organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[2,6-Bis(1-methyl­eth­yl)phen­yl]pyridine-4-carboxamide

aDépartement de Chimie, Université de Montréal, Pavillon J.-A. Bombardier, 5155 Decelles Avenue, Montréal, Québec, Canada H3T 2B1
*Correspondence e-mail: baptiste.laramee-milette@umontreal.ca

(Received 27 August 2012; accepted 10 September 2012; online 22 September 2012)

In the title compound, C18H22N2O, the dihedral angle between the benzene ring and the pyridine ring is 80.0 (1)°. In the crystal, N—H⋯O hydrogen bonds connect the mol­ecules into chains along the b axis. The packing also features C—H⋯O and C—H⋯N hydrogen bonds and C—H⋯π interactions, one directed to the benzene ring and the other to the center of the pyridine ring.

Related literature

For general review and synthetic details about amide bond generation and application, see: Pattabiraman & Bode (2011[Pattabiraman, V. R. & Bode, J. W. (2011). Nature (London), 480, 471-479.]). The title compound has not been reported in coordination chemistry, but complexes of similar ligands are known. For the use of such ligands in coordination chemistry, see: Baytekin et al. (2009[Baytekin, T. H., Baytekin, B., Schulz, A., Springer, A., Gross, T., Unger, W., Artamonova, M., Schlecht, S., Lentz, D. & Schalley, A. C. (2009). Chem. Mater. 21, 2980-2992.]); Hasegawa et al. (2007[Hasegawa, S., Horike, S., Matsuda, R., Furukawa, S., Mochizuki, K., Kinoshita, Y. & Kitagawa, S. (2007). J. Am. Chem. Soc. 129, 2607-2614.]); Kumar et al. (2004[Kumar, K. D., Jose, A. D., Dastidar, P. & Das, A. (2004). Langmuir, 20, 10413-10418.]). For related benzamide crystal structures, see: Saeed et al. (2010[Saeed, A., Khera, R. A., Siddiq, M. & Simpson, J. (2010). Acta Cryst. E66, o19.]); Zhang & Zhao (2010[Zhang, Y. & Zhao, X.-L. (2010). Acta Cryst. E66, o1898.]); Roopan et al. (2009[Roopan, S. M., Hathwar, V. R., Kumar, A. S., Malathi, N. & Khan, F. N. (2009). Acta Cryst. E65, o571.]); Gowda et al. (2008[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1299.]). For background to the synthetic route, see: Boeré et al. (1998[Boeré, R. T., Klassen, V. & Wolmershäuser, G. (1998). J. Chem. Soc. Dalton. Trans. pp. 4147-4154.]); Krajete et al. (2004[Krajete, A., Steiner, G., Kopacka, H., Ongania, K.-H., Wurst, K., Kristen, M., Preishuber-Pflügl, P. & Bildstein, B. (2004). Eur. J. Inorg. Chem. pp. 1740-1752.]); Schafer et al. (2011[Schafer, L. L., Platel, R. H. & Leitch, D. C. (2011). J. Am. Chem. Soc. 133, 15453-15463.]); Wallace et al. (1990[Wallace, R. G., Barker, J. M. & Wood, M. L. (1990). Synthesis, 12, 1143-1144.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C18H22N2O

  • Mr = 282.38

  • Monoclinic, P 21 /c

  • a = 9.0994 (1) Å

  • b = 9.8039 (1) Å

  • c = 18.1882 (2) Å

  • β = 96.8650 (4)°

  • V = 1610.93 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.57 mm−1

  • T = 150 K

  • 0.20 × 0.12 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.895, Tmax = 0.935

  • 81057 measured reflections

  • 3126 independent reflections

  • 3000 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.097

  • S = 1.04

  • 3126 reflections

  • 198 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the phenyl and pyridyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H20⋯O1i 0.872 (16) 1.970 (16) 2.7985 (11) 158.3 (13)
C3—H3⋯O1i 0.95 2.54 3.4500 (12) 161
C5—H5⋯N2ii 0.95 2.61 3.4983 (13) 155
C6—H6⋯Cg1iii 0.95 2.81 3.6467 150
C15—H15BCg2iv 0.98 2.97 3.7858 143
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+1; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: UdMX (Maris, 2004[Maris, T. (2004). UdMX. Université de Montreal, Montréal.]).

Supporting information


Comment top

In the present work, N-[2,6-bis(1-methylethyl)phenyl]-4-pyridinecarboxamide has been synthesized as a potential ligand in coordination chemistry. The metal complexes of similar precursors are already known to catalyse hydroamination of aminoalkenes (Schafer et al. (2011)).

The molecular structure of the title compound is illustrated in Fig. 1. The bond distances are normal (Allen (2002)). The pyridyl ring is slightly tilted with respect to the central amide group at the angle of 5.7 (1)°, while the substituted phenyl ring is tilted by 79.8 (1)°.

Fig. 2 illustrates conventional intermolecular N—H···O hydrogen bonding, forming chains along b axis.

Related literature top

For general review and synthetic details about amide bond generation and application, see: Pattabiraman & Bode (2011). The title compound has not been reported in coordination chemistry, but complexes of similar ligands are known. For the use of such ligands in coordination chemistry, see: Baytekin et al. (2009); Hasegawa et al. (2007); Kumar et al. (2004). For related benzamide crystal structures, see: Saeed et al. (2010); Zhang & Zhao (2010); Roopan et al. (2009); Gowda et al. (2008). For background to the synthetic route, see: Boeré et al. (1998); Krajete et al. (2004); Schafer et al. (2011); Wallace et al. (1990). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

N-[2,6-bis(1-methylethyl)phenyl]-4-pyridinecarboxamide was prepared by combining and modifying reported methods (Wallace et al. (1990); Boeré et al. (1998); Krajete et al. (2004)). Isonicotinic acid (8.00 g, 65.0 mmol) is refluxed in thionyl chloride (30.0 ml), under nitrogen atmosphere, for 3 h. The excess thionyl chloride is distilled off, to afford the corresponding isonicotinoyl chloride (HCl salt) as pale-yellow solid (not isolated). Dry dichloromethane (20.0 ml), dry pyridine (70.0 ml), and 2,6-diisopropylaniline (12.9 ml, 68.2 mmol) are added at 0°C (ice bath). The reaction mixture is left to heat to room temperature, and is subsequently refluxed for 2 h. The green-yellow suspension obtained is reduced to around 70 ml by evaporation under vacuum, and water (150 ml) is added. The green-yellow precipitate formed is recuperated as solid by filtration. Recrystallization from hot methanol at 4°C affords the desired N-(2,6-diisopropylphenyl)isonicotinamide as X-ray quality off-white needles, air dried (14.9 g, 52.7 mmol). Yield 81% 1H NMR (300 MHz, DMSO-d6) delta p.p.m. 10.05 (s, 1 H, NH) 8.80 (d, J=6 Hz, 2 H, H-py) 7.89 (d, J=6 Hz, 2 H, H-py) 7.28 - 7.37 (m, 1 H, p-H—Ph) 7.22 (d, J=8 Hz, 2 H, m-H—Ph) 3.05 (spt, J=7 Hz, 2 H, –CH-(CH3)2) 1.14 (dd, J=18, 7 Hz, 12 H, –CH-(CH3)2)

Refinement top

The amide H atom was located in a difference Fourier map and refined freely. The other H atoms were positioned geometrically (C—H 0.95 Å) and included in the refinement in the riding model approximation; their temperature displacement parameters were set to 1.2 times the equivalent isotropic temperature factors of the parent site.

Structure description top

In the present work, N-[2,6-bis(1-methylethyl)phenyl]-4-pyridinecarboxamide has been synthesized as a potential ligand in coordination chemistry. The metal complexes of similar precursors are already known to catalyse hydroamination of aminoalkenes (Schafer et al. (2011)).

The molecular structure of the title compound is illustrated in Fig. 1. The bond distances are normal (Allen (2002)). The pyridyl ring is slightly tilted with respect to the central amide group at the angle of 5.7 (1)°, while the substituted phenyl ring is tilted by 79.8 (1)°.

Fig. 2 illustrates conventional intermolecular N—H···O hydrogen bonding, forming chains along b axis.

For general review and synthetic details about amide bond generation and application, see: Pattabiraman & Bode (2011). The title compound has not been reported in coordination chemistry, but complexes of similar ligands are known. For the use of such ligands in coordination chemistry, see: Baytekin et al. (2009); Hasegawa et al. (2007); Kumar et al. (2004). For related benzamide crystal structures, see: Saeed et al. (2010); Zhang & Zhao (2010); Roopan et al. (2009); Gowda et al. (2008). For background to the synthetic route, see: Boeré et al. (1998); Krajete et al. (2004); Schafer et al. (2011); Wallace et al. (1990). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: UdMX (Maris, 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of N-[2,6-bis(1-methylethyl)phenyl]-4-pyridinecarboxamide, with atom labels and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound, showing one layer of molecules connected by N—H···O hydrogen bonds.
N-[2,6-Bis(1-methylethyl)phenyl]pyridine-4-carboxamide top
Crystal data top
C18H22N2OF(000) = 608
Mr = 282.38Dx = 1.164 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 9664 reflections
a = 9.0994 (1) Åθ = 4.9–70.9°
b = 9.8039 (1) ŵ = 0.57 mm1
c = 18.1882 (2) ÅT = 150 K
β = 96.8650 (4)°Block, colourless
V = 1610.93 (3) Å30.20 × 0.12 × 0.12 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3126 independent reflections
Radiation source: fine-focus sealed tube3000 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 71.3°, θmin = 4.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.895, Tmax = 0.935k = 1112
81057 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.483P]
where P = (Fo2 + 2Fc2)/3
3126 reflections(Δ/σ)max < 0.001
198 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C18H22N2OV = 1610.93 (3) Å3
Mr = 282.38Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.0994 (1) ŵ = 0.57 mm1
b = 9.8039 (1) ÅT = 150 K
c = 18.1882 (2) Å0.20 × 0.12 × 0.12 mm
β = 96.8650 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
3126 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3000 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 0.935Rint = 0.025
81057 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.23 e Å3
3126 reflectionsΔρmin = 0.17 e Å3
198 parameters
Special details top

Experimental. X-ray crystallographic data for I were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Platform diffractometer, equipped with a Bruker SMART 4 K Charged-Coupled Device (CCD) Area Detector using the program APEX2 and a Nonius FR591 rotating anode equiped with a Montel 200 optics The crystal-to-detector distance was 5.0 cm, and the data collection was carried out in 512 x 512 pixel mode. The initial unit-cell parameters were determined by a least-squares fit of the angular setting of strong reflections, collected by a 10.0 degree scan in 33 frames over four different parts of the reciprocal space (132 frames total). One complete sphere of data was collected, to better than 0.80 Å resolution.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.56648 (10)0.43259 (10)0.26398 (5)0.0201 (2)
C20.68103 (10)0.39496 (10)0.32743 (5)0.0195 (2)
C30.70323 (11)0.26362 (10)0.35548 (5)0.0225 (2)
H30.64950.18860.33280.027*
C40.80589 (11)0.24503 (11)0.41754 (6)0.0256 (2)
H40.82120.15490.43610.031*
C50.86349 (11)0.47088 (11)0.42454 (6)0.0258 (2)
H50.91880.54400.44830.031*
C60.76529 (11)0.49972 (10)0.36234 (6)0.0236 (2)
H60.75560.59020.34370.028*
C70.35237 (11)0.35774 (10)0.18088 (5)0.0215 (2)
C80.22392 (11)0.40448 (11)0.20807 (6)0.0253 (2)
C90.09606 (12)0.41663 (12)0.15761 (6)0.0308 (3)
H90.00670.44740.17430.037*
C100.09807 (12)0.38435 (12)0.08382 (6)0.0322 (3)
H100.00990.39230.05040.039*
C110.22720 (13)0.34047 (11)0.05807 (6)0.0295 (2)
H110.22700.32050.00690.035*
C120.35778 (12)0.32520 (10)0.10616 (6)0.0247 (2)
C130.49893 (12)0.26737 (11)0.08127 (6)0.0297 (2)
H130.53850.19890.11930.036*
C140.61908 (13)0.37664 (13)0.07854 (6)0.0345 (3)
H14A0.59060.43860.03700.052*
H14B0.71330.33260.07190.052*
H14C0.63010.42840.12500.052*
C150.47312 (15)0.19216 (13)0.00699 (7)0.0406 (3)
H15A0.39500.12390.00890.061*
H15B0.56480.14680.00270.061*
H15C0.44310.25770.03270.061*
C160.21896 (12)0.43226 (12)0.29009 (6)0.0307 (3)
H160.32360.44050.31380.037*
C170.14987 (15)0.31045 (14)0.32582 (7)0.0400 (3)
H17A0.04680.29970.30400.060*
H17B0.15320.32610.37920.060*
H17C0.20540.22750.31720.060*
C180.14025 (15)0.56513 (13)0.30479 (7)0.0404 (3)
H18A0.18740.64100.28150.061*
H18B0.14670.58070.35830.061*
H18C0.03600.55900.28400.061*
N10.48109 (9)0.33206 (9)0.23309 (5)0.02100 (19)
H200.4927 (15)0.2479 (16)0.2480 (8)0.034 (3)*
N20.88469 (10)0.34533 (9)0.45299 (5)0.0264 (2)
O10.55121 (8)0.55210 (7)0.24345 (4)0.02682 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0212 (5)0.0163 (5)0.0221 (5)0.0015 (4)0.0004 (4)0.0016 (4)
C20.0191 (4)0.0190 (5)0.0201 (5)0.0019 (4)0.0011 (4)0.0017 (4)
C30.0256 (5)0.0185 (5)0.0228 (5)0.0001 (4)0.0000 (4)0.0015 (4)
C40.0301 (5)0.0213 (5)0.0244 (5)0.0025 (4)0.0011 (4)0.0021 (4)
C50.0250 (5)0.0240 (5)0.0270 (5)0.0004 (4)0.0032 (4)0.0042 (4)
C60.0240 (5)0.0182 (5)0.0275 (5)0.0010 (4)0.0015 (4)0.0013 (4)
C70.0236 (5)0.0148 (4)0.0243 (5)0.0028 (4)0.0043 (4)0.0012 (4)
C80.0244 (5)0.0222 (5)0.0281 (5)0.0029 (4)0.0020 (4)0.0003 (4)
C90.0232 (5)0.0303 (6)0.0371 (6)0.0009 (4)0.0038 (4)0.0014 (5)
C100.0305 (5)0.0279 (6)0.0341 (6)0.0044 (4)0.0126 (4)0.0042 (4)
C110.0404 (6)0.0224 (5)0.0231 (5)0.0049 (4)0.0067 (4)0.0011 (4)
C120.0323 (5)0.0162 (5)0.0247 (5)0.0032 (4)0.0007 (4)0.0014 (4)
C130.0370 (6)0.0247 (5)0.0277 (5)0.0010 (4)0.0044 (4)0.0005 (4)
C140.0360 (6)0.0361 (6)0.0317 (6)0.0025 (5)0.0051 (5)0.0008 (5)
C150.0519 (7)0.0347 (7)0.0369 (6)0.0063 (6)0.0126 (5)0.0088 (5)
C160.0240 (5)0.0382 (6)0.0294 (6)0.0007 (4)0.0007 (4)0.0035 (5)
C170.0483 (7)0.0395 (7)0.0326 (6)0.0046 (6)0.0063 (5)0.0054 (5)
C180.0472 (7)0.0360 (7)0.0402 (7)0.0020 (5)0.0144 (5)0.0038 (5)
N10.0231 (4)0.0146 (4)0.0236 (4)0.0002 (3)0.0040 (3)0.0009 (3)
N20.0271 (4)0.0266 (5)0.0241 (4)0.0023 (4)0.0030 (3)0.0008 (3)
O10.0308 (4)0.0150 (4)0.0317 (4)0.0002 (3)0.0081 (3)0.0008 (3)
Geometric parameters (Å, º) top
C1—O11.2325 (12)C11—C121.3968 (15)
C1—N11.3366 (13)C11—H110.9500
C1—C21.5057 (13)C12—C131.5215 (15)
C2—C61.3891 (14)C13—C151.5324 (16)
C2—C31.3908 (14)C13—C141.5357 (16)
C3—C41.3885 (14)C13—H131.0000
C3—H30.9500C14—H14A0.9800
C4—N21.3364 (14)C14—H14B0.9800
C4—H40.9500C14—H14C0.9800
C5—N21.3402 (14)C15—H15A0.9800
C5—C61.3845 (14)C15—H15B0.9800
C5—H50.9500C15—H15C0.9800
C6—H60.9500C16—C181.5256 (17)
C7—C81.3996 (15)C16—C171.5302 (17)
C7—C121.4025 (14)C16—H161.0000
C7—N11.4392 (12)C17—H17A0.9800
C8—C91.3981 (14)C17—H17B0.9800
C8—C161.5224 (15)C17—H17C0.9800
C9—C101.3812 (17)C18—H18A0.9800
C9—H90.9500C18—H18B0.9800
C10—C111.3844 (17)C18—H18C0.9800
C10—H100.9500N1—H200.872 (16)
O1—C1—N1122.33 (9)C15—C13—C14109.99 (9)
O1—C1—C2120.52 (9)C12—C13—H13107.0
N1—C1—C2117.12 (8)C15—C13—H13107.0
C6—C2—C3117.96 (9)C14—C13—H13107.0
C6—C2—C1117.57 (9)C13—C14—H14A109.5
C3—C2—C1124.40 (9)C13—C14—H14B109.5
C4—C3—C2118.28 (9)H14A—C14—H14B109.5
C4—C3—H3120.9C13—C14—H14C109.5
C2—C3—H3120.9H14A—C14—H14C109.5
N2—C4—C3124.45 (9)H14B—C14—H14C109.5
N2—C4—H4117.8C13—C15—H15A109.5
C3—C4—H4117.8C13—C15—H15B109.5
N2—C5—C6123.51 (10)H15A—C15—H15B109.5
N2—C5—H5118.2C13—C15—H15C109.5
C6—C5—H5118.2H15A—C15—H15C109.5
C5—C6—C2119.31 (9)H15B—C15—H15C109.5
C5—C6—H6120.3C8—C16—C18113.21 (10)
C2—C6—H6120.3C8—C16—C17109.78 (10)
C8—C7—C12122.98 (9)C18—C16—C17111.51 (10)
C8—C7—N1118.18 (9)C8—C16—H16107.4
C12—C7—N1118.65 (9)C18—C16—H16107.4
C9—C8—C7117.42 (10)C17—C16—H16107.4
C9—C8—C16120.54 (10)C16—C17—H17A109.5
C7—C8—C16121.91 (9)C16—C17—H17B109.5
C10—C9—C8120.78 (10)H17A—C17—H17B109.5
C10—C9—H9119.6C16—C17—H17C109.5
C8—C9—H9119.6H17A—C17—H17C109.5
C9—C10—C11120.68 (10)H17B—C17—H17C109.5
C9—C10—H10119.7C16—C18—H18A109.5
C11—C10—H10119.7C16—C18—H18B109.5
C10—C11—C12120.95 (10)H18A—C18—H18B109.5
C10—C11—H11119.5C16—C18—H18C109.5
C12—C11—H11119.5H18A—C18—H18C109.5
C11—C12—C7117.17 (10)H18B—C18—H18C109.5
C11—C12—C13122.60 (10)C1—N1—C7122.32 (8)
C7—C12—C13120.11 (9)C1—N1—H20121.6 (9)
C12—C13—C15113.31 (10)C7—N1—H20115.5 (9)
C12—C13—C14112.29 (9)C4—N2—C5116.45 (9)
O1—C1—C2—C61.35 (14)C10—C11—C12—C13175.36 (10)
N1—C1—C2—C6176.83 (9)C8—C7—C12—C110.33 (15)
O1—C1—C2—C3178.24 (9)N1—C7—C12—C11174.69 (9)
N1—C1—C2—C30.05 (14)C8—C7—C12—C13176.56 (9)
C6—C2—C3—C41.29 (14)N1—C7—C12—C131.54 (14)
C1—C2—C3—C4175.58 (9)C11—C12—C13—C1516.18 (15)
C2—C3—C4—N20.63 (16)C7—C12—C13—C15159.84 (10)
N2—C5—C6—C21.24 (16)C11—C12—C13—C14109.19 (11)
C3—C2—C6—C52.17 (15)C7—C12—C13—C1474.79 (12)
C1—C2—C6—C5174.92 (9)C9—C8—C16—C1848.05 (14)
C12—C7—C8—C90.93 (15)C7—C8—C16—C18136.15 (11)
N1—C7—C8—C9174.12 (9)C9—C8—C16—C1777.27 (13)
C12—C7—C8—C16176.85 (10)C7—C8—C16—C1798.53 (12)
N1—C7—C8—C161.81 (15)O1—C1—N1—C78.80 (15)
C7—C8—C9—C100.44 (16)C2—C1—N1—C7169.34 (8)
C16—C8—C9—C10176.43 (10)C8—C7—N1—C176.45 (12)
C8—C9—C10—C110.62 (17)C12—C7—N1—C1108.28 (11)
C9—C10—C11—C121.25 (17)C3—C4—N2—C51.59 (16)
C10—C11—C12—C70.76 (15)C6—C5—N2—C40.63 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the phenyl and pyridyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H20···O1i0.872 (16)1.970 (16)2.7985 (11)158.3 (13)
C3—H3···O1i0.952.543.4500 (12)161
C5—H5···N2ii0.952.613.4983 (13)155
C6—H6···Cg1iii0.952.813.6467150
C15—H15B···Cg2iv0.982.973.7858143
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x, y1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC18H22N2O
Mr282.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)9.0994 (1), 9.8039 (1), 18.1882 (2)
β (°) 96.8650 (4)
V3)1610.93 (3)
Z4
Radiation typeCu Kα
µ (mm1)0.57
Crystal size (mm)0.20 × 0.12 × 0.12
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.895, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
81057, 3126, 3000
Rint0.025
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.04
No. of reflections3126
No. of parameters198
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.17

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), UdMX (Maris, 2004).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the phenyl and pyridyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H20···O1i0.872 (16)1.970 (16)2.7985 (11)158.3 (13)
C3—H3···O1i0.952.543.4500 (12)160.9
C5—H5···N2ii0.952.613.4983 (13)155.2
C6—H6···Cg1iii0.952.813.6467150
C15—H15B···Cg2iv0.982.973.7858143
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x, y1/2, z3/2.
 

Acknowledgements

The authors thank the Department of Chemistry of the Université de Montréal for access to the CCD facility. They thank Thierry Maris for useful crystallographic discussions and are grateful to the Université de Montréal for financial assistance.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBaytekin, T. H., Baytekin, B., Schulz, A., Springer, A., Gross, T., Unger, W., Artamonova, M., Schlecht, S., Lentz, D. & Schalley, A. C. (2009). Chem. Mater. 21, 2980–2992.  Web of Science CSD CrossRef CAS Google Scholar
First citationBoeré, R. T., Klassen, V. & Wolmershäuser, G. (1998). J. Chem. Soc. Dalton. Trans. pp. 4147–4154.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1299.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHasegawa, S., Horike, S., Matsuda, R., Furukawa, S., Mochizuki, K., Kinoshita, Y. & Kitagawa, S. (2007). J. Am. Chem. Soc. 129, 2607–2614.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKrajete, A., Steiner, G., Kopacka, H., Ongania, K.-H., Wurst, K., Kristen, M., Preishuber-Pflügl, P. & Bildstein, B. (2004). Eur. J. Inorg. Chem. pp. 1740–1752.  Web of Science CSD CrossRef Google Scholar
First citationKumar, K. D., Jose, A. D., Dastidar, P. & Das, A. (2004). Langmuir, 20, 10413–10418.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMaris, T. (2004). UdMX. Université de Montreal, Montréal.  Google Scholar
First citationPattabiraman, V. R. & Bode, J. W. (2011). Nature (London), 480, 471–479.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRoopan, S. M., Hathwar, V. R., Kumar, A. S., Malathi, N. & Khan, F. N. (2009). Acta Cryst. E65, o571.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, A., Khera, R. A., Siddiq, M. & Simpson, J. (2010). Acta Cryst. E66, o19.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchafer, L. L., Platel, R. H. & Leitch, D. C. (2011). J. Am. Chem. Soc. 133, 15453–15463.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWallace, R. G., Barker, J. M. & Wood, M. L. (1990). Synthesis, 12, 1143–1144.  CrossRef Google Scholar
First citationZhang, Y. & Zhao, X.-L. (2010). Acta Cryst. E66, o1898.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds