metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­methyl­ammonium di­chlorido­tri­phenyl­stannate(IV)

aLaboratoire de Chimie Minerale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bDepartment of Chemistry, Keene State College 229 Main Street Keene, NH 03435-2001, USA
*Correspondence e-mail: tijchimia@yahoo.fr

(Received 30 July 2012; accepted 7 September 2012; online 19 September 2012)

In the structure of the title monomeric coordination salt, (C3H10N)[Sn(C6H5)3Cl2], the SnIV atom is five coordinate, with the SnC3Cl2 entity in a trans trigonal–bipyramidal arrangement and the chlorine atoms in apical positions. In the crystal, the cations and anions are connected by N—H⋯Cl hydrogen bonds.

Related literature

For medical applications of tin(IV) compounds, see: Evans & Karpel (1985[Evans, C. J. & Karpel, S. (1985). Organotin Compounds in Modern Technology, J. Organomet. Chem. Library, Vol. 16. Amsterdam: Elsevier.]); Gielen (2002[Gielen, M. (2002). Appl. Organomet. Chem. 16, 481-494.]); Davies et al. (2008[Davies, A. G., Gielen, M., Pannell, K. H. & Tiekink, E. R. T. (2008). Editors. Tin Chemistry. Chichester: Wiley.]). For literature on organotin(IV) compounds, see: Chandrasekhar & Baskar (2003[Chandrasekhar, V. & Baskar, V. (2003). Indian J. Chem. Sect. A Inorg. Bio-inorg. Phys. Theor. Anal. Chem. 42, 2376-2381.]); Samuel et al. (2002[Samuel, P. M., De Vos, D., Raveendra, D., Sarma, J. A. R. P. & Roy, S. (2002). Bioorg. Med. Chem. Lett. 12, 61-64.]); Nath et al. (2003[Nath, M., Pokharia, S., Song, X., Eng, G., Gielen, M., Kemmer, M., Biesemans, M., Willem, R. & Vos, D. D. (2003). Appl. Organomet. Chem. 17, 305-314.]). For related structures, see: Ng (1999[Ng, S. W. (1999). Acta Cryst. C55, 523-531.], 1995[Ng, S. W. (1995). Acta Cryst. C51, 1124-1125.]); Harrison et al. (1978[Harrison, P. G., Molloy, K., Phillips, R. C., Smith, P. J. & Crowe, A. J. (1978). J. Organomet. Chem. 160, 421-434.]); Nayek et al. (2010[Nayek, H. P., Massa, W. & Dehnen, S. (2010). Inorg. Chem. 49, 144-149.]); Sow et al. (2012[Sow, Y., Diop, L., Kociok-Kohn, G. & Molloy, K. C. (2012). Acta Cryst. E68, m1015-m1016.]); De Lorentiis et al. (2011[De Lorentiis, L., Graiff, C. & Predieri, G. (2011). Acta Cryst. E67, m1356.]).

[Scheme 1]

Experimental

Crystal data
  • (C3H10N)[Sn(C6H5)Cl2]

  • Mr = 481.01

  • Monoclinic, P 21 /n

  • a = 9.2650 (2) Å

  • b = 15.6882 (4) Å

  • c = 14.7891 (3) Å

  • β = 90.941 (2)°

  • V = 2149.32 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 11.75 mm−1

  • T = 173 K

  • 0.34 × 0.22 × 0.16 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.328, Tmax = 1.000

  • 13300 measured reflections

  • 4143 independent reflections

  • 3739 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.083

  • S = 1.06

  • 4143 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1i 0.91 2.21 3.087 (3) 161
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The interest in synthesis of new organotin(IV) derivatives is related to their applications in different fields (agrochemicals, surface disinfectants and marine antifouling paints) (Evans & Karpel, 1985; Gielen, 2002; Davies et al., 2008) and explains the involvement of many groups in the search for new organotin compounds (Chandrasekhar & Baskar, 2003; Samuel et al., 2002; Nath et al., 2003). Many compounds containing the [SnPh3Cl2]- ion in the trans conformation have been reported (Ng, 1995, 1999; Harrison et al., 1978; Nayek et al., 2010; Sow et al., 2012). In our search for new organotin(IV) compounds we have initiated here the study of the interactions between (CH3)3N.HCl and SnPh3Cl, which led to the title compound. In the [SnPh3Cl2]- anion, the tin atom is located on a centre of inversion and is bonded to two Cl atoms and three phenyl groups giving a trigonal bipyramidal geometry with the chloride atoms in trans-positions (Fig. 1). The sum of the angles at atom Sn by the ipso-carbons [128.08 (12)°, 113.70 (12)°, 117.83 (12)°] is 359.61°. The corresponding axial Cl1—Sn—Cl2 angle is 171.62 (3)°, indicating a slight deviation from linearity. The Sn—C bond distances (2.135 (3) Å, 2.142 (3) Å and 2.151 (3) Å) are similar to those reported for bis(triphenylphosphanylidene)iminium dichloridotriphenylstannate(IV) (2.134 (3) Å, 2.1476 (19) Å and 2.1476 (19) Å) (De Lorentiis et al., 2011). The two axial Sn—Cl distances, [Sn—Cl 2.5227 (7) Å and 2.6983 (8) Å], are very close to those reported (Sow et al., 2012). The two types of Sn—Cl binding are due to disruption of NH ··· Cl hydrogen bonding on one of the chlorine atoms. The C–N–C angles of the cation are close to 109°, in agreement with the expected sp3 hybridization. The cation and the anion are connected by N—H···.Cl hydrogen bonds (Fig. 2).

Related literature top

For medical applications of tin(IV) compounds, see: Evans & Karpel (1985); Gielen (2002); Davies et al. (2008). For literature on new organotin(IV) compounds, see: Chandrasekhar & Baskar (2003); Samuel et al. (2002); Nath et al. (2003). For related structures, see: Ng (1999, 1995); Harrison et al. (1978); Nayek et al. (2010); Sow et al. (2012); De Lorentiis et al. (2011).

Experimental top

Crystals of the title compound, [C3H10N+] [Sn(C6H5)3Cl2-], were obtained by reacting SnPh3Cl with (CH3)3N.HCl in ethanol in a 1/1 ratio. (CH3)3N.HCl (Merck) and SnPh3Cl (Aldrich) were used without further purification. The title compound was obtained by mixing in a 1/1 ratio (CH3)3N.HCl dissolved in methanol and a minimum of water and SnPh3Cl dissolved in methanol. The mixture was stirred for around two hours at room temperature and upon slow solvent evaporation gave prismatic crystals suitable for X-ray diffraction analysis.

Refinement top

All of the H atoms were placed in calculated positions and then refined using a riding model with C—H lengths of 0.95 Å (CH) or 0.98 Å (CH3) and N—H lengths of 0.90 Å (NH). The isotropic displacement parameters for these atoms were set to 1.2 (CH, NH), or 1.5 (CH3) times Ueq of the parent atom.

Structure description top

The interest in synthesis of new organotin(IV) derivatives is related to their applications in different fields (agrochemicals, surface disinfectants and marine antifouling paints) (Evans & Karpel, 1985; Gielen, 2002; Davies et al., 2008) and explains the involvement of many groups in the search for new organotin compounds (Chandrasekhar & Baskar, 2003; Samuel et al., 2002; Nath et al., 2003). Many compounds containing the [SnPh3Cl2]- ion in the trans conformation have been reported (Ng, 1995, 1999; Harrison et al., 1978; Nayek et al., 2010; Sow et al., 2012). In our search for new organotin(IV) compounds we have initiated here the study of the interactions between (CH3)3N.HCl and SnPh3Cl, which led to the title compound. In the [SnPh3Cl2]- anion, the tin atom is located on a centre of inversion and is bonded to two Cl atoms and three phenyl groups giving a trigonal bipyramidal geometry with the chloride atoms in trans-positions (Fig. 1). The sum of the angles at atom Sn by the ipso-carbons [128.08 (12)°, 113.70 (12)°, 117.83 (12)°] is 359.61°. The corresponding axial Cl1—Sn—Cl2 angle is 171.62 (3)°, indicating a slight deviation from linearity. The Sn—C bond distances (2.135 (3) Å, 2.142 (3) Å and 2.151 (3) Å) are similar to those reported for bis(triphenylphosphanylidene)iminium dichloridotriphenylstannate(IV) (2.134 (3) Å, 2.1476 (19) Å and 2.1476 (19) Å) (De Lorentiis et al., 2011). The two axial Sn—Cl distances, [Sn—Cl 2.5227 (7) Å and 2.6983 (8) Å], are very close to those reported (Sow et al., 2012). The two types of Sn—Cl binding are due to disruption of NH ··· Cl hydrogen bonding on one of the chlorine atoms. The C–N–C angles of the cation are close to 109°, in agreement with the expected sp3 hybridization. The cation and the anion are connected by N—H···.Cl hydrogen bonds (Fig. 2).

For medical applications of tin(IV) compounds, see: Evans & Karpel (1985); Gielen (2002); Davies et al. (2008). For literature on new organotin(IV) compounds, see: Chandrasekhar & Baskar (2003); Samuel et al. (2002); Nath et al. (2003). For related structures, see: Ng (1999, 1995); Harrison et al. (1978); Nayek et al. (2010); Sow et al. (2012); De Lorentiis et al. (2011).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. : The packing of the structure viewed along the c axis. N—H···Cl hydrogen bonds are shown as dashed lines. The remaining H atoms have been removed for clarity.
Trimethylammonium dichloridotriphenylstannate(IV) top
Crystal data top
(C3H10N)[Sn(C6H5)Cl2]F(000) = 968
Mr = 481.01Dx = 1.486 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ynCell parameters from 6465 reflections
a = 9.2650 (2) Åθ = 3.0–71.4°
b = 15.6882 (4) ŵ = 11.75 mm1
c = 14.7891 (3) ÅT = 173 K
β = 90.941 (2)°Chunk, colorless
V = 2149.32 (8) Å30.34 × 0.22 × 0.16 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
4143 independent reflections
Radiation source: Enhance (Cu) X-ray Source3739 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 16.15 pixels mm-1θmax = 71.6°, θmin = 4.1°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Oxford Diffraction, 2010)
k = 019
Tmin = 0.328, Tmax = 1.000l = 017
13300 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0407P)2 + 0.8952P]
where P = (Fo2 + 2Fc2)/3
4143 reflections(Δ/σ)max = 0.002
229 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
(C3H10N)[Sn(C6H5)Cl2]V = 2149.32 (8) Å3
Mr = 481.01Z = 4
Monoclinic, P21/nCu Kα radiation
a = 9.2650 (2) ŵ = 11.75 mm1
b = 15.6882 (4) ÅT = 173 K
c = 14.7891 (3) Å0.34 × 0.22 × 0.16 mm
β = 90.941 (2)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
4143 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Oxford Diffraction, 2010)
3739 reflections with I > 2σ(I)
Tmin = 0.328, Tmax = 1.000Rint = 0.054
13300 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.06Δρmax = 0.53 e Å3
4143 reflectionsΔρmin = 0.53 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.25216 (2)0.438102 (12)0.741033 (13)0.01599 (8)
Cl10.34357 (9)0.51960 (5)0.59185 (5)0.02688 (18)
Cl20.18198 (9)0.34254 (5)0.87027 (5)0.02576 (18)
N10.3823 (3)0.37067 (17)0.38252 (19)0.0258 (6)
H10.44760.41320.39180.031*
C10.1366 (3)0.5479 (2)0.7884 (2)0.0208 (7)
C20.1101 (4)0.6179 (2)0.7323 (2)0.0288 (8)
H20.15100.61990.67380.035*
C30.0234 (4)0.6853 (2)0.7619 (3)0.0358 (9)
H30.00510.73240.72310.043*
C40.0352 (5)0.6838 (2)0.8462 (3)0.0402 (10)
H40.09470.72940.86540.048*
C50.0079 (5)0.6165 (3)0.9030 (3)0.0481 (12)
H50.04690.61590.96200.058*
C60.0780 (5)0.5481 (2)0.8737 (3)0.0369 (9)
H60.09600.50140.91320.044*
C70.1311 (3)0.36151 (19)0.64762 (19)0.0174 (6)
C80.0298 (4)0.4005 (2)0.5905 (2)0.0276 (7)
H80.02080.46080.59080.033*
C90.0578 (4)0.3526 (3)0.5332 (2)0.0404 (10)
H90.12870.37990.49620.048*
C100.0417 (5)0.2640 (3)0.5299 (3)0.0459 (11)
H100.09980.23090.48970.055*
C110.0582 (5)0.2257 (3)0.5850 (3)0.0434 (10)
H110.06970.16550.58270.052*
C120.1433 (4)0.2732 (2)0.6441 (2)0.0287 (8)
H120.21080.24510.68280.034*
C130.4751 (3)0.42610 (19)0.7796 (2)0.0203 (7)
C140.5815 (4)0.4029 (2)0.7194 (3)0.0314 (8)
H140.55680.39400.65750.038*
C150.7231 (4)0.3926 (3)0.7486 (3)0.0469 (11)
H150.79400.37470.70700.056*
C160.7619 (5)0.4079 (3)0.8363 (4)0.0518 (12)
H160.85970.40170.85530.062*
C170.6597 (5)0.4321 (3)0.8969 (4)0.0592 (14)
H170.68670.44280.95820.071*
C180.5153 (4)0.4413 (3)0.8688 (3)0.0416 (10)
H180.44460.45810.91110.050*
C190.4022 (6)0.3087 (3)0.4570 (3)0.0486 (12)
H19A0.32960.26350.45120.073*
H19B0.39130.33780.51510.073*
H19C0.49890.28370.45400.073*
C200.4135 (6)0.3326 (3)0.2933 (3)0.0504 (11)
H20A0.50780.30430.29600.076*
H20B0.41490.37760.24730.076*
H20C0.33860.29080.27750.076*
C210.2380 (4)0.4099 (3)0.3837 (3)0.0465 (11)
H21A0.16430.36520.38350.070*
H21B0.22480.44600.33010.070*
H21C0.22900.44480.43830.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01316 (13)0.01873 (12)0.01599 (12)0.00260 (7)0.00193 (8)0.00006 (7)
Cl10.0250 (4)0.0310 (4)0.0247 (4)0.0069 (3)0.0019 (3)0.0076 (3)
Cl20.0272 (4)0.0299 (4)0.0201 (4)0.0032 (3)0.0008 (3)0.0082 (3)
N10.0266 (16)0.0215 (13)0.0292 (15)0.0046 (12)0.0047 (12)0.0017 (11)
C10.0162 (16)0.0226 (15)0.0236 (17)0.0008 (12)0.0050 (13)0.0098 (12)
C20.033 (2)0.0266 (17)0.0270 (18)0.0065 (15)0.0098 (15)0.0050 (14)
C30.039 (2)0.0297 (19)0.038 (2)0.0097 (16)0.0127 (18)0.0103 (15)
C40.038 (2)0.0291 (19)0.054 (3)0.0014 (16)0.005 (2)0.0202 (17)
C50.062 (3)0.038 (2)0.045 (2)0.007 (2)0.030 (2)0.0145 (18)
C60.056 (3)0.0246 (17)0.031 (2)0.0022 (17)0.0143 (18)0.0039 (15)
C70.0150 (15)0.0246 (15)0.0127 (14)0.0037 (12)0.0012 (11)0.0020 (11)
C80.0255 (19)0.0328 (18)0.0243 (17)0.0009 (14)0.0011 (14)0.0038 (14)
C90.027 (2)0.069 (3)0.0252 (19)0.0121 (19)0.0130 (15)0.0065 (18)
C100.048 (3)0.062 (3)0.027 (2)0.030 (2)0.0060 (18)0.0113 (19)
C110.062 (3)0.034 (2)0.035 (2)0.018 (2)0.001 (2)0.0107 (17)
C120.033 (2)0.0268 (17)0.0266 (18)0.0011 (15)0.0024 (15)0.0019 (14)
C130.0119 (15)0.0214 (15)0.0276 (18)0.0009 (12)0.0016 (13)0.0015 (12)
C140.0238 (19)0.0297 (18)0.041 (2)0.0000 (14)0.0016 (16)0.0007 (15)
C150.020 (2)0.047 (3)0.073 (3)0.0009 (18)0.009 (2)0.016 (2)
C160.019 (2)0.057 (3)0.078 (4)0.0007 (19)0.014 (2)0.020 (3)
C170.038 (3)0.089 (4)0.049 (3)0.009 (2)0.028 (2)0.006 (2)
C180.024 (2)0.065 (3)0.036 (2)0.0048 (18)0.0083 (17)0.0027 (18)
C190.075 (4)0.033 (2)0.037 (2)0.008 (2)0.007 (2)0.0056 (17)
C200.061 (3)0.058 (3)0.032 (2)0.009 (2)0.013 (2)0.004 (2)
C210.030 (2)0.055 (3)0.054 (3)0.004 (2)0.0066 (19)0.016 (2)
Geometric parameters (Å, º) top
Sn1—C72.135 (3)C10—C111.363 (6)
Sn1—C132.142 (3)C10—H100.9500
Sn1—C12.151 (3)C11—C121.385 (5)
Sn1—Cl22.5227 (7)C11—H110.9500
Sn1—Cl12.6983 (8)C12—H120.9500
N1—C211.472 (5)C13—C181.385 (5)
N1—C191.478 (5)C13—C141.388 (5)
N1—C201.481 (5)C14—C151.384 (5)
N1—H10.9099C14—H140.9500
C1—C61.381 (5)C15—C161.361 (7)
C1—C21.396 (5)C15—H150.9500
C2—C31.403 (5)C16—C171.369 (7)
C2—H20.9500C16—H160.9500
C3—C41.368 (6)C17—C181.403 (6)
C3—H30.9500C17—H170.9500
C4—C51.370 (6)C18—H180.9500
C4—H40.9500C19—H19A0.9800
C5—C61.409 (5)C19—H19B0.9800
C5—H50.9500C19—H19C0.9800
C6—H60.9500C20—H20A0.9800
C7—C121.391 (5)C20—H20B0.9800
C7—C81.394 (4)C20—H20C0.9800
C8—C91.385 (5)C21—H21A0.9800
C8—H80.9500C21—H21B0.9800
C9—C101.399 (6)C21—H21C0.9800
C9—H90.9500
C7—Sn1—C13128.08 (12)C11—C10—H10120.3
C7—Sn1—C1113.70 (12)C9—C10—H10120.3
C13—Sn1—C1117.83 (12)C10—C11—C12120.9 (4)
C7—Sn1—Cl290.95 (8)C10—C11—H11119.6
C13—Sn1—Cl290.30 (9)C12—C11—H11119.6
C1—Sn1—Cl295.35 (10)C11—C12—C7120.9 (3)
C7—Sn1—Cl184.62 (8)C11—C12—H12119.5
C13—Sn1—Cl186.86 (9)C7—C12—H12119.5
C1—Sn1—Cl192.95 (10)C18—C13—C14118.3 (3)
Cl2—Sn1—Cl1171.62 (3)C18—C13—Sn1118.8 (3)
C21—N1—C19111.6 (3)C14—C13—Sn1122.9 (3)
C21—N1—C20111.7 (3)C15—C14—C13120.6 (4)
C19—N1—C20112.0 (3)C15—C14—H14119.7
C21—N1—H1107.0C13—C14—H14119.7
C19—N1—H1107.2C16—C15—C14120.7 (4)
C20—N1—H1107.0C16—C15—H15119.6
C6—C1—C2118.2 (3)C14—C15—H15119.6
C6—C1—Sn1120.3 (3)C15—C16—C17119.9 (4)
C2—C1—Sn1121.3 (3)C15—C16—H16120.0
C1—C2—C3120.2 (4)C17—C16—H16120.0
C1—C2—H2119.9C16—C17—C18120.0 (5)
C3—C2—H2119.9C16—C17—H17120.0
C4—C3—C2120.7 (4)C18—C17—H17120.0
C4—C3—H3119.7C13—C18—C17120.4 (4)
C2—C3—H3119.7C13—C18—H18119.8
C3—C4—C5120.0 (4)C17—C18—H18119.8
C3—C4—H4120.0N1—C19—H19A109.5
C5—C4—H4120.0N1—C19—H19B109.5
C4—C5—C6119.8 (4)H19A—C19—H19B109.5
C4—C5—H5120.1N1—C19—H19C109.5
C6—C5—H5120.1H19A—C19—H19C109.5
C1—C6—C5121.0 (4)H19B—C19—H19C109.5
C1—C6—H6119.5N1—C20—H20A109.5
C5—C6—H6119.5N1—C20—H20B109.5
C12—C7—C8117.9 (3)H20A—C20—H20B109.5
C12—C7—Sn1122.9 (2)N1—C20—H20C109.5
C8—C7—Sn1119.1 (2)H20A—C20—H20C109.5
C9—C8—C7121.0 (3)H20B—C20—H20C109.5
C9—C8—H8119.5N1—C21—H21A109.5
C7—C8—H8119.5N1—C21—H21B109.5
C8—C9—C10119.9 (4)H21A—C21—H21B109.5
C8—C9—H9120.1N1—C21—H21C109.5
C10—C9—H9120.1H21A—C21—H21C109.5
C11—C10—C9119.3 (3)H21B—C21—H21C109.5
C7—Sn1—C1—C6103.1 (3)C12—C7—C8—C91.2 (5)
C13—Sn1—C1—C683.4 (3)Sn1—C7—C8—C9175.6 (3)
Cl2—Sn1—C1—C69.7 (3)C7—C8—C9—C102.3 (6)
Cl1—Sn1—C1—C6171.4 (3)C8—C9—C10—C111.5 (6)
C7—Sn1—C1—C272.4 (3)C9—C10—C11—C120.3 (7)
C13—Sn1—C1—C2101.0 (3)C10—C11—C12—C71.3 (6)
Cl2—Sn1—C1—C2165.8 (3)C8—C7—C12—C110.6 (5)
Cl1—Sn1—C1—C213.0 (3)Sn1—C7—C12—C11177.3 (3)
C6—C1—C2—C31.5 (5)C7—Sn1—C13—C18142.3 (3)
Sn1—C1—C2—C3174.2 (3)C1—Sn1—C13—C1845.3 (3)
C1—C2—C3—C40.7 (6)Cl2—Sn1—C13—C1850.9 (3)
C2—C3—C4—C50.7 (6)Cl1—Sn1—C13—C18137.0 (3)
C3—C4—C5—C61.3 (7)C7—Sn1—C13—C1437.0 (3)
C2—C1—C6—C50.9 (6)C1—Sn1—C13—C14135.3 (3)
Sn1—C1—C6—C5174.8 (3)Cl2—Sn1—C13—C14128.5 (3)
C4—C5—C6—C10.4 (7)Cl1—Sn1—C13—C1443.6 (3)
C13—Sn1—C7—C1242.1 (3)C18—C13—C14—C152.1 (5)
C1—Sn1—C7—C12145.3 (3)Sn1—C13—C14—C15177.3 (3)
Cl2—Sn1—C7—C1249.0 (3)C13—C14—C15—C162.3 (6)
Cl1—Sn1—C7—C12123.8 (3)C14—C15—C16—C171.2 (7)
C13—Sn1—C7—C8141.3 (2)C15—C16—C17—C180.0 (8)
C1—Sn1—C7—C831.3 (3)C14—C13—C18—C170.9 (6)
Cl2—Sn1—C7—C8127.6 (2)Sn1—C13—C18—C17178.5 (3)
Cl1—Sn1—C7—C859.6 (2)C16—C17—C18—C130.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1i0.912.213.087 (3)161
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C3H10N)[Sn(C6H5)Cl2]
Mr481.01
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)9.2650 (2), 15.6882 (4), 14.7891 (3)
β (°) 90.941 (2)
V3)2149.32 (8)
Z4
Radiation typeCu Kα
µ (mm1)11.75
Crystal size (mm)0.34 × 0.22 × 0.16
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
Absorption correctionMulti-scan
(CrysAlis PRO and CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.328, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13300, 4143, 3739
Rint0.054
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.083, 1.06
No. of reflections4143
No. of parameters229
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.53

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1i0.912.213.087 (3)160.7
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationChandrasekhar, V. & Baskar, V. (2003). Indian J. Chem. Sect. A Inorg. Bio-inorg. Phys. Theor. Anal. Chem. 42, 2376–2381.  Google Scholar
First citationDavies, A. G., Gielen, M., Pannell, K. H. & Tiekink, E. R. T. (2008). Editors. Tin Chemistry. Chichester: Wiley.  Google Scholar
First citationDe Lorentiis, L., Graiff, C. & Predieri, G. (2011). Acta Cryst. E67, m1356.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEvans, C. J. & Karpel, S. (1985). Organotin Compounds in Modern Technology, J. Organomet. Chem. Library, Vol. 16. Amsterdam: Elsevier.  Google Scholar
First citationGielen, M. (2002). Appl. Organomet. Chem. 16, 481–494.  Web of Science CrossRef CAS Google Scholar
First citationHarrison, P. G., Molloy, K., Phillips, R. C., Smith, P. J. & Crowe, A. J. (1978). J. Organomet. Chem. 160, 421–434.  CSD CrossRef CAS Web of Science Google Scholar
First citationNath, M., Pokharia, S., Song, X., Eng, G., Gielen, M., Kemmer, M., Biesemans, M., Willem, R. & Vos, D. D. (2003). Appl. Organomet. Chem. 17, 305–314.  Web of Science CrossRef CAS Google Scholar
First citationNayek, H. P., Massa, W. & Dehnen, S. (2010). Inorg. Chem. 49, 144–149.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNg, S. W. (1995). Acta Cryst. C51, 1124–1125.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationNg, S. W. (1999). Acta Cryst. C55, 523–531.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSamuel, P. M., De Vos, D., Raveendra, D., Sarma, J. A. R. P. & Roy, S. (2002). Bioorg. Med. Chem. Lett. 12, 61–64.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSow, Y., Diop, L., Kociok-Kohn, G. & Molloy, K. C. (2012). Acta Cryst. E68, m1015–m1016.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds