metal-organic compounds
Trimethylammonium dichloridotriphenylstannate(IV)
aLaboratoire de Chimie Minerale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bDepartment of Chemistry, Keene State College 229 Main Street Keene, NH 03435-2001, USA
*Correspondence e-mail: tijchimia@yahoo.fr
In the structure of the title monomeric coordination salt, (C3H10N)[Sn(C6H5)3Cl2], the SnIV atom is five coordinate, with the SnC3Cl2 entity in a trans trigonal–bipyramidal arrangement and the chlorine atoms in apical positions. In the crystal, the cations and anions are connected by N—H⋯Cl hydrogen bonds.
Related literature
For medical applications of tin(IV) compounds, see: Evans & Karpel (1985); Gielen (2002); Davies et al. (2008). For literature on organotin(IV) compounds, see: Chandrasekhar & Baskar (2003); Samuel et al. (2002); Nath et al. (2003). For related structures, see: Ng (1999, 1995); Harrison et al. (1978); Nayek et al. (2010); Sow et al. (2012); De Lorentiis et al. (2011).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536812038457/pk2438sup1.cif
contains datablocks I, I-2, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812038457/pk2438Isup2.hkl
Crystals of the title compound, [C3H10N+] [Sn(C6H5)3Cl2-], were obtained by reacting SnPh3Cl with (CH3)3N.HCl in ethanol in a 1/1 ratio. (CH3)3N.HCl (Merck) and SnPh3Cl (Aldrich) were used without further purification. The title compound was obtained by mixing in a 1/1 ratio (CH3)3N.HCl dissolved in methanol and a minimum of water and SnPh3Cl dissolved in methanol. The mixture was stirred for around two hours at room temperature and upon slow solvent evaporation gave prismatic crystals suitable for X-ray diffraction analysis.
All of the H atoms were placed in calculated positions and then refined using a riding model with C—H lengths of 0.95 Å (CH) or 0.98 Å (CH3) and N—H lengths of 0.90 Å (NH). The isotropic displacement parameters for these atoms were set to 1.2 (CH, NH), or 1.5 (CH3) times Ueq of the parent atom.
The interest in synthesis of new organotin(IV) derivatives is related to their applications in different fields (agrochemicals, surface disinfectants and marine antifouling paints) (Evans & Karpel, 1985; Gielen, 2002; Davies et al., 2008) and explains the involvement of many groups in the search for new organotin compounds (Chandrasekhar & Baskar, 2003; Samuel et al., 2002; Nath et al., 2003). Many compounds containing the [SnPh3Cl2]- ion in the
conformation have been reported (Ng, 1995, 1999; Harrison et al., 1978; Nayek et al., 2010; Sow et al., 2012). In our search for new organotin(IV) compounds we have initiated here the study of the interactions between (CH3)3N.HCl and SnPh3Cl, which led to the title compound. In the [SnPh3Cl2]- anion, the tin atom is located on a centre of inversion and is bonded to two Cl atoms and three phenyl groups giving a trigonal bipyramidal geometry with the chloride atoms in trans-positions (Fig. 1). The sum of the angles at atom Sn by the ipso-carbons [128.08 (12)°, 113.70 (12)°, 117.83 (12)°] is 359.61°. The corresponding axial Cl1—Sn—Cl2 angle is 171.62 (3)°, indicating a slight deviation from linearity. The Sn—C bond distances (2.135 (3) Å, 2.142 (3) Å and 2.151 (3) Å) are similar to those reported for bis(triphenylphosphanylidene)iminium dichloridotriphenylstannate(IV) (2.134 (3) Å, 2.1476 (19) Å and 2.1476 (19) Å) (De Lorentiis et al., 2011). The two axial Sn—Cl distances, [Sn—Cl 2.5227 (7) Å and 2.6983 (8) Å], are very close to those reported (Sow et al., 2012). The two types of Sn—Cl binding are due to disruption of NH ··· Cl hydrogen bonding on one of the chlorine atoms. The C–N–C angles of the cation are close to 109°, in agreement with the expected sp3 The cation and the anion are connected by N—H···.Cl hydrogen bonds (Fig. 2).For medical applications of tin(IV) compounds, see: Evans & Karpel (1985); Gielen (2002); Davies et al. (2008). For literature on new organotin(IV) compounds, see: Chandrasekhar & Baskar (2003); Samuel et al. (2002); Nath et al. (2003). For related structures, see: Ng (1999, 1995); Harrison et al. (1978); Nayek et al. (2010); Sow et al. (2012); De Lorentiis et al. (2011).
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).(C3H10N)[Sn(C6H5)Cl2] | F(000) = 968 |
Mr = 481.01 | Dx = 1.486 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.5418 Å |
Hall symbol: -P 2yn | Cell parameters from 6465 reflections |
a = 9.2650 (2) Å | θ = 3.0–71.4° |
b = 15.6882 (4) Å | µ = 11.75 mm−1 |
c = 14.7891 (3) Å | T = 173 K |
β = 90.941 (2)° | Chunk, colorless |
V = 2149.32 (8) Å3 | 0.34 × 0.22 × 0.16 mm |
Z = 4 |
Oxford Diffraction Xcalibur Eos Gemini diffractometer | 4143 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 3739 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
Detector resolution: 16.15 pixels mm-1 | θmax = 71.6°, θmin = 4.1° |
ω scans | h = −11→11 |
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Oxford Diffraction, 2010) | k = 0→19 |
Tmin = 0.328, Tmax = 1.000 | l = 0→17 |
13300 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.083 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0407P)2 + 0.8952P] where P = (Fo2 + 2Fc2)/3 |
4143 reflections | (Δ/σ)max = 0.002 |
229 parameters | Δρmax = 0.53 e Å−3 |
0 restraints | Δρmin = −0.53 e Å−3 |
(C3H10N)[Sn(C6H5)Cl2] | V = 2149.32 (8) Å3 |
Mr = 481.01 | Z = 4 |
Monoclinic, P21/n | Cu Kα radiation |
a = 9.2650 (2) Å | µ = 11.75 mm−1 |
b = 15.6882 (4) Å | T = 173 K |
c = 14.7891 (3) Å | 0.34 × 0.22 × 0.16 mm |
β = 90.941 (2)° |
Oxford Diffraction Xcalibur Eos Gemini diffractometer | 4143 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Oxford Diffraction, 2010) | 3739 reflections with I > 2σ(I) |
Tmin = 0.328, Tmax = 1.000 | Rint = 0.054 |
13300 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.083 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.53 e Å−3 |
4143 reflections | Δρmin = −0.53 e Å−3 |
229 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Sn1 | 0.25216 (2) | 0.438102 (12) | 0.741033 (13) | 0.01599 (8) | |
Cl1 | 0.34357 (9) | 0.51960 (5) | 0.59185 (5) | 0.02688 (18) | |
Cl2 | 0.18198 (9) | 0.34254 (5) | 0.87027 (5) | 0.02576 (18) | |
N1 | 0.3823 (3) | 0.37067 (17) | 0.38252 (19) | 0.0258 (6) | |
H1 | 0.4476 | 0.4132 | 0.3918 | 0.031* | |
C1 | 0.1366 (3) | 0.5479 (2) | 0.7884 (2) | 0.0208 (7) | |
C2 | 0.1101 (4) | 0.6179 (2) | 0.7323 (2) | 0.0288 (8) | |
H2 | 0.1510 | 0.6199 | 0.6738 | 0.035* | |
C3 | 0.0234 (4) | 0.6853 (2) | 0.7619 (3) | 0.0358 (9) | |
H3 | 0.0051 | 0.7324 | 0.7231 | 0.043* | |
C4 | −0.0352 (5) | 0.6838 (2) | 0.8462 (3) | 0.0402 (10) | |
H4 | −0.0947 | 0.7294 | 0.8654 | 0.048* | |
C5 | −0.0079 (5) | 0.6165 (3) | 0.9030 (3) | 0.0481 (12) | |
H5 | −0.0469 | 0.6159 | 0.9620 | 0.058* | |
C6 | 0.0780 (5) | 0.5481 (2) | 0.8737 (3) | 0.0369 (9) | |
H6 | 0.0960 | 0.5014 | 0.9132 | 0.044* | |
C7 | 0.1311 (3) | 0.36151 (19) | 0.64762 (19) | 0.0174 (6) | |
C8 | 0.0298 (4) | 0.4005 (2) | 0.5905 (2) | 0.0276 (7) | |
H8 | 0.0208 | 0.4608 | 0.5908 | 0.033* | |
C9 | −0.0578 (4) | 0.3526 (3) | 0.5332 (2) | 0.0404 (10) | |
H9 | −0.1287 | 0.3799 | 0.4962 | 0.048* | |
C10 | −0.0417 (5) | 0.2640 (3) | 0.5299 (3) | 0.0459 (11) | |
H10 | −0.0998 | 0.2309 | 0.4897 | 0.055* | |
C11 | 0.0582 (5) | 0.2257 (3) | 0.5850 (3) | 0.0434 (10) | |
H11 | 0.0697 | 0.1655 | 0.5827 | 0.052* | |
C12 | 0.1433 (4) | 0.2732 (2) | 0.6441 (2) | 0.0287 (8) | |
H12 | 0.2108 | 0.2451 | 0.6828 | 0.034* | |
C13 | 0.4751 (3) | 0.42610 (19) | 0.7796 (2) | 0.0203 (7) | |
C14 | 0.5815 (4) | 0.4029 (2) | 0.7194 (3) | 0.0314 (8) | |
H14 | 0.5568 | 0.3940 | 0.6575 | 0.038* | |
C15 | 0.7231 (4) | 0.3926 (3) | 0.7486 (3) | 0.0469 (11) | |
H15 | 0.7940 | 0.3747 | 0.7070 | 0.056* | |
C16 | 0.7619 (5) | 0.4079 (3) | 0.8363 (4) | 0.0518 (12) | |
H16 | 0.8597 | 0.4017 | 0.8553 | 0.062* | |
C17 | 0.6597 (5) | 0.4321 (3) | 0.8969 (4) | 0.0592 (14) | |
H17 | 0.6867 | 0.4428 | 0.9582 | 0.071* | |
C18 | 0.5153 (4) | 0.4413 (3) | 0.8688 (3) | 0.0416 (10) | |
H18 | 0.4446 | 0.4581 | 0.9111 | 0.050* | |
C19 | 0.4022 (6) | 0.3087 (3) | 0.4570 (3) | 0.0486 (12) | |
H19A | 0.3296 | 0.2635 | 0.4512 | 0.073* | |
H19B | 0.3913 | 0.3378 | 0.5151 | 0.073* | |
H19C | 0.4989 | 0.2837 | 0.4540 | 0.073* | |
C20 | 0.4135 (6) | 0.3326 (3) | 0.2933 (3) | 0.0504 (11) | |
H20A | 0.5078 | 0.3043 | 0.2960 | 0.076* | |
H20B | 0.4149 | 0.3776 | 0.2473 | 0.076* | |
H20C | 0.3386 | 0.2908 | 0.2775 | 0.076* | |
C21 | 0.2380 (4) | 0.4099 (3) | 0.3837 (3) | 0.0465 (11) | |
H21A | 0.1643 | 0.3652 | 0.3835 | 0.070* | |
H21B | 0.2248 | 0.4460 | 0.3301 | 0.070* | |
H21C | 0.2290 | 0.4448 | 0.4383 | 0.070* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn1 | 0.01316 (13) | 0.01873 (12) | 0.01599 (12) | −0.00260 (7) | −0.00193 (8) | −0.00006 (7) |
Cl1 | 0.0250 (4) | 0.0310 (4) | 0.0247 (4) | −0.0069 (3) | 0.0019 (3) | 0.0076 (3) |
Cl2 | 0.0272 (4) | 0.0299 (4) | 0.0201 (4) | −0.0032 (3) | −0.0008 (3) | 0.0082 (3) |
N1 | 0.0266 (16) | 0.0215 (13) | 0.0292 (15) | −0.0046 (12) | 0.0047 (12) | −0.0017 (11) |
C1 | 0.0162 (16) | 0.0226 (15) | 0.0236 (17) | −0.0008 (12) | −0.0050 (13) | −0.0098 (12) |
C2 | 0.033 (2) | 0.0266 (17) | 0.0270 (18) | 0.0065 (15) | −0.0098 (15) | −0.0050 (14) |
C3 | 0.039 (2) | 0.0297 (19) | 0.038 (2) | 0.0097 (16) | −0.0127 (18) | −0.0103 (15) |
C4 | 0.038 (2) | 0.0291 (19) | 0.054 (3) | 0.0014 (16) | 0.005 (2) | −0.0202 (17) |
C5 | 0.062 (3) | 0.038 (2) | 0.045 (2) | −0.007 (2) | 0.030 (2) | −0.0145 (18) |
C6 | 0.056 (3) | 0.0246 (17) | 0.031 (2) | −0.0022 (17) | 0.0143 (18) | −0.0039 (15) |
C7 | 0.0150 (15) | 0.0246 (15) | 0.0127 (14) | −0.0037 (12) | 0.0012 (11) | −0.0020 (11) |
C8 | 0.0255 (19) | 0.0328 (18) | 0.0243 (17) | −0.0009 (14) | −0.0011 (14) | 0.0038 (14) |
C9 | 0.027 (2) | 0.069 (3) | 0.0252 (19) | −0.0121 (19) | −0.0130 (15) | 0.0065 (18) |
C10 | 0.048 (3) | 0.062 (3) | 0.027 (2) | −0.030 (2) | −0.0060 (18) | −0.0113 (19) |
C11 | 0.062 (3) | 0.034 (2) | 0.035 (2) | −0.018 (2) | −0.001 (2) | −0.0107 (17) |
C12 | 0.033 (2) | 0.0268 (17) | 0.0266 (18) | 0.0011 (15) | −0.0024 (15) | −0.0019 (14) |
C13 | 0.0119 (15) | 0.0214 (15) | 0.0276 (18) | −0.0009 (12) | −0.0016 (13) | 0.0015 (12) |
C14 | 0.0238 (19) | 0.0297 (18) | 0.041 (2) | 0.0000 (14) | 0.0016 (16) | 0.0007 (15) |
C15 | 0.020 (2) | 0.047 (3) | 0.073 (3) | 0.0009 (18) | 0.009 (2) | 0.016 (2) |
C16 | 0.019 (2) | 0.057 (3) | 0.078 (4) | −0.0007 (19) | −0.014 (2) | 0.020 (3) |
C17 | 0.038 (3) | 0.089 (4) | 0.049 (3) | −0.009 (2) | −0.028 (2) | 0.006 (2) |
C18 | 0.024 (2) | 0.065 (3) | 0.036 (2) | −0.0048 (18) | −0.0083 (17) | −0.0027 (18) |
C19 | 0.075 (4) | 0.033 (2) | 0.037 (2) | 0.008 (2) | 0.007 (2) | 0.0056 (17) |
C20 | 0.061 (3) | 0.058 (3) | 0.032 (2) | 0.009 (2) | 0.013 (2) | −0.004 (2) |
C21 | 0.030 (2) | 0.055 (3) | 0.054 (3) | 0.004 (2) | −0.0066 (19) | −0.016 (2) |
Sn1—C7 | 2.135 (3) | C10—C11 | 1.363 (6) |
Sn1—C13 | 2.142 (3) | C10—H10 | 0.9500 |
Sn1—C1 | 2.151 (3) | C11—C12 | 1.385 (5) |
Sn1—Cl2 | 2.5227 (7) | C11—H11 | 0.9500 |
Sn1—Cl1 | 2.6983 (8) | C12—H12 | 0.9500 |
N1—C21 | 1.472 (5) | C13—C18 | 1.385 (5) |
N1—C19 | 1.478 (5) | C13—C14 | 1.388 (5) |
N1—C20 | 1.481 (5) | C14—C15 | 1.384 (5) |
N1—H1 | 0.9099 | C14—H14 | 0.9500 |
C1—C6 | 1.381 (5) | C15—C16 | 1.361 (7) |
C1—C2 | 1.396 (5) | C15—H15 | 0.9500 |
C2—C3 | 1.403 (5) | C16—C17 | 1.369 (7) |
C2—H2 | 0.9500 | C16—H16 | 0.9500 |
C3—C4 | 1.368 (6) | C17—C18 | 1.403 (6) |
C3—H3 | 0.9500 | C17—H17 | 0.9500 |
C4—C5 | 1.370 (6) | C18—H18 | 0.9500 |
C4—H4 | 0.9500 | C19—H19A | 0.9800 |
C5—C6 | 1.409 (5) | C19—H19B | 0.9800 |
C5—H5 | 0.9500 | C19—H19C | 0.9800 |
C6—H6 | 0.9500 | C20—H20A | 0.9800 |
C7—C12 | 1.391 (5) | C20—H20B | 0.9800 |
C7—C8 | 1.394 (4) | C20—H20C | 0.9800 |
C8—C9 | 1.385 (5) | C21—H21A | 0.9800 |
C8—H8 | 0.9500 | C21—H21B | 0.9800 |
C9—C10 | 1.399 (6) | C21—H21C | 0.9800 |
C9—H9 | 0.9500 | ||
C7—Sn1—C13 | 128.08 (12) | C11—C10—H10 | 120.3 |
C7—Sn1—C1 | 113.70 (12) | C9—C10—H10 | 120.3 |
C13—Sn1—C1 | 117.83 (12) | C10—C11—C12 | 120.9 (4) |
C7—Sn1—Cl2 | 90.95 (8) | C10—C11—H11 | 119.6 |
C13—Sn1—Cl2 | 90.30 (9) | C12—C11—H11 | 119.6 |
C1—Sn1—Cl2 | 95.35 (10) | C11—C12—C7 | 120.9 (3) |
C7—Sn1—Cl1 | 84.62 (8) | C11—C12—H12 | 119.5 |
C13—Sn1—Cl1 | 86.86 (9) | C7—C12—H12 | 119.5 |
C1—Sn1—Cl1 | 92.95 (10) | C18—C13—C14 | 118.3 (3) |
Cl2—Sn1—Cl1 | 171.62 (3) | C18—C13—Sn1 | 118.8 (3) |
C21—N1—C19 | 111.6 (3) | C14—C13—Sn1 | 122.9 (3) |
C21—N1—C20 | 111.7 (3) | C15—C14—C13 | 120.6 (4) |
C19—N1—C20 | 112.0 (3) | C15—C14—H14 | 119.7 |
C21—N1—H1 | 107.0 | C13—C14—H14 | 119.7 |
C19—N1—H1 | 107.2 | C16—C15—C14 | 120.7 (4) |
C20—N1—H1 | 107.0 | C16—C15—H15 | 119.6 |
C6—C1—C2 | 118.2 (3) | C14—C15—H15 | 119.6 |
C6—C1—Sn1 | 120.3 (3) | C15—C16—C17 | 119.9 (4) |
C2—C1—Sn1 | 121.3 (3) | C15—C16—H16 | 120.0 |
C1—C2—C3 | 120.2 (4) | C17—C16—H16 | 120.0 |
C1—C2—H2 | 119.9 | C16—C17—C18 | 120.0 (5) |
C3—C2—H2 | 119.9 | C16—C17—H17 | 120.0 |
C4—C3—C2 | 120.7 (4) | C18—C17—H17 | 120.0 |
C4—C3—H3 | 119.7 | C13—C18—C17 | 120.4 (4) |
C2—C3—H3 | 119.7 | C13—C18—H18 | 119.8 |
C3—C4—C5 | 120.0 (4) | C17—C18—H18 | 119.8 |
C3—C4—H4 | 120.0 | N1—C19—H19A | 109.5 |
C5—C4—H4 | 120.0 | N1—C19—H19B | 109.5 |
C4—C5—C6 | 119.8 (4) | H19A—C19—H19B | 109.5 |
C4—C5—H5 | 120.1 | N1—C19—H19C | 109.5 |
C6—C5—H5 | 120.1 | H19A—C19—H19C | 109.5 |
C1—C6—C5 | 121.0 (4) | H19B—C19—H19C | 109.5 |
C1—C6—H6 | 119.5 | N1—C20—H20A | 109.5 |
C5—C6—H6 | 119.5 | N1—C20—H20B | 109.5 |
C12—C7—C8 | 117.9 (3) | H20A—C20—H20B | 109.5 |
C12—C7—Sn1 | 122.9 (2) | N1—C20—H20C | 109.5 |
C8—C7—Sn1 | 119.1 (2) | H20A—C20—H20C | 109.5 |
C9—C8—C7 | 121.0 (3) | H20B—C20—H20C | 109.5 |
C9—C8—H8 | 119.5 | N1—C21—H21A | 109.5 |
C7—C8—H8 | 119.5 | N1—C21—H21B | 109.5 |
C8—C9—C10 | 119.9 (4) | H21A—C21—H21B | 109.5 |
C8—C9—H9 | 120.1 | N1—C21—H21C | 109.5 |
C10—C9—H9 | 120.1 | H21A—C21—H21C | 109.5 |
C11—C10—C9 | 119.3 (3) | H21B—C21—H21C | 109.5 |
C7—Sn1—C1—C6 | 103.1 (3) | C12—C7—C8—C9 | 1.2 (5) |
C13—Sn1—C1—C6 | −83.4 (3) | Sn1—C7—C8—C9 | −175.6 (3) |
Cl2—Sn1—C1—C6 | 9.7 (3) | C7—C8—C9—C10 | −2.3 (6) |
Cl1—Sn1—C1—C6 | −171.4 (3) | C8—C9—C10—C11 | 1.5 (6) |
C7—Sn1—C1—C2 | −72.4 (3) | C9—C10—C11—C12 | 0.3 (7) |
C13—Sn1—C1—C2 | 101.0 (3) | C10—C11—C12—C7 | −1.3 (6) |
Cl2—Sn1—C1—C2 | −165.8 (3) | C8—C7—C12—C11 | 0.6 (5) |
Cl1—Sn1—C1—C2 | 13.0 (3) | Sn1—C7—C12—C11 | 177.3 (3) |
C6—C1—C2—C3 | −1.5 (5) | C7—Sn1—C13—C18 | −142.3 (3) |
Sn1—C1—C2—C3 | 174.2 (3) | C1—Sn1—C13—C18 | 45.3 (3) |
C1—C2—C3—C4 | 0.7 (6) | Cl2—Sn1—C13—C18 | −50.9 (3) |
C2—C3—C4—C5 | 0.7 (6) | Cl1—Sn1—C13—C18 | 137.0 (3) |
C3—C4—C5—C6 | −1.3 (7) | C7—Sn1—C13—C14 | 37.0 (3) |
C2—C1—C6—C5 | 0.9 (6) | C1—Sn1—C13—C14 | −135.3 (3) |
Sn1—C1—C6—C5 | −174.8 (3) | Cl2—Sn1—C13—C14 | 128.5 (3) |
C4—C5—C6—C1 | 0.4 (7) | Cl1—Sn1—C13—C14 | −43.6 (3) |
C13—Sn1—C7—C12 | 42.1 (3) | C18—C13—C14—C15 | 2.1 (5) |
C1—Sn1—C7—C12 | −145.3 (3) | Sn1—C13—C14—C15 | −177.3 (3) |
Cl2—Sn1—C7—C12 | −49.0 (3) | C13—C14—C15—C16 | −2.3 (6) |
Cl1—Sn1—C7—C12 | 123.8 (3) | C14—C15—C16—C17 | 1.2 (7) |
C13—Sn1—C7—C8 | −141.3 (2) | C15—C16—C17—C18 | 0.0 (8) |
C1—Sn1—C7—C8 | 31.3 (3) | C14—C13—C18—C17 | −0.9 (6) |
Cl2—Sn1—C7—C8 | 127.6 (2) | Sn1—C13—C18—C17 | 178.5 (3) |
Cl1—Sn1—C7—C8 | −59.6 (2) | C16—C17—C18—C13 | −0.1 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl1i | 0.91 | 2.21 | 3.087 (3) | 161 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | (C3H10N)[Sn(C6H5)Cl2] |
Mr | 481.01 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 173 |
a, b, c (Å) | 9.2650 (2), 15.6882 (4), 14.7891 (3) |
β (°) | 90.941 (2) |
V (Å3) | 2149.32 (8) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 11.75 |
Crystal size (mm) | 0.34 × 0.22 × 0.16 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Eos Gemini |
Absorption correction | Multi-scan (CrysAlis PRO and CrysAlis RED; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.328, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13300, 4143, 3739 |
Rint | 0.054 |
(sin θ/λ)max (Å−1) | 0.615 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.083, 1.06 |
No. of reflections | 4143 |
No. of parameters | 229 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.53, −0.53 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl1i | 0.91 | 2.21 | 3.087 (3) | 160.7 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.
References
Chandrasekhar, V. & Baskar, V. (2003). Indian J. Chem. Sect. A Inorg. Bio-inorg. Phys. Theor. Anal. Chem. 42, 2376–2381. Google Scholar
Davies, A. G., Gielen, M., Pannell, K. H. & Tiekink, E. R. T. (2008). Editors. Tin Chemistry. Chichester: Wiley. Google Scholar
De Lorentiis, L., Graiff, C. & Predieri, G. (2011). Acta Cryst. E67, m1356. Web of Science CSD CrossRef IUCr Journals Google Scholar
Evans, C. J. & Karpel, S. (1985). Organotin Compounds in Modern Technology, J. Organomet. Chem. Library, Vol. 16. Amsterdam: Elsevier. Google Scholar
Gielen, M. (2002). Appl. Organomet. Chem. 16, 481–494. Web of Science CrossRef CAS Google Scholar
Harrison, P. G., Molloy, K., Phillips, R. C., Smith, P. J. & Crowe, A. J. (1978). J. Organomet. Chem. 160, 421–434. CSD CrossRef CAS Web of Science Google Scholar
Nath, M., Pokharia, S., Song, X., Eng, G., Gielen, M., Kemmer, M., Biesemans, M., Willem, R. & Vos, D. D. (2003). Appl. Organomet. Chem. 17, 305–314. Web of Science CrossRef CAS Google Scholar
Nayek, H. P., Massa, W. & Dehnen, S. (2010). Inorg. Chem. 49, 144–149. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ng, S. W. (1995). Acta Cryst. C51, 1124–1125. CSD CrossRef Web of Science IUCr Journals Google Scholar
Ng, S. W. (1999). Acta Cryst. C55, 523–531. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Samuel, P. M., De Vos, D., Raveendra, D., Sarma, J. A. R. P. & Roy, S. (2002). Bioorg. Med. Chem. Lett. 12, 61–64. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sow, Y., Diop, L., Kociok-Kohn, G. & Molloy, K. C. (2012). Acta Cryst. E68, m1015–m1016. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The interest in synthesis of new organotin(IV) derivatives is related to their applications in different fields (agrochemicals, surface disinfectants and marine antifouling paints) (Evans & Karpel, 1985; Gielen, 2002; Davies et al., 2008) and explains the involvement of many groups in the search for new organotin compounds (Chandrasekhar & Baskar, 2003; Samuel et al., 2002; Nath et al., 2003). Many compounds containing the [SnPh3Cl2]- ion in the trans conformation have been reported (Ng, 1995, 1999; Harrison et al., 1978; Nayek et al., 2010; Sow et al., 2012). In our search for new organotin(IV) compounds we have initiated here the study of the interactions between (CH3)3N.HCl and SnPh3Cl, which led to the title compound. In the [SnPh3Cl2]- anion, the tin atom is located on a centre of inversion and is bonded to two Cl atoms and three phenyl groups giving a trigonal bipyramidal geometry with the chloride atoms in trans-positions (Fig. 1). The sum of the angles at atom Sn by the ipso-carbons [128.08 (12)°, 113.70 (12)°, 117.83 (12)°] is 359.61°. The corresponding axial Cl1—Sn—Cl2 angle is 171.62 (3)°, indicating a slight deviation from linearity. The Sn—C bond distances (2.135 (3) Å, 2.142 (3) Å and 2.151 (3) Å) are similar to those reported for bis(triphenylphosphanylidene)iminium dichloridotriphenylstannate(IV) (2.134 (3) Å, 2.1476 (19) Å and 2.1476 (19) Å) (De Lorentiis et al., 2011). The two axial Sn—Cl distances, [Sn—Cl 2.5227 (7) Å and 2.6983 (8) Å], are very close to those reported (Sow et al., 2012). The two types of Sn—Cl binding are due to disruption of NH ··· Cl hydrogen bonding on one of the chlorine atoms. The C–N–C angles of the cation are close to 109°, in agreement with the expected sp3 hybridization. The cation and the anion are connected by N—H···.Cl hydrogen bonds (Fig. 2).