organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2,2-Tri­chloro-N-(3-nitro­phen­yl)acetamide

aPhysics Department, Manipal Institute of Technology, Manipal University, Manipal 576 104, India, bSolid State and Sructural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India, and cDepartment of Chemistry, Mangalore University 575 199, Karnataka, India
*Correspondence e-mail: v.upadhyaya@manipal.edu

(Received 27 July 2012; accepted 24 August 2012; online 1 September 2012)

In the title compound, C8H5Cl3N2O3, the dihedral angle between the nitro­phenyl ring and the acetamide group is 5.47 (6)°. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into chains running parallel to the b axis.

Related literature

For background to acetamides, see: Khan et al. (2010[Khan, F. N., Roopan, S. M., Malathi, N., Hathwar, V. R. & Akkurt, M. (2010). Acta Cryst. E66, o2043-o2044.]); Tahir & Shad (2011[Tahir, M. N. & Shad, H. A. (2011). Acta Cryst. E67, o443.]). For a related structure, see: Rosli et al. (2007[Rosli, M. M., Karthikeyan, M. S., Fun, H.-K., Razak, I. A. & Patil, P. S. (2007). Acta Cryst. E63, o67-o68.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C8H5Cl3N2O3

  • Mr = 283.49

  • Orthorhombic, P b c a

  • a = 11.5164 (8) Å

  • b = 10.1427 (5) Å

  • c = 19.9054 (11) Å

  • V = 2325.1 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SAINT-Plus; Bruker, 1998[Bruker. (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.860, Tmax = 0.872

  • 8739 measured reflections

  • 2532 independent reflections

  • 1713 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.144

  • S = 1.07

  • 2532 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.93 2.59 3.345 (4) 138
N2—H2N⋯O1i 0.86 2.15 2.990 (3) 164
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 1998[Bruker. (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker. (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) (Bruker, 1998[Bruker. (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1993[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In view of earlier studies and interest owing to the biological activity of acetamide (Khan et al., 2010; Tahir & Shad, 2011), we report herein the crystal structure of the title compound. In the title compound, the nitro phenyl ring makes a dihedral angle of 5.47 (6)° with acetamide group. Bond lengths and angles are within the normal ranges and are comparable with a related structure (Rosli et al., 2007). In the crystal, an S(6) ring motif (Bernstein et al., 1995) is formed via intramolecular C8—H8A···O1 hydrogen bond (Table 1). The C—H···O and C—H···N hydrogen bonding intractions (Table 1 and Figure 2) result in bifurcated bonds and link the molecules into chains along the b-axis.

Related literature top

For background to acetamides, see: Khan et al. (2010); Tahir & Shad (2011). For a related structure, see: Rosli et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

3-Nitroaniline (1.0 g, 0.0072 mmol) was dissolved in 2M hydrochloric acid (5.0 ml), and added a little crushed ice. A solution of hydrated sodium acetate (5.0 g) in 25 ml of water was introduced, followed by trichloroacetic anhydride (4.5 g, 0.01457 mol). The mixture was shaken in the cold until the smell of trichloroacetic anhydride disappeared. The title compound was collected by filtration and recrystallized from an aqueous ethanol (75%) solution; yield: 1.52 g (75%), m.p. 376.15–378.15 K.

Refinement top

The H atoms were placed at calculated positions in the riding model approximation with N—H = 0.86 and C—H = 0.93 Å, and Uiso(H) = 1.2Ueq(N/C).

Structure description top

In view of earlier studies and interest owing to the biological activity of acetamide (Khan et al., 2010; Tahir & Shad, 2011), we report herein the crystal structure of the title compound. In the title compound, the nitro phenyl ring makes a dihedral angle of 5.47 (6)° with acetamide group. Bond lengths and angles are within the normal ranges and are comparable with a related structure (Rosli et al., 2007). In the crystal, an S(6) ring motif (Bernstein et al., 1995) is formed via intramolecular C8—H8A···O1 hydrogen bond (Table 1). The C—H···O and C—H···N hydrogen bonding intractions (Table 1 and Figure 2) result in bifurcated bonds and link the molecules into chains along the b-axis.

For background to acetamides, see: Khan et al. (2010); Tahir & Shad (2011). For a related structure, see: Rosli et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP (Farrugia, 1997) view of the title compound, showing 50% probability ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. A unit cell packing of the title compound showing intermolecular interactions with dotted lines. H-atoms not involved in hydrogen bonding have been excluded.
2,2,2-Trichloro-N-(3-nitrophenyl)acetamide top
Crystal data top
C8H5Cl3N2O3F(000) = 1136
Mr = 283.49Dx = 1.620 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2532 reflections
a = 11.5164 (8) Åθ = 2.1–27.0°
b = 10.1427 (5) ŵ = 0.78 mm1
c = 19.9054 (11) ÅT = 296 K
V = 2325.1 (2) Å3Block, yellow
Z = 80.20 × 0.18 × 0.18 mm
Data collection top
Bruker SMART APEX CCD detector
diffractometer
2532 independent reflections
Radiation source: Enhance (Mo) X-ray Source1713 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SAINT-Plus; Bruker, 1998)
h = 514
Tmin = 0.860, Tmax = 0.872k = 1012
8739 measured reflectionsl = 1425
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0695P)2 + 0.9222P]
where P = (Fo2 + 2Fc2)/3
2532 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C8H5Cl3N2O3V = 2325.1 (2) Å3
Mr = 283.49Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.5164 (8) ŵ = 0.78 mm1
b = 10.1427 (5) ÅT = 296 K
c = 19.9054 (11) Å0.20 × 0.18 × 0.18 mm
Data collection top
Bruker SMART APEX CCD detector
diffractometer
2532 independent reflections
Absorption correction: multi-scan
(SAINT-Plus; Bruker, 1998)
1713 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 0.872Rint = 0.028
8739 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.07Δρmax = 0.46 e Å3
2532 reflectionsΔρmin = 0.37 e Å3
145 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8599 (3)0.8973 (3)0.29007 (15)0.0522 (8)
C20.7513 (2)0.9294 (2)0.33324 (13)0.0390 (6)
C30.5939 (2)0.8197 (2)0.39617 (13)0.0367 (6)
C40.5685 (3)0.7018 (3)0.42914 (16)0.0520 (7)
H40.61960.63100.42600.062*
C50.4687 (3)0.6897 (3)0.4662 (2)0.0705 (10)
H50.45220.61030.48760.085*
C60.3927 (3)0.7935 (3)0.47228 (18)0.0621 (9)
H60.32430.78520.49680.074*
C70.4209 (2)0.9099 (3)0.44096 (14)0.0429 (6)
C80.5197 (2)0.9263 (2)0.40254 (13)0.0387 (6)
H8A0.53581.00630.38170.046*
Cl10.82157 (11)0.79451 (9)0.22201 (5)0.0843 (4)
Cl30.92258 (9)1.04369 (8)0.25994 (5)0.0801 (4)
Cl20.96357 (8)0.81360 (10)0.34058 (6)0.0828 (3)
N10.3404 (2)1.0223 (3)0.44728 (15)0.0580 (7)
N20.6956 (2)0.82155 (19)0.35614 (12)0.0433 (6)
H2N0.72470.74640.34540.052*
O10.72365 (18)1.04229 (16)0.34446 (11)0.0524 (5)
O20.3623 (2)1.1225 (2)0.41711 (16)0.0858 (8)
O30.2570 (2)1.0101 (3)0.48485 (16)0.0900 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0626 (19)0.0350 (14)0.0589 (18)0.0020 (13)0.0223 (15)0.0010 (12)
C20.0444 (14)0.0307 (12)0.0418 (14)0.0010 (11)0.0055 (13)0.0007 (10)
C30.0383 (14)0.0318 (12)0.0400 (13)0.0053 (10)0.0002 (12)0.0019 (10)
C40.0499 (17)0.0353 (14)0.071 (2)0.0007 (12)0.0134 (16)0.0083 (13)
C50.064 (2)0.0461 (18)0.101 (3)0.0008 (15)0.027 (2)0.0226 (17)
C60.0453 (17)0.0588 (19)0.082 (2)0.0057 (14)0.0193 (17)0.0078 (16)
C70.0368 (14)0.0433 (14)0.0485 (15)0.0011 (11)0.0027 (13)0.0063 (12)
C80.0412 (14)0.0332 (13)0.0416 (14)0.0015 (10)0.0005 (12)0.0017 (10)
Cl10.1194 (9)0.0689 (6)0.0645 (6)0.0233 (5)0.0383 (6)0.0211 (4)
Cl30.0991 (8)0.0439 (4)0.0973 (7)0.0162 (4)0.0522 (6)0.0022 (4)
Cl20.0527 (5)0.0816 (6)0.1141 (8)0.0127 (4)0.0146 (5)0.0168 (6)
N10.0462 (15)0.0550 (16)0.0728 (18)0.0068 (12)0.0062 (14)0.0033 (13)
N20.0482 (13)0.0234 (10)0.0584 (14)0.0020 (9)0.0148 (11)0.0000 (9)
O10.0560 (12)0.0243 (9)0.0767 (14)0.0014 (8)0.0169 (11)0.0020 (8)
O20.0786 (18)0.0568 (15)0.122 (2)0.0245 (13)0.0300 (16)0.0152 (15)
O30.0544 (15)0.0901 (18)0.125 (2)0.0202 (13)0.0345 (16)0.0105 (17)
Geometric parameters (Å, º) top
C1—C21.552 (4)C5—C61.374 (4)
C1—Cl31.756 (3)C5—H50.9300
C1—Cl11.766 (3)C6—C71.374 (4)
C1—Cl21.777 (3)C6—H60.9300
C2—O11.209 (3)C7—C81.380 (4)
C2—N21.348 (3)C7—N11.476 (4)
C3—C81.385 (3)C8—H8A0.9300
C3—C41.395 (3)N1—O21.207 (3)
C3—N21.417 (3)N1—O31.223 (4)
C4—C51.372 (4)N2—H2N0.8600
C4—H40.9300
C2—C1—Cl3110.05 (18)C6—C5—H5119.6
C2—C1—Cl1110.3 (2)C7—C6—C5117.9 (3)
Cl3—C1—Cl1109.88 (16)C7—C6—H6121.1
C2—C1—Cl2109.17 (19)C5—C6—H6121.1
Cl3—C1—Cl2108.75 (18)C6—C7—C8123.4 (3)
Cl1—C1—Cl2108.65 (15)C6—C7—N1118.5 (3)
O1—C2—N2125.5 (2)C8—C7—N1118.1 (2)
O1—C2—C1120.9 (2)C7—C8—C3117.7 (2)
N2—C2—C1113.6 (2)C7—C8—H8A121.1
C8—C3—C4119.8 (2)C3—C8—H8A121.1
C8—C3—N2123.5 (2)O2—N1—O3123.6 (3)
C4—C3—N2116.7 (2)O2—N1—C7118.5 (3)
C5—C4—C3120.4 (3)O3—N1—C7117.8 (3)
C5—C4—H4119.8C2—N2—C3126.5 (2)
C3—C4—H4119.8C2—N2—H2N116.8
C4—C5—C6120.8 (3)C3—N2—H2N116.8
C4—C5—H5119.6
Cl3—C1—C2—O13.2 (4)C6—C7—C8—C30.6 (4)
Cl1—C1—C2—O1124.6 (3)N1—C7—C8—C3179.1 (2)
Cl2—C1—C2—O1116.1 (3)C4—C3—C8—C71.2 (4)
Cl3—C1—C2—N2177.6 (2)N2—C3—C8—C7177.4 (2)
Cl1—C1—C2—N256.2 (3)C6—C7—N1—O2176.5 (3)
Cl2—C1—C2—N263.1 (3)C8—C7—N1—O22.1 (4)
C8—C3—C4—C51.9 (5)C6—C7—N1—O36.1 (4)
N2—C3—C4—C5176.8 (3)C8—C7—N1—O3175.3 (3)
C3—C4—C5—C60.8 (6)O1—C2—N2—C31.3 (5)
C4—C5—C6—C71.0 (6)C1—C2—N2—C3179.5 (3)
C5—C6—C7—C81.8 (5)C8—C3—N2—C218.2 (4)
C5—C6—C7—N1179.7 (3)C4—C3—N2—C2163.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O10.932.322.870 (3)117
C4—H4···O1i0.932.593.345 (4)138
N2—H2N···O1i0.862.152.990 (3)164
Symmetry code: (i) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC8H5Cl3N2O3
Mr283.49
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)11.5164 (8), 10.1427 (5), 19.9054 (11)
V3)2325.1 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.20 × 0.18 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD detector
Absorption correctionMulti-scan
(SAINT-Plus; Bruker, 1998)
Tmin, Tmax0.860, 0.872
No. of measured, independent and
observed [I > 2σ(I)] reflections
8739, 2532, 1713
Rint0.028
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.144, 1.07
No. of reflections2532
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.37

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.9302.5893.345 (4)138
N2—H2N···O1i0.8602.1542.990 (3)164
Symmetry code: (i) x+3/2, y1/2, z.
 

Acknowledgements

ANP is thankful to Manipal Institute of Technology, Manipal University and Mohamed Ziaulla, Bangalore University.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker. (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKhan, F. N., Roopan, S. M., Malathi, N., Hathwar, V. R. & Akkurt, M. (2010). Acta Cryst. E66, o2043–o2044.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRosli, M. M., Karthikeyan, M. S., Fun, H.-K., Razak, I. A. & Patil, P. S. (2007). Acta Cryst. E63, o67–o68.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N. & Shad, H. A. (2011). Acta Cryst. E67, o443.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds