga2Br4(PHCy2)2 exhibits 1 symmetry in the solid state, with a Ga—Ga distance of 2.435 (1) Å, but virtual C2h symmetry in solution. The Ga—Br1 and Ga—Br2 distances are 2.3612 (5) and 2.3807 (5) Å, respectively; the Ga—P bond is 2.415 (3) Å. The Br—Ga—Br angle measures 107.30 (2)°.

The overall structure of Ga2Br4(PHCy2)2 is in close agreement with that of the Ga2I4(PHCy2)2 analogue reported by Baker et al. (2003). In Ga2I4(PHCy2)2 the Ga—Ga bond is 2.437 (1) Å; the Ga—P bonds average 2.424 (2) Å. The I—Ga—I angle in the iodo analogue is 110.07 (3)°.

The Ga—Ga distance in Ga2Br4(PHCy2)2 (2.435 (1) Å) is shorter than the 2.54 (1) Å Ga—Ga distance in the trigonal planar Ga(II) compound Ga2(CH(TMS)2)4 (Uhl et al. 1989). The Ga—Br distances in Ga2Br4(PHCy2)2 (2.370 (10) Å) are slightly shorter than the Ga—Br distances (2.4246 (22) and 2.4296 (27) Å) in the anionic [Ga51(PtBu2)14Br6]3- cluster (Steiner et al. 2004).

Related literature top

For references related to the synthesis of the `GaBr' precursor and to cluster formation, see: Schnoeckel (2010); Steiner et al. (2004). For other Ga—Ga containing compounds, see: Baker et al. (2003) (the analogous digallium tetraiodide compound); Uhl et al. (1989) [the first-reported Ga(II) dimer compound].

Experimental top

Ga2Br4(PHCy2)2: Dicyclohexylphosphine (2.5 mmol, 5 g of a 10% w/w solution in hexanes) was dissolved in toluene (5 ml). The solution was cooled to -78 °C and a cold (-78 °C) solution of GaBr(THF)n (6.05 ml of a 380 mM solution in toluene:THF 3:1) was added. The resultant orange solution was stirred at -78 °C for 2 h, after which it was heated to 80 °C for 19 h. The resulting dark-brown solution was cooled to room temperature, the solvent removed in vacuo and the black residue dissolved in toluene (50 ml). The dark-brown solution was separated from the grey powdery residue via cannula filtration, concentrated, and cooled to -20 °C. After 7 d, colorless crystals of Ga2Br4(PHCy2)2 formed (40 mg, 0.047 mmol, 4% yield). 1H NMR (500 MHz, C6D6) δ (p.p.m.): 1.03–2.05 (44 H, Cy—H), 4.10 (dt, 2 H, 1 J(P—H) = 352 Hz, 3 J(H—H) = 5 Hz, P—H). 13C NMR (125 MHz) δ (p.p.m.): 25.5, 27.2, 30.3, 30.8, 31.1, 31.8. 31P NMR (201.6 MHz) δ (p.p.m.): -36.7 (d, J = 352 Hz).

Refinement top

One of two symmetrically independent cyclohexyl groups (C11–C16) appeared to be split in two parts tilted from each other by about 8°. The disorder of this group was refined as following: the geometry of both parts was restrained to be similar; the atomic displacement parameters (adp) were set to be the same for the same atoms in both parts, while the adp for the one cyclohexyl group was restrained to rigid-body motions and the adp were restrained to reasonable anisotropy. Total number of restraints used was 60. The occupancy of both parts was refined to be in a 0.62 (1) to 0.38 (1) ratio. H atoms were treated by a mixture of independent and constrained refinement.

Structure description top

GaBr(THF)n was generated in a modified metal halide co-condensation reactor (Schnoeckel, 2010) at 900 K and co-condensed with a mixture of toluene:THF (3:1) at 77 K. Upon warming in the presence of dicyclohexylphosphine, the dimeric Ga2Br4(PHCy2)2 forms via a disproportionation reaction (Equation 1). This reaction is similar to the disproportionation of `GaI' in the presence of dicyclohexylphosphine (Baker et al., 2003).

4 GaBr(THF) + 4 Cy2PH Ga2Br4(PHCy2)2 + 2 Ga (Eq. 1)

Ga2Br4(PHCy2)2 exhibits 1 symmetry in the solid state, with a Ga—Ga distance of 2.435 (1) Å, but virtual C2h symmetry in solution. The Ga—Br1 and Ga—Br2 distances are 2.3612 (5) and 2.3807 (5) Å, respectively; the Ga—P bond is 2.415 (3) Å. The Br—Ga—Br angle measures 107.30 (2)°.

The overall structure of Ga2Br4(PHCy2)2 is in close agreement with that of the Ga2I4(PHCy2)2 analogue reported by Baker et al. (2003). In Ga2I4(PHCy2)2 the Ga—Ga bond is 2.437 (1) Å; the Ga—P bonds average 2.424 (2) Å. The I—Ga—I angle in the iodo analogue is 110.07 (3)°.

The Ga—Ga distance in Ga2Br4(PHCy2)2 (2.435 (1) Å) is shorter than the 2.54 (1) Å Ga—Ga distance in the trigonal planar Ga(II) compound Ga2(CH(TMS)2)4 (Uhl et al. 1989). The Ga—Br distances in Ga2Br4(PHCy2)2 (2.370 (10) Å) are slightly shorter than the Ga—Br distances (2.4246 (22) and 2.4296 (27) Å) in the anionic [Ga51(PtBu2)14Br6]3- cluster (Steiner et al. 2004).

For references related to the synthesis of the `GaBr' precursor and to cluster formation, see: Schnoeckel (2010); Steiner et al. (2004). For other Ga—Ga containing compounds, see: Baker et al. (2003) (the analogous digallium tetraiodide compound); Uhl et al. (1989) [the first-reported Ga(II) dimer compound].

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XSHELL (Bruker, 2010); software used to prepare material for publication: APEX2 (Bruker, 2010).

Figures top
[Figure 1] Fig. 1. X-ray crystal structure of Ga2Br4(PHCy2)2 viewed along C2 axis. Bromine = brown, carbon = black, gallium = green, hydrogen = white, phosphorous = orange. Thermal ellipsoids shown at 50% probability; all non-phosphine hydrogen atoms removed for clarity. Non-labeled atoms are related to labeled atoms by inversion symmetry.
Tetrabromidobis(dicyclohexylphosphane-κP)digallium (GaGa) top
Crystal data top
[Ga2Br4(C12H23P)2]F(000) = 844
Mr = 855.63Dx = 1.713 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 12733 reflections
a = 9.6095 (11) Åθ = 2.7–30.5°
b = 13.7083 (16) ŵ = 6.55 mm1
c = 13.3305 (16) ÅT = 150 K
β = 109.177 (2)°Prism, colourless
V = 1658.6 (3) Å30.36 × 0.27 × 0.19 mm
Z = 2
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
4842 independent reflections
Radiation source: fine-focus sealed tube4253 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 8.333 pixels mm-1θmax = 30.0°, θmin = 2.2°
φ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1919
Tmin = 0.185, Tmax = 0.288l = 1818
24854 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.01P)2 + 4.865P], P = (max(Fo2,0) + 2Fc2)/3
4842 reflections(Δ/σ)max = 0.001
168 parametersΔρmax = 1.88 e Å3
60 restraintsΔρmin = 0.94 e Å3
Crystal data top
[Ga2Br4(C12H23P)2]V = 1658.6 (3) Å3
Mr = 855.63Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.6095 (11) ŵ = 6.55 mm1
b = 13.7083 (16) ÅT = 150 K
c = 13.3305 (16) Å0.36 × 0.27 × 0.19 mm
β = 109.177 (2)°
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
4842 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4253 reflections with I > 2σ(I)
Tmin = 0.185, Tmax = 0.288Rint = 0.021
24854 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03460 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 1.88 e Å3
4842 reflectionsΔρmin = 0.94 e Å3
168 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ga10.43950 (3)0.06462 (2)0.53291 (2)0.02724 (7)
Br10.58862 (3)0.20359 (2)0.60235 (3)0.04156 (8)
Br20.33747 (4)0.01282 (3)0.66273 (3)0.04888 (9)
P10.23183 (7)0.14796 (5)0.40942 (5)0.02762 (13)
H10.274 (4)0.225 (2)0.368 (3)0.043 (9)*
C110.0946 (13)0.1955 (10)0.4656 (12)0.0339 (18)0.620 (13)
H110.06980.14120.50690.041*0.620 (13)
C120.0495 (10)0.2268 (7)0.3805 (7)0.0453 (18)0.620 (13)
H12A0.02870.27770.33480.054*0.620 (13)
H12B0.09430.17020.33530.054*0.620 (13)
C130.1573 (10)0.2667 (8)0.4336 (8)0.066 (2)0.620 (13)
H13A0.24840.28900.37820.080*0.620 (13)
H13B0.18440.21390.47430.080*0.620 (13)
C140.0905 (13)0.3506 (7)0.5072 (9)0.071 (3)0.620 (13)
H14A0.06800.40490.46610.085*0.620 (13)
H14B0.16190.37450.54080.085*0.620 (13)
C150.0478 (13)0.3180 (11)0.5913 (9)0.076 (3)0.620 (13)
H15A0.02340.26710.63550.092*0.620 (13)
H15B0.09180.37390.63800.092*0.620 (13)
C160.1608 (11)0.2771 (13)0.5433 (12)0.0610 (18)0.620 (13)
H16A0.19450.33000.50630.073*0.620 (13)
H16B0.24750.25220.60090.073*0.620 (13)
C11A0.114 (2)0.2078 (18)0.475 (2)0.0339 (18)0.380 (13)
H11A0.07530.15570.51090.041*0.380 (13)
C12A0.0197 (17)0.2566 (12)0.3935 (12)0.0453 (18)0.380 (13)
H12C0.01430.30530.35180.054*0.380 (13)
H12D0.07880.20680.34380.054*0.380 (13)
C13A0.1153 (15)0.3069 (13)0.4503 (13)0.066 (2)0.380 (13)
H13C0.19670.34200.39720.080*0.380 (13)
H13D0.15950.25680.48390.080*0.380 (13)
C14A0.030 (2)0.3779 (12)0.5336 (14)0.071 (3)0.380 (13)
H14C0.00480.43250.49920.085*0.380 (13)
H14D0.09450.40510.57100.085*0.380 (13)
C15A0.100 (2)0.3296 (19)0.6123 (14)0.076 (3)0.380 (13)
H15C0.06450.28100.65320.092*0.380 (13)
H15D0.15800.37920.66280.092*0.380 (13)
C16A0.2001 (18)0.279 (2)0.560 (2)0.0610 (18)0.380 (13)
H16C0.24740.32810.52760.073*0.380 (13)
H16D0.27870.24290.61430.073*0.380 (13)
C210.1299 (3)0.0773 (2)0.2924 (2)0.0305 (5)
H210.05020.11980.24580.037*
C220.0573 (3)0.0116 (2)0.3232 (3)0.0414 (7)
H22A0.13380.05520.36950.050*
H22B0.00800.00950.36310.050*
C230.0321 (4)0.0665 (3)0.2234 (3)0.0564 (9)
H23A0.07590.12550.24370.068*
H23B0.11350.02450.18010.068*
C240.0637 (4)0.0955 (3)0.1588 (3)0.0574 (10)
H24A0.00210.12790.09280.069*
H24B0.13820.14310.19970.069*
C250.1420 (4)0.0083 (3)0.1301 (3)0.0539 (9)
H25A0.06820.03560.08180.065*
H25B0.20880.03150.09220.065*
C260.2313 (3)0.0484 (2)0.2299 (2)0.0384 (6)
H26A0.31280.00730.27460.046*
H26B0.27440.10760.20930.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ga10.02597 (13)0.02897 (14)0.02464 (13)0.00414 (11)0.00541 (10)0.00146 (11)
Br10.04072 (16)0.03471 (15)0.04223 (16)0.00386 (12)0.00408 (13)0.00738 (12)
Br20.04296 (17)0.0654 (2)0.04385 (18)0.00912 (15)0.02185 (14)0.01749 (16)
P10.0278 (3)0.0276 (3)0.0266 (3)0.0028 (2)0.0077 (2)0.0016 (2)
C110.036 (3)0.033 (4)0.035 (3)0.011 (3)0.014 (2)0.005 (2)
C120.040 (4)0.046 (5)0.048 (3)0.018 (3)0.011 (3)0.003 (3)
C130.052 (4)0.075 (6)0.076 (4)0.035 (4)0.026 (4)0.008 (4)
C140.085 (7)0.061 (5)0.077 (6)0.036 (5)0.041 (5)0.001 (4)
C150.085 (8)0.083 (5)0.062 (5)0.032 (6)0.027 (4)0.023 (4)
C160.060 (5)0.062 (3)0.056 (5)0.017 (5)0.013 (4)0.023 (3)
C11A0.036 (3)0.033 (4)0.035 (3)0.011 (3)0.014 (2)0.005 (2)
C12A0.040 (4)0.046 (5)0.048 (3)0.018 (3)0.011 (3)0.003 (3)
C13A0.052 (4)0.075 (6)0.076 (4)0.035 (4)0.026 (4)0.008 (4)
C14A0.085 (7)0.061 (5)0.077 (6)0.036 (5)0.041 (5)0.001 (4)
C15A0.085 (8)0.083 (5)0.062 (5)0.032 (6)0.027 (4)0.023 (4)
C16A0.060 (5)0.062 (3)0.056 (5)0.017 (5)0.013 (4)0.023 (3)
C210.0251 (11)0.0354 (14)0.0257 (12)0.0027 (10)0.0010 (9)0.0005 (10)
C220.0356 (15)0.0427 (17)0.0425 (16)0.0079 (13)0.0084 (13)0.0009 (13)
C230.0493 (19)0.051 (2)0.056 (2)0.0158 (17)0.0010 (17)0.0079 (17)
C240.063 (2)0.048 (2)0.0420 (18)0.0013 (17)0.0084 (16)0.0148 (16)
C250.057 (2)0.071 (2)0.0271 (15)0.0003 (18)0.0041 (14)0.0121 (16)
C260.0348 (14)0.0521 (18)0.0259 (13)0.0001 (13)0.0068 (11)0.0040 (12)
Geometric parameters (Å, º) top
Ga1—Br22.3612 (5)C15—H15A0.9900
Ga1—Br12.3807 (5)C15—H15B0.9900
Ga1—P12.4164 (7)C16—H16A0.9900
Ga1—Ga1i2.4353 (6)C16—H16B0.9900
P1—C211.824 (3)C21—C221.526 (4)
P1—C11A1.83 (2)C21—C261.527 (4)
P1—C111.837 (13)C21—H211.0000
P1—H11.31 (3)C22—C231.523 (5)
C11—C161.516 (7)C22—H22A0.9900
C11—C121.535 (6)C22—H22B0.9900
C11—H111.0000C23—C241.506 (6)
C12—C131.534 (7)C23—H23A0.9900
C12—H12A0.9900C23—H23B0.9900
C12—H12B0.9900C24—C251.527 (6)
C13—C141.512 (10)C24—H24A0.9900
C13—H13A0.9900C24—H24B0.9900
C13—H13B0.9900C25—C261.537 (4)
C14—C151.499 (9)C25—H25A0.9900
C14—H14A0.9900C25—H25B0.9900
C14—H14B0.9900C26—H26A0.9900
C15—C161.536 (7)C26—H26B0.9900
Br2—Ga1—Br1107.306 (18)C11—C16—C15111.0 (7)
Br2—Ga1—P1101.11 (2)C11—C16—H16A109.4
Br1—Ga1—P198.25 (2)C15—C16—H16A109.4
Br2—Ga1—Ga1i114.05 (2)C11—C16—H16B109.4
Br1—Ga1—Ga1i115.13 (2)C15—C16—H16B109.4
P1—Ga1—Ga1i118.93 (2)H16A—C16—H16B108.0
C21—P1—C11106.3 (4)C22—C21—C26111.7 (3)
C21—P1—Ga1115.00 (9)C22—C21—P1111.0 (2)
C11—P1—Ga1115.7 (4)C26—C21—P1110.16 (19)
C21—P1—H1102.5 (15)C22—C21—H21107.9
C11—P1—H1104.4 (16)C26—C21—H21107.9
Ga1—P1—H1111.6 (15)P1—C21—H21107.9
C16—C11—C12111.9 (5)C23—C22—C21109.6 (3)
C16—C11—P1110.1 (8)C23—C22—H22A109.7
C12—C11—P1113.1 (8)C21—C22—H22A109.7
C16—C11—H11107.1C23—C22—H22B109.7
C12—C11—H11107.1C21—C22—H22B109.7
P1—C11—H11107.1H22A—C22—H22B108.2
C13—C12—C11110.0 (6)C24—C23—C22110.7 (3)
C13—C12—H12A109.7C24—C23—H23A109.5
C11—C12—H12A109.7C22—C23—H23A109.5
C13—C12—H12B109.7C24—C23—H23B109.5
C11—C12—H12B109.7C22—C23—H23B109.5
H12A—C12—H12B108.2H23A—C23—H23B108.1
C14—C13—C12111.3 (6)C23—C24—C25112.4 (3)
C14—C13—H13A109.4C23—C24—H24A109.1
C12—C13—H13A109.4C25—C24—H24A109.1
C14—C13—H13B109.4C23—C24—H24B109.1
C12—C13—H13B109.4C25—C24—H24B109.1
H13A—C13—H13B108.0H24A—C24—H24B107.9
C15—C14—C13110.0 (6)C24—C25—C26111.1 (3)
C15—C14—H14A109.7C24—C25—H25A109.4
C13—C14—H14A109.7C26—C25—H25A109.4
C15—C14—H14B109.7C24—C25—H25B109.4
C13—C14—H14B109.7C26—C25—H25B109.4
H14A—C14—H14B108.2H25A—C25—H25B108.0
C14—C15—C16111.8 (6)C21—C26—C25109.2 (3)
C14—C15—H15A109.2C21—C26—H26A109.8
C16—C15—H15A109.2C25—C26—H26A109.8
C14—C15—H15B109.2C21—C26—H26B109.8
C16—C15—H15B109.2C25—C26—H26B109.8
H15A—C15—H15B107.9H26A—C26—H26B108.3
Br2—Ga1—P1—C2199.72 (10)P1—C11—C16—C15180.0 (11)
Br1—Ga1—P1—C21150.72 (10)C14—C15—C16—C1155.2 (13)
Ga1i—Ga1—P1—C2125.94 (11)C11—P1—C21—C2264.9 (6)
Br2—Ga1—P1—C1124.9 (6)Ga1—P1—C21—C2264.5 (2)
Br1—Ga1—P1—C1184.6 (6)C11A—P1—C21—C26167.9 (11)
Ga1i—Ga1—P1—C11150.6 (6)C11—P1—C21—C26170.9 (6)
C21—P1—C11—C16164.2 (8)Ga1—P1—C21—C2659.8 (2)
Ga1—P1—C11—C1666.8 (9)C26—C21—C22—C2359.0 (3)
C21—P1—C11—C1238.2 (11)P1—C21—C22—C23177.6 (2)
Ga1—P1—C11—C12167.2 (7)C21—C22—C23—C2456.9 (4)
C16—C11—C12—C1354.2 (12)C22—C23—C24—C2555.9 (4)
P1—C11—C12—C13179.3 (8)C23—C24—C25—C2655.1 (4)
C11—C12—C13—C1456.9 (10)C22—C21—C26—C2557.8 (3)
C12—C13—C14—C1558.8 (10)P1—C21—C26—C25178.3 (2)
C13—C14—C15—C1657.5 (12)C24—C25—C26—C2154.8 (4)
C12—C11—C16—C1553.3 (13)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Ga2Br4(C12H23P)2]
Mr855.63
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)9.6095 (11), 13.7083 (16), 13.3305 (16)
β (°) 109.177 (2)
V3)1658.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)6.55
Crystal size (mm)0.36 × 0.27 × 0.19
Data collection
DiffractometerBruker SMART APEX2 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.185, 0.288
No. of measured, independent and
observed [I > 2σ(I)] reflections
24854, 4842, 4253
Rint0.021
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.068, 1.00
No. of reflections4842
No. of parameters168
No. of restraints60
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.88, 0.94

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XSHELL (Bruker, 2010).

Selected geometric parameters (Å, º) top
Ga1—Br22.3612 (5)Ga1—P12.4164 (7)
Ga1—Br12.3807 (5)Ga1—Ga1i2.4353 (6)
Br2—Ga1—Br1107.306 (18)Br2—Ga1—Ga1i114.05 (2)
Br2—Ga1—P1101.11 (2)Br1—Ga1—Ga1i115.13 (2)
Br1—Ga1—P198.25 (2)P1—Ga1—Ga1i118.93 (2)
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The authors thank the Air Force Office of Scientific Research (grant No. FA9550-11-1-0171), the NSF (grant No. 013367-001) and the DTRA for financial support. DHM acknowledges the ASEE Science, Mathematics, and Research for Transformation (SMART) Fellowship program for support. KHB thanks the AFOSR for support.

References

First citationBaker, R. J., Bettentrup, H. & Jones, C. (2003). Eur. J. Inorg. Chem. pp. 2446–2451.  CSD CrossRef Google Scholar
First citationBruker (2010). APEX2, SAINT and XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSchnoeckel, H. (2010). Chem. Rev. 110, 4125–4163.  Web of Science CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, J., Stosser, G. & Schnoeckel, H. (2004). Angew. Chem. Int. Ed. 43, 302–305.  Web of Science CSD CrossRef CAS Google Scholar
First citationUhl, W., Layh, M. & Hildenbrand, T. J. (1989). Organomet. Chem. 364, 289–300.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds