organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N-Di­cyclo­hexyl-3,5-di­nitro­benzamide

aDepartment of Chemistry, Research Complex, Allama Iqbal Open University, Islamabad 44000, Pakistan, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dNational Engineering & Scientific Commission, PO Box 2801, Islamabad, Pakistan
*Correspondence e-mail: sohail262001@yahoo.com

(Received 4 August 2012; accepted 7 September 2012; online 19 September 2012)

In the title compound, C19H25N3O5, the benzene ring is not coplanar with the amide group [dihedral angle = 61.90 (5)°]. The cyclo­hexyl rings are in chair conformations. There is a strong inter­molecular inter­action between the C=O group of the amide group and the nitro group of an adjoining mol­ecule, with a short O⋯N distance of 2.7862 (17) Å. In the crystal, C—H⋯O inter­actions occur along the [100] direction.

Related literature

For background to the biological activity of N-substituted benzamides and their use in synthesis, see: Priya et al. (2005[Priya, B. S., Swamy, B. S. N. & Rangapa, K. S. (2005). Bioorg. Med. Chem. 13, 2623-2628.]). For related structures and their use in mol­ecular recognition, see: Toda et al. (1987[Toda, F., Kai, A., Tagami, Y. & Mak, T. C. W. (1987). Chem. Lett. pp. 1393-1396.]); Saeed et al. (2011[Saeed, S., Jasinski, J. P. & Butcher, R. J. (2011). Acta Cryst. E67, o279.], 2012[Saeed, S., Rashid, N., Butcher, R. J., Öztürk Yildirim, S. & Hussain, R. (2012). Acta Cryst. E68, o2762.]). For puckering parameters, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C19H25N3O5

  • Mr = 375.42

  • Triclinic, [P \overline 1]

  • a = 6.8187 (7) Å

  • b = 9.7877 (12) Å

  • c = 14.7423 (12) Å

  • α = 92.512 (8)°

  • β = 98.898 (8)°

  • γ = 99.704 (9)°

  • V = 955.67 (17) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.79 mm−1

  • T = 123 K

  • 0.51 × 0.17 × 0.04 mm

Data collection
  • Agilent Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan [CrysAlis RED (Agilent, 2011[Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]), based on expressions derived from Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.690, Tmax = 0.969

  • 6078 measured reflections

  • 3811 independent reflections

  • 3144 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.132

  • S = 1.03

  • 3811 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O4i 0.95 2.56 3.418 (2) 151
C16—H16B⋯O3ii 0.99 2.58 3.468 (2) 149
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+2, -y+2, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The structure of the title compound, (I), was been determined to explore the effect of substituents on the structure of benzanilides (Saeed et al., 2011, 2012). A compound with the same basic skeleton as the title compound has been used in host–guest chemistry to form numerous highly crystalline adducts with a variety of common organic solvents (Toda et al., 1987).

The crystal structure and atom numbering of (I) is shown in Fig. 1. The nitro groups are almost coplanar with the attached benzene ring (dihedral angles between phenyl ring and nitro groups being 1.74 (27) and 6.43 (33)°, respectively). As in the related structure reported recently (Saeed, et al., 2012), the phenyl ring is not coplanar with the amide moiety (dihedral angle between planes C5—C7—N3—O5 and the phenyl ring of 61.90 (5) °). Also analogous with this structure the phenyl ring is twisted out of this plane as indicated by the C4 C5 C7 O5 torsion angle of 112.76 (16) ° (in the previous structure containing two molecules in the symmetric unit these angles were 121.46 (33)° and -119.62 (34)°). The cyclohexyl rings are both in a chair conformation [the puckering parameters (Cremer & Pople, 1975) are Q(2) and φ(2) 0.018 (1) Å and 4.184 (1) ° in C8—C13, 0.025 (1) Å and 305.147 (1) ° in C14—C19). There is a strong intermolecular interaction between the C=O group of the amide moiety and the nitro group of an adjoining molecule (O5···N2 distance of 2.7862 (17) Å) so that these molecules form a dimeric unit. A search of the Cambridge Structural Database (Allen, 2002) for similar intermolecular interactions between carbonyl groups and nitro groups showed that such interactions are not universal. There were over 7000 hits for structures containing both these groups but only 515 contained such interactions with a mean distance of 2.963 Å) and a minimum of 2.73 Å. Thus this interaction in this compound is one of the strongest to be observed. While there are no classic hydrogen bonds found in the crystal, there are weak C—H···O intra- and intermolecular interactions.

Related literature top

For background to the biological activity of N-substituted benzamides and their use in synthesis, see: Priya et al. (2005). For related structures and their use in molecular recognition, see: Toda et al. (1987); Saeed et al. (2011, 2012). For puckering parameters, see Cremer & Pople (1975). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

To a 250 ml round flask fitted with a condenser was added dicyclohexyl amine (0.01 mol), dichloromethane (15 ml) and triethylamine(0.5 ml) with magnetic stirring. 3,5-dinitrobenzoyl chloride (0.01 mol) was added gradually. The reaction mixture was stirred at room temperature for 1 h and then refluxed for 2 h. The product precipitated as a colorless powder, which was washed three times with water and dichloromethane. Recrystallization from ethyl acetate produced the crystals of the title compound.

Refinement top

The H atoms were placed in their calculated positions with C—H 0.95 and 0.99 Å and refined using the riding model with isotropic displacement parameters set to 1.2 times Ueq of the parent atoms.

Structure description top

The structure of the title compound, (I), was been determined to explore the effect of substituents on the structure of benzanilides (Saeed et al., 2011, 2012). A compound with the same basic skeleton as the title compound has been used in host–guest chemistry to form numerous highly crystalline adducts with a variety of common organic solvents (Toda et al., 1987).

The crystal structure and atom numbering of (I) is shown in Fig. 1. The nitro groups are almost coplanar with the attached benzene ring (dihedral angles between phenyl ring and nitro groups being 1.74 (27) and 6.43 (33)°, respectively). As in the related structure reported recently (Saeed, et al., 2012), the phenyl ring is not coplanar with the amide moiety (dihedral angle between planes C5—C7—N3—O5 and the phenyl ring of 61.90 (5) °). Also analogous with this structure the phenyl ring is twisted out of this plane as indicated by the C4 C5 C7 O5 torsion angle of 112.76 (16) ° (in the previous structure containing two molecules in the symmetric unit these angles were 121.46 (33)° and -119.62 (34)°). The cyclohexyl rings are both in a chair conformation [the puckering parameters (Cremer & Pople, 1975) are Q(2) and φ(2) 0.018 (1) Å and 4.184 (1) ° in C8—C13, 0.025 (1) Å and 305.147 (1) ° in C14—C19). There is a strong intermolecular interaction between the C=O group of the amide moiety and the nitro group of an adjoining molecule (O5···N2 distance of 2.7862 (17) Å) so that these molecules form a dimeric unit. A search of the Cambridge Structural Database (Allen, 2002) for similar intermolecular interactions between carbonyl groups and nitro groups showed that such interactions are not universal. There were over 7000 hits for structures containing both these groups but only 515 contained such interactions with a mean distance of 2.963 Å) and a minimum of 2.73 Å. Thus this interaction in this compound is one of the strongest to be observed. While there are no classic hydrogen bonds found in the crystal, there are weak C—H···O intra- and intermolecular interactions.

For background to the biological activity of N-substituted benzamides and their use in synthesis, see: Priya et al. (2005). For related structures and their use in molecular recognition, see: Toda et al. (1987); Saeed et al. (2011, 2012). For puckering parameters, see Cremer & Pople (1975). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with 30% probability displacement ellipsoids. The diagram also shows the association of the molecules into dimeric units through C=O···nitro interamolecular interactions [symmetry code: (A) = 1 - x, 1 - y, 1 - z].
N,N-Dicyclohexyl-3,5-dinitrobenzamide top
Crystal data top
C19H25N3O5Z = 2
Mr = 375.42F(000) = 400
Triclinic, P1Dx = 1.305 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 6.8187 (7) ÅCell parameters from 2277 reflections
b = 9.7877 (12) Åθ = 3.0–75.2°
c = 14.7423 (12) ŵ = 0.79 mm1
α = 92.512 (8)°T = 123 K
β = 98.898 (8)°`needle-plate`, colorless
γ = 99.704 (9)°0.51 × 0.17 × 0.04 mm
V = 955.67 (17) Å3
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
3811 independent reflections
Radiation source: Enhance (Cu) X-ray Source3144 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 10.5081 pixels mm-1θmax = 75.4°, θmin = 3.0°
ω scansh = 87
Absorption correction: multi-scan
[CrysAlis RED (Agilent, 2011), based on expressions derived from Clark & Reid (1995)]
k = 1012
Tmin = 0.690, Tmax = 0.969l = 1815
6078 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0695P)2 + 0.0476P]
where P = (Fo2 + 2Fc2)/3
3811 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C19H25N3O5γ = 99.704 (9)°
Mr = 375.42V = 955.67 (17) Å3
Triclinic, P1Z = 2
a = 6.8187 (7) ÅCu Kα radiation
b = 9.7877 (12) ŵ = 0.79 mm1
c = 14.7423 (12) ÅT = 123 K
α = 92.512 (8)°0.51 × 0.17 × 0.04 mm
β = 98.898 (8)°
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
3811 independent reflections
Absorption correction: multi-scan
[CrysAlis RED (Agilent, 2011), based on expressions derived from Clark & Reid (1995)]
3144 reflections with I > 2σ(I)
Tmin = 0.690, Tmax = 0.969Rint = 0.032
6078 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
3811 reflectionsΔρmin = 0.23 e Å3
244 parameters
Special details top

Experimental. Absorption correction: CrysAlis RED, (Agilent, 2011) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. (Clark & Reid, 1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.23442 (17)0.94242 (13)0.55223 (8)0.0308 (3)
O20.4677 (2)0.98065 (14)0.67312 (8)0.0362 (3)
O31.03595 (18)0.75165 (13)0.69435 (7)0.0325 (3)
O41.08761 (16)0.63134 (13)0.57626 (8)0.0303 (3)
O50.29440 (16)0.51429 (12)0.34083 (7)0.0274 (3)
N10.3957 (2)0.92478 (14)0.59620 (9)0.0259 (3)
N20.98833 (19)0.70201 (14)0.61477 (8)0.0252 (3)
N30.54384 (18)0.61099 (13)0.26430 (8)0.0220 (3)
C10.5115 (2)0.83290 (15)0.55400 (10)0.0234 (3)
C20.6958 (2)0.81731 (16)0.60284 (9)0.0234 (3)
H2A0.74780.86460.66150.028*
C30.7997 (2)0.72959 (16)0.56194 (10)0.0226 (3)
C40.7312 (2)0.66292 (16)0.47469 (9)0.0228 (3)
H4A0.80900.60510.44790.027*
C50.5460 (2)0.68296 (16)0.42755 (9)0.0227 (3)
C60.4320 (2)0.76562 (16)0.46813 (10)0.0233 (3)
H6A0.30250.77590.43770.028*
C70.4509 (2)0.59667 (16)0.33856 (9)0.0222 (3)
C80.4805 (2)0.50539 (16)0.18488 (9)0.0230 (3)
H8A0.57240.53160.13940.028*
C90.5117 (2)0.36144 (17)0.21379 (10)0.0291 (3)
H9A0.42700.33280.26090.035*
H9B0.65450.36540.24150.035*
C100.4561 (3)0.25421 (18)0.13107 (11)0.0329 (4)
H10A0.54980.27760.08680.040*
H10B0.47010.16100.15190.040*
C110.2403 (3)0.25131 (18)0.08358 (11)0.0338 (4)
H11A0.20870.18350.02930.041*
H11B0.14580.22110.12640.041*
C120.2126 (3)0.39444 (18)0.05318 (10)0.0325 (4)
H12A0.07090.39070.02370.039*
H12B0.30040.42160.00700.039*
C130.2648 (2)0.50401 (17)0.13510 (10)0.0270 (3)
H13A0.25350.59690.11300.032*
H13B0.16830.48250.17840.032*
C140.7089 (2)0.72822 (15)0.25786 (9)0.0216 (3)
H14A0.72520.79210.31440.026*
C150.6558 (2)0.81222 (16)0.17448 (9)0.0236 (3)
H15A0.63570.75160.11710.028*
H15B0.52830.84610.17840.028*
C160.8253 (2)0.93638 (17)0.17186 (10)0.0275 (3)
H16A0.79320.98490.11540.033*
H16B0.83341.00270.22550.033*
C171.0291 (2)0.89085 (18)0.17335 (11)0.0294 (3)
H17A1.13590.97390.17640.035*
H17B1.02690.83400.11590.035*
C181.0770 (2)0.80630 (17)0.25612 (10)0.0276 (3)
H18A1.09160.86600.31360.033*
H18C1.20670.77450.25420.033*
C190.9104 (2)0.68002 (16)0.25653 (10)0.0251 (3)
H19C0.90080.61700.20100.030*
H19A0.94320.62830.31140.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0303 (6)0.0312 (6)0.0329 (6)0.0102 (5)0.0063 (4)0.0034 (5)
O20.0422 (7)0.0403 (7)0.0264 (5)0.0109 (5)0.0059 (5)0.0091 (5)
O30.0332 (6)0.0371 (6)0.0230 (5)0.0058 (5)0.0054 (4)0.0046 (5)
O40.0261 (5)0.0339 (6)0.0309 (5)0.0080 (5)0.0028 (4)0.0002 (5)
O50.0273 (5)0.0304 (6)0.0222 (5)0.0011 (4)0.0046 (4)0.0000 (4)
N10.0297 (6)0.0251 (6)0.0239 (6)0.0046 (5)0.0075 (5)0.0031 (5)
N20.0251 (6)0.0250 (6)0.0236 (6)0.0010 (5)0.0018 (5)0.0018 (5)
N30.0231 (6)0.0238 (6)0.0178 (5)0.0020 (5)0.0022 (4)0.0009 (4)
C10.0281 (7)0.0222 (7)0.0208 (6)0.0032 (6)0.0077 (5)0.0030 (5)
C20.0281 (7)0.0239 (7)0.0171 (6)0.0007 (5)0.0048 (5)0.0006 (5)
C30.0223 (6)0.0241 (7)0.0204 (6)0.0009 (5)0.0031 (5)0.0031 (5)
C40.0248 (7)0.0243 (7)0.0195 (6)0.0030 (5)0.0065 (5)0.0006 (5)
C50.0266 (7)0.0248 (7)0.0158 (6)0.0009 (5)0.0045 (5)0.0024 (5)
C60.0241 (6)0.0264 (7)0.0192 (6)0.0030 (5)0.0033 (5)0.0051 (5)
C70.0242 (6)0.0230 (7)0.0194 (6)0.0055 (5)0.0020 (5)0.0017 (5)
C80.0272 (7)0.0239 (7)0.0167 (6)0.0021 (5)0.0035 (5)0.0013 (5)
C90.0344 (8)0.0282 (8)0.0234 (7)0.0087 (6)0.0021 (6)0.0001 (6)
C100.0441 (9)0.0260 (8)0.0292 (8)0.0103 (7)0.0044 (7)0.0024 (6)
C110.0447 (9)0.0268 (8)0.0249 (7)0.0002 (7)0.0009 (7)0.0044 (6)
C120.0403 (9)0.0312 (8)0.0213 (7)0.0040 (7)0.0050 (6)0.0033 (6)
C130.0308 (7)0.0273 (8)0.0213 (7)0.0073 (6)0.0017 (6)0.0021 (6)
C140.0242 (6)0.0230 (7)0.0169 (6)0.0026 (5)0.0032 (5)0.0006 (5)
C150.0267 (7)0.0250 (7)0.0191 (6)0.0053 (5)0.0027 (5)0.0021 (5)
C160.0323 (7)0.0251 (7)0.0245 (7)0.0027 (6)0.0045 (6)0.0043 (6)
C170.0288 (7)0.0309 (8)0.0271 (7)0.0007 (6)0.0065 (6)0.0038 (6)
C180.0228 (7)0.0316 (8)0.0270 (7)0.0023 (6)0.0025 (5)0.0032 (6)
C190.0235 (7)0.0275 (7)0.0244 (7)0.0045 (6)0.0042 (5)0.0034 (5)
Geometric parameters (Å, º) top
O1—N11.2300 (18)C10—H10A0.9900
O2—N11.2284 (18)C10—H10B0.9900
O3—N21.2235 (17)C11—C121.522 (2)
O4—N21.2253 (18)C11—H11A0.9900
O5—C71.2299 (19)C11—H11B0.9900
N1—C11.470 (2)C12—C131.536 (2)
N2—C31.4696 (19)C12—H12A0.9900
N3—C71.3486 (19)C12—H12B0.9900
N3—C141.4831 (18)C13—H13A0.9900
N3—C81.4874 (17)C13—H13B0.9900
C1—C21.384 (2)C14—C191.528 (2)
C1—C61.387 (2)C14—C151.5392 (19)
C2—C31.376 (2)C14—H14A1.0000
C2—H2A0.9500C15—C161.536 (2)
C3—C41.391 (2)C15—H15A0.9900
C4—C51.393 (2)C15—H15B0.9900
C4—H4A0.9500C16—C171.526 (2)
C5—C61.389 (2)C16—H16A0.9900
C5—C71.5199 (19)C16—H16B0.9900
C6—H6A0.9500C17—C181.529 (2)
C8—C91.529 (2)C17—H17A0.9900
C8—C131.536 (2)C17—H17B0.9900
C8—H8A1.0000C18—C191.532 (2)
C9—C101.531 (2)C18—H18A0.9900
C9—H9A0.9900C18—H18C0.9900
C9—H9B0.9900C19—H19C0.9900
C10—C111.523 (2)C19—H19A0.9900
O2—N1—O1123.96 (14)C12—C11—H11B109.5
O2—N1—C1117.72 (13)C10—C11—H11B109.5
O1—N1—C1118.31 (13)H11A—C11—H11B108.1
O3—N2—O4124.38 (13)C11—C12—C13111.33 (13)
O3—N2—C3117.65 (13)C11—C12—H12A109.4
O4—N2—C3117.97 (12)C13—C12—H12A109.4
C7—N3—C14122.84 (12)C11—C12—H12B109.4
C7—N3—C8119.34 (12)C13—C12—H12B109.4
C14—N3—C8117.82 (11)H12A—C12—H12B108.0
C2—C1—C6123.08 (15)C8—C13—C12110.00 (13)
C2—C1—N1117.81 (13)C8—C13—H13A109.7
C6—C1—N1119.12 (14)C12—C13—H13A109.7
C3—C2—C1116.45 (13)C8—C13—H13B109.7
C3—C2—H2A121.8C12—C13—H13B109.7
C1—C2—H2A121.8H13A—C13—H13B108.2
C2—C3—C4123.15 (14)N3—C14—C19112.10 (12)
C2—C3—N2117.98 (13)N3—C14—C15111.61 (11)
C4—C3—N2118.84 (14)C19—C14—C15111.05 (12)
C3—C4—C5118.39 (14)N3—C14—H14A107.3
C3—C4—H4A120.8C19—C14—H14A107.3
C5—C4—H4A120.8C15—C14—H14A107.3
C6—C5—C4120.26 (13)C16—C15—C14110.47 (12)
C6—C5—C7118.74 (13)C16—C15—H15A109.6
C4—C5—C7120.25 (14)C14—C15—H15A109.6
C1—C6—C5118.57 (14)C16—C15—H15B109.6
C1—C6—H6A120.7C14—C15—H15B109.6
C5—C6—H6A120.7H15A—C15—H15B108.1
O5—C7—N3124.41 (13)C17—C16—C15111.74 (13)
O5—C7—C5116.40 (12)C17—C16—H16A109.3
N3—C7—C5119.15 (12)C15—C16—H16A109.3
N3—C8—C9110.96 (11)C17—C16—H16B109.3
N3—C8—C13113.26 (12)C15—C16—H16B109.3
C9—C8—C13111.99 (13)H16A—C16—H16B107.9
N3—C8—H8A106.7C16—C17—C18110.80 (13)
C9—C8—H8A106.7C16—C17—H17A109.5
C13—C8—H8A106.7C18—C17—H17A109.5
C8—C9—C10110.91 (12)C16—C17—H17B109.5
C8—C9—H9A109.5C18—C17—H17B109.5
C10—C9—H9A109.5H17A—C17—H17B108.1
C8—C9—H9B109.5C17—C18—C19111.27 (12)
C10—C9—H9B109.5C17—C18—H18A109.4
H9A—C9—H9B108.0C19—C18—H18A109.4
C11—C10—C9110.78 (14)C17—C18—H18C109.4
C11—C10—H10A109.5C19—C18—H18C109.4
C9—C10—H10A109.5H18A—C18—H18C108.0
C11—C10—H10B109.5C14—C19—C18109.64 (13)
C9—C10—H10B109.5C14—C19—H19C109.7
H10A—C10—H10B108.1C18—C19—H19C109.7
C12—C11—C10110.67 (14)C14—C19—H19A109.7
C12—C11—H11A109.5C18—C19—H19A109.7
C10—C11—H11A109.5H19C—C19—H19A108.2
O2—N1—C1—C21.2 (2)C6—C5—C7—N3124.80 (15)
O1—N1—C1—C2177.97 (13)C4—C5—C7—N365.11 (19)
O2—N1—C1—C6178.46 (14)C7—N3—C8—C960.72 (17)
O1—N1—C1—C62.4 (2)C14—N3—C8—C9119.11 (14)
C6—C1—C2—C30.3 (2)C7—N3—C8—C1366.24 (17)
N1—C1—C2—C3179.38 (12)C14—N3—C8—C13113.94 (14)
C1—C2—C3—C42.5 (2)N3—C8—C9—C10177.25 (12)
C1—C2—C3—N2175.35 (13)C13—C8—C9—C1055.10 (17)
O3—N2—C3—C24.5 (2)C8—C9—C10—C1156.00 (18)
O4—N2—C3—C2175.30 (13)C9—C10—C11—C1257.49 (18)
O3—N2—C3—C4173.47 (13)C10—C11—C12—C1357.87 (19)
O4—N2—C3—C46.7 (2)N3—C8—C13—C12178.94 (12)
C2—C3—C4—C51.8 (2)C9—C8—C13—C1254.65 (17)
N2—C3—C4—C5176.03 (13)C11—C12—C13—C855.91 (18)
C3—C4—C5—C61.2 (2)C7—N3—C14—C19113.34 (15)
C3—C4—C5—C7171.14 (13)C8—N3—C14—C1966.48 (16)
C2—C1—C6—C52.6 (2)C7—N3—C14—C15121.37 (14)
N1—C1—C6—C5177.76 (13)C8—N3—C14—C1558.81 (16)
C4—C5—C6—C13.3 (2)N3—C14—C15—C16177.61 (12)
C7—C5—C6—C1173.39 (13)C19—C14—C15—C1656.51 (16)
C14—N3—C7—O5168.10 (14)C14—C15—C16—C1754.76 (16)
C8—N3—C7—O512.1 (2)C15—C16—C17—C1854.88 (17)
C14—N3—C7—C514.2 (2)C16—C17—C18—C1956.63 (18)
C8—N3—C7—C5165.61 (13)N3—C14—C19—C18176.37 (11)
C6—C5—C7—O557.32 (19)C15—C14—C19—C1858.03 (15)
C4—C5—C7—O5112.77 (16)C17—C18—C19—C1458.10 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O50.992.463.050 (2)118
C13—H13B···O50.992.403.0043 (18)119
C4—H4A···O4i0.952.563.418 (2)151
C16—H16B···O3ii0.992.583.468 (2)149
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC19H25N3O5
Mr375.42
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)6.8187 (7), 9.7877 (12), 14.7423 (12)
α, β, γ (°)92.512 (8), 98.898 (8), 99.704 (9)
V3)955.67 (17)
Z2
Radiation typeCu Kα
µ (mm1)0.79
Crystal size (mm)0.51 × 0.17 × 0.04
Data collection
DiffractometerAgilent Xcalibur Ruby Gemini
Absorption correctionMulti-scan
[CrysAlis RED (Agilent, 2011), based on expressions derived from Clark & Reid (1995)]
Tmin, Tmax0.690, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
6078, 3811, 3144
Rint0.032
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.132, 1.03
No. of reflections3811
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.23

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O4i0.952.563.418 (2)150.8
C16—H16B···O3ii0.992.583.468 (2)148.8
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+2, z+1.
 

Acknowledgements

RJB acknowledges the NSF MRI program (grant No. CHE– 0619278) for funds to purchase an X-ray diffractometer.

References

First citationAgilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationPriya, B. S., Swamy, B. S. N. & Rangapa, K. S. (2005). Bioorg. Med. Chem. 13, 2623–2628.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSaeed, S., Jasinski, J. P. & Butcher, R. J. (2011). Acta Cryst. E67, o279.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, S., Rashid, N., Butcher, R. J., Öztürk Yildirim, S. & Hussain, R. (2012). Acta Cryst. E68, o2762.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToda, F., Kai, A., Tagami, Y. & Mak, T. C. W. (1987). Chem. Lett. pp. 1393–1396.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds