organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3-eth­­oxy­carbonyl­methyl-7-methyl-5-phenyl-5H-thia­zolo[3,2-a]pyrimidine-6-carboxyl­ate

aDepartment of Studies in Chemistry, Bangalore University, Bangalore 560 001, India
*Correspondence e-mail: noorsb@rediffmail.com

(Received 24 August 2012; accepted 3 September 2012; online 8 September 2012)

In the title compound, C20H22N2O4S, the central pyrimidine ring incorporating a chiral C atom is significantly puckered and adopts a slight boat conformation with C atom bearing the phenyl ring and the N atom opposite displaced by 0.367 (2) and 0.107 (2) Å, respectively, from the plane formed by the remaining ring atoms. The benzene ring is positioned axially to the pyrimidine ring, making a dihedral angle of 88.99 (5)°. The thia­zole ring is essentially planar (r.m.s. deviation = 0.0033 Å). In the crystal, pairs of C—H⋯O inter­actions result in centrosymmetric dimers with graph-set motifs R12(7) and R22(8). A weak C—H⋯π contact is also observed.

Related literature

For the therapeutic potential of thia­zolopyrimidine derivatives, see: Zhi et al. (2008[Zhi, H., Lan-mei, C., Lin-lin, Z., Si-jie, L., David, C. C. W., Huang-quan, L. & Chun, H. (2008). ARKIVOC, xiii, 266-277.]). For the synthesis of the title compound, see: Nagarajaiah et al. (2012[Nagarajaiah, H., Khazi, I. M. & Begum, N. S. (2012). J. Chem. Sci. 124, 847-855.]). For a related structure, see: Nagarajaiah & Begum (2011)[Nagarajaiah, H. & Begum, N. S. (2011). Acta Cryst. E67, o3444.]. For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem Int. Ed. Engl. 34, 1555-1573.]). For carbonyl–π interactions, see: Gautrot et al. (2006[Gautrot, J. E., Hodge, P., Cupertino, D. & Helliwell, M. (2006). New J. Chem. 30, 1801-1807.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22N2O4S

  • Mr = 386.46

  • Monoclinic, P 21 /c

  • a = 10.0861 (4) Å

  • b = 7.7954 (3) Å

  • c = 23.4088 (10) Å

  • β = 95.000 (3)°

  • V = 1833.52 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.18 × 0.16 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconcin, USA.]) Tmin = 0.964, Tmax = 0.968

  • 11747 measured reflections

  • 3982 independent reflections

  • 3102 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.118

  • S = 1.00

  • 3982 reflections

  • 247 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the thia­zolopyrimidine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯O2i 0.97 2.47 3.415 (3) 164
C5—H5⋯O2i 0.98 2.59 3.429 (2) 144
C4—H4CCg1ii 0.96 3.03 3.897 (4) 151
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x, -y-{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconcin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconcin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1996)[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]; software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Thiazolo[3,2-a]pyrimidine derivatives may be to generate enzyme inhibitors as novel therapeutical entities for severe neurodegenerative diseases (Zhi et al., 2008). In continuation to our research interests on thiazolo[3,2-a]pyrimidine derivatives (Nagarajaiah & Begum, 2011; Nagarajaiah et al. 2012), we report the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzene ring is positioned axially and lies almost perpendicular to the pyrimidine ring (N1/N2/C5/C6/C7/C9) with dihedral angle of 88.99 (5)°. The pyrimidine ring substituted with C5 chiral carbon atom is significantly puckered and adopts a slight boat conformation with N2 and C5 atoms displaced by 0.107 (2) and 0.367 (2) Å, respectively, from the plane formed by the remaining ring atoms. The thiazole ring (S1/N1/C2/C3/C9) is essentially planar with r.m.s.d 0.0033 Å for the fitted atoms. The ethyl carboxylate at C6 is almost co–planar with the thiazolopyrimidine ring with a dihedral angle of 13.40 (5)°, where as the other ethyl carboxylate group at C17 is inclined at an angle of 80.57 (4)° with the thiazolopyrimidine ring and is positioned almost parallel to the benzene ring. This is because of intramolecular carbonyl—π interaction of aryl ring with the ethyl carboxylate group (Gautrot et al., 2006). The exocyclic ester at C8 adopts a cis orientation with respect to C8C9 double bond. The N1—C3 bond length (1.403 (2) Å) in the thiazole ring is longer than that of a typical CN bond but shorter than a C—N single bond, indicating electron delocalization in the ring. The bond distances and angles in the title compound agree very well with the corresponding bond distances and angles reported in a closely related compound (Nagarajaiah & Begum, 2011).

The crystal structure is stabilized by C—H···O intermolecular interactions involving carbonyl O2 atom, resulting in centrosymmetric dimers; the seven and eight membered rings thus resulting from these interaction can be described as R21(7) and R22(8) motifs in graph–set notations (Bernstein et al., 1995). In addition π–ring interaction of the type C—H···Cg (Cg being the centroid of the thiazolopyrimidine ring) is also observed in the crystal structure (Table 1 and Fig. 2).

Related literature top

For the therapeutical potential of thiazolopyrimidine derivatives, see: Zhi et al. (2008). For the synthesis of the title compound, see: Nagarajaiah et al. (2012). For a related structure, see: Nagarajaiah & Begum (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For carbonyl–π interactions, see: Gautrot et al. (2006).

Experimental top

The synthesis of the title compound has already been reported (Nagarajaiah et al., 2012). The crystals suitable for X-ray crystallographic analysis were grown from a solution of ethylacetate.

Refinement top

The H atoms were placed at calculated positions in the riding model approximation with C—H = 0.93, 0.96, 0.97 and 0.98 Å for aryl, methyl, methylene and methyne H-atoms, respectively, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for other H atoms.

Structure description top

Thiazolo[3,2-a]pyrimidine derivatives may be to generate enzyme inhibitors as novel therapeutical entities for severe neurodegenerative diseases (Zhi et al., 2008). In continuation to our research interests on thiazolo[3,2-a]pyrimidine derivatives (Nagarajaiah & Begum, 2011; Nagarajaiah et al. 2012), we report the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzene ring is positioned axially and lies almost perpendicular to the pyrimidine ring (N1/N2/C5/C6/C7/C9) with dihedral angle of 88.99 (5)°. The pyrimidine ring substituted with C5 chiral carbon atom is significantly puckered and adopts a slight boat conformation with N2 and C5 atoms displaced by 0.107 (2) and 0.367 (2) Å, respectively, from the plane formed by the remaining ring atoms. The thiazole ring (S1/N1/C2/C3/C9) is essentially planar with r.m.s.d 0.0033 Å for the fitted atoms. The ethyl carboxylate at C6 is almost co–planar with the thiazolopyrimidine ring with a dihedral angle of 13.40 (5)°, where as the other ethyl carboxylate group at C17 is inclined at an angle of 80.57 (4)° with the thiazolopyrimidine ring and is positioned almost parallel to the benzene ring. This is because of intramolecular carbonyl—π interaction of aryl ring with the ethyl carboxylate group (Gautrot et al., 2006). The exocyclic ester at C8 adopts a cis orientation with respect to C8C9 double bond. The N1—C3 bond length (1.403 (2) Å) in the thiazole ring is longer than that of a typical CN bond but shorter than a C—N single bond, indicating electron delocalization in the ring. The bond distances and angles in the title compound agree very well with the corresponding bond distances and angles reported in a closely related compound (Nagarajaiah & Begum, 2011).

The crystal structure is stabilized by C—H···O intermolecular interactions involving carbonyl O2 atom, resulting in centrosymmetric dimers; the seven and eight membered rings thus resulting from these interaction can be described as R21(7) and R22(8) motifs in graph–set notations (Bernstein et al., 1995). In addition π–ring interaction of the type C—H···Cg (Cg being the centroid of the thiazolopyrimidine ring) is also observed in the crystal structure (Table 1 and Fig. 2).

For the therapeutical potential of thiazolopyrimidine derivatives, see: Zhi et al. (2008). For the synthesis of the title compound, see: Nagarajaiah et al. (2012). For a related structure, see: Nagarajaiah & Begum (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For carbonyl–π interactions, see: Gautrot et al. (2006).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the intermolecular hydrogen bonding interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.
Ethyl 3-ethoxycarbonylmethyl-7-methyl-5-phenyl-5H- thiazolo[3,2-a]pyrimidine-6-carboxylate top
Crystal data top
C20H22N2O4SF(000) = 816
Mr = 386.46Dx = 1.400 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3102 reflections
a = 10.0861 (4) Åθ = 1.8–27.0°
b = 7.7954 (3) ŵ = 0.21 mm1
c = 23.4088 (10) ÅT = 296 K
β = 95.000 (3)°Block, yellow
V = 1833.52 (13) Å30.18 × 0.16 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEX CCD detector
diffractometer
3982 independent reflections
Radiation source: fine-focus sealed tube3102 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1212
Tmin = 0.964, Tmax = 0.968k = 69
11747 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0675P)2 + 0.5269P]
where P = (Fo2 + 2Fc2)/3
3982 reflections(Δ/σ)max < 0.001
247 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C20H22N2O4SV = 1833.52 (13) Å3
Mr = 386.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0861 (4) ŵ = 0.21 mm1
b = 7.7954 (3) ÅT = 296 K
c = 23.4088 (10) Å0.18 × 0.16 × 0.16 mm
β = 95.000 (3)°
Data collection top
Bruker SMART APEX CCD detector
diffractometer
3982 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3102 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.968Rint = 0.037
11747 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.00Δρmax = 0.50 e Å3
3982 reflectionsΔρmin = 0.29 e Å3
247 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.18621 (4)0.21888 (6)0.308470 (19)0.01968 (14)
O10.64536 (12)0.10949 (17)0.36984 (5)0.0216 (3)
O20.67845 (13)0.00457 (18)0.45941 (6)0.0260 (3)
O30.31568 (12)0.40830 (18)0.48561 (5)0.0220 (3)
O40.12682 (12)0.51826 (17)0.44357 (5)0.0199 (3)
N10.30250 (14)0.0076 (2)0.37900 (6)0.0150 (3)
N20.11268 (14)0.1069 (2)0.32378 (6)0.0183 (3)
C10.00093 (18)0.3634 (3)0.34719 (8)0.0228 (4)
H1A0.02770.48090.34770.034*
H1B0.04370.33610.31000.034*
H1C0.06250.34650.37570.034*
C20.32329 (18)0.2865 (3)0.35279 (7)0.0189 (4)
H20.35820.39690.35240.023*
C30.37267 (17)0.1622 (2)0.38743 (7)0.0157 (4)
C40.0304 (2)0.7801 (3)0.47057 (10)0.0351 (5)
H4A0.05460.72440.46520.053*
H4B0.02870.86460.50030.053*
H4C0.04950.83490.43550.053*
C50.34164 (16)0.1592 (2)0.40446 (7)0.0149 (4)
H50.37490.14160.44460.018*
C60.21811 (16)0.2722 (2)0.40233 (7)0.0150 (4)
C70.11731 (18)0.2487 (2)0.35981 (7)0.0177 (4)
C80.1356 (2)0.6503 (3)0.48718 (8)0.0256 (4)
H8A0.12170.60110.52420.031*
H8B0.22280.70350.48960.031*
C90.19752 (17)0.0147 (2)0.33814 (7)0.0165 (4)
C100.22567 (17)0.4028 (2)0.44727 (7)0.0167 (4)
C110.44966 (17)0.2466 (2)0.37322 (7)0.0147 (4)
C120.54419 (17)0.3488 (2)0.40333 (7)0.0164 (4)
H120.54660.35480.44310.020*
C130.63526 (17)0.4424 (2)0.37482 (8)0.0190 (4)
H130.69780.51100.39550.023*
C140.63328 (18)0.4338 (2)0.31562 (8)0.0202 (4)
H140.69400.49680.29650.024*
C150.54006 (18)0.3308 (3)0.28515 (8)0.0210 (4)
H150.53850.32420.24540.025*
C160.44914 (18)0.2375 (2)0.31367 (7)0.0188 (4)
H160.38720.16820.29290.023*
C170.48437 (17)0.1764 (2)0.43372 (7)0.0181 (4)
H17A0.45360.13190.46890.022*
H17B0.50410.29710.43990.022*
C180.61252 (18)0.0854 (2)0.42323 (7)0.0190 (4)
C190.76628 (18)0.0231 (3)0.35511 (8)0.0237 (4)
H19A0.75340.10020.35510.028*
H19B0.83970.05080.38310.028*
C200.7966 (2)0.0815 (3)0.29736 (9)0.0362 (6)
H20A0.72130.06010.27030.054*
H20B0.87240.02010.28590.054*
H20C0.81560.20220.29840.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0253 (2)0.0184 (3)0.0147 (2)0.0029 (2)0.00124 (17)0.00322 (18)
O10.0244 (6)0.0245 (8)0.0158 (6)0.0014 (6)0.0020 (5)0.0011 (5)
O20.0318 (7)0.0281 (8)0.0173 (7)0.0032 (6)0.0033 (5)0.0032 (6)
O30.0260 (7)0.0255 (8)0.0138 (6)0.0037 (6)0.0028 (5)0.0060 (5)
O40.0233 (6)0.0185 (7)0.0180 (6)0.0037 (6)0.0021 (5)0.0045 (5)
N10.0186 (7)0.0158 (8)0.0103 (7)0.0005 (6)0.0001 (5)0.0002 (6)
N20.0208 (7)0.0194 (9)0.0141 (7)0.0005 (7)0.0015 (6)0.0011 (6)
C10.0219 (9)0.0263 (11)0.0194 (9)0.0026 (8)0.0033 (7)0.0028 (8)
C20.0241 (9)0.0169 (10)0.0158 (9)0.0006 (8)0.0018 (7)0.0022 (7)
C30.0212 (8)0.0151 (10)0.0113 (8)0.0003 (7)0.0038 (6)0.0020 (7)
C40.0472 (13)0.0245 (12)0.0348 (12)0.0122 (11)0.0094 (10)0.0019 (10)
C50.0208 (8)0.0151 (10)0.0084 (8)0.0001 (7)0.0004 (6)0.0011 (6)
C60.0182 (8)0.0152 (10)0.0118 (8)0.0012 (7)0.0021 (6)0.0012 (7)
C70.0203 (9)0.0192 (10)0.0138 (8)0.0020 (8)0.0027 (6)0.0010 (7)
C80.0347 (10)0.0195 (11)0.0230 (10)0.0028 (9)0.0043 (8)0.0070 (8)
C90.0209 (8)0.0192 (10)0.0094 (8)0.0038 (8)0.0011 (6)0.0005 (7)
C100.0198 (8)0.0172 (10)0.0133 (8)0.0008 (8)0.0035 (7)0.0012 (7)
C110.0179 (8)0.0130 (10)0.0129 (8)0.0031 (7)0.0004 (6)0.0002 (7)
C120.0209 (8)0.0159 (10)0.0122 (8)0.0033 (7)0.0006 (6)0.0017 (7)
C130.0205 (8)0.0158 (10)0.0201 (9)0.0012 (8)0.0017 (7)0.0004 (7)
C140.0216 (9)0.0187 (10)0.0209 (9)0.0013 (8)0.0054 (7)0.0043 (8)
C150.0254 (9)0.0265 (11)0.0112 (8)0.0017 (8)0.0018 (7)0.0012 (7)
C160.0211 (9)0.0224 (11)0.0125 (8)0.0010 (8)0.0008 (7)0.0028 (7)
C170.0246 (9)0.0170 (10)0.0125 (8)0.0026 (8)0.0005 (7)0.0010 (7)
C180.0259 (9)0.0160 (10)0.0146 (9)0.0043 (8)0.0013 (7)0.0017 (7)
C190.0230 (9)0.0238 (11)0.0243 (10)0.0029 (8)0.0013 (7)0.0007 (8)
C200.0342 (11)0.0451 (15)0.0307 (12)0.0145 (11)0.0109 (9)0.0093 (10)
Geometric parameters (Å, º) top
S1—C91.7363 (19)C5—H50.9800
S1—C21.7367 (19)C6—C71.372 (2)
O1—C181.334 (2)C6—C101.461 (2)
O1—C191.460 (2)C8—H8A0.9700
O2—C181.208 (2)C8—H8B0.9700
O3—C101.220 (2)C11—C121.387 (2)
O4—C101.340 (2)C11—C161.395 (2)
O4—C81.447 (2)C12—C131.388 (3)
N1—C91.365 (2)C12—H120.9300
N1—C31.403 (2)C13—C141.386 (3)
N1—C51.470 (2)C13—H130.9300
N2—C91.302 (2)C14—C151.386 (3)
N2—C71.389 (2)C14—H140.9300
C1—C71.499 (3)C15—C161.386 (3)
C1—H1A0.9600C15—H150.9300
C1—H1B0.9600C16—H160.9300
C1—H1C0.9600C17—C181.513 (3)
C2—C31.332 (3)C17—H17A0.9700
C2—H20.9300C17—H17B0.9700
C3—C171.498 (2)C19—C201.483 (3)
C4—C81.493 (3)C19—H19A0.9700
C4—H4A0.9600C19—H19B0.9700
C4—H4B0.9600C20—H20A0.9600
C4—H4C0.9600C20—H20B0.9600
C5—C61.523 (2)C20—H20C0.9600
C5—C111.525 (2)
C9—S1—C291.05 (9)N2—C9—S1123.07 (13)
C18—O1—C19115.91 (14)N1—C9—S1109.73 (13)
C10—O4—C8115.64 (14)O3—C10—O4121.68 (16)
C9—N1—C3114.51 (15)O3—C10—C6122.88 (16)
C9—N1—C5118.99 (15)O4—C10—C6115.44 (15)
C3—N1—C5126.05 (14)C12—C11—C16118.65 (16)
C9—N2—C7115.87 (15)C12—C11—C5120.09 (15)
C7—C1—H1A109.5C16—C11—C5121.04 (15)
C7—C1—H1B109.5C11—C12—C13120.78 (16)
H1A—C1—H1B109.5C11—C12—H12119.6
C7—C1—H1C109.5C13—C12—H12119.6
H1A—C1—H1C109.5C14—C13—C12120.20 (17)
H1B—C1—H1C109.5C14—C13—H13119.9
C3—C2—S1112.24 (15)C12—C13—H13119.9
C3—C2—H2123.9C13—C14—C15119.50 (17)
S1—C2—H2123.9C13—C14—H14120.3
C2—C3—N1112.47 (16)C15—C14—H14120.3
C2—C3—C17127.16 (17)C14—C15—C16120.25 (17)
N1—C3—C17120.27 (16)C14—C15—H15119.9
C8—C4—H4A109.5C16—C15—H15119.9
C8—C4—H4B109.5C15—C16—C11120.62 (17)
H4A—C4—H4B109.5C15—C16—H16119.7
C8—C4—H4C109.5C11—C16—H16119.7
H4A—C4—H4C109.5C3—C17—C18116.57 (15)
H4B—C4—H4C109.5C3—C17—H17A108.2
N1—C5—C6107.96 (13)C18—C17—H17A108.2
N1—C5—C11112.26 (13)C3—C17—H17B108.2
C6—C5—C11110.02 (14)C18—C17—H17B108.2
N1—C5—H5108.8H17A—C17—H17B107.3
C6—C5—H5108.8O2—C18—O1124.34 (17)
C11—C5—H5108.8O2—C18—C17123.84 (16)
C7—C6—C10127.18 (16)O1—C18—C17111.80 (15)
C7—C6—C5119.94 (16)O1—C19—C20108.42 (16)
C10—C6—C5112.84 (14)O1—C19—H19A110.0
C6—C7—N2122.04 (17)C20—C19—H19A110.0
C6—C7—C1126.17 (17)O1—C19—H19B110.0
N2—C7—C1111.77 (15)C20—C19—H19B110.0
O4—C8—C4107.47 (16)H19A—C19—H19B108.4
O4—C8—H8A110.2C19—C20—H20A109.5
C4—C8—H8A110.2C19—C20—H20B109.5
O4—C8—H8B110.2H20A—C20—H20B109.5
C4—C8—H8B110.2C19—C20—H20C109.5
H8A—C8—H8B108.5H20A—C20—H20C109.5
N2—C9—N1127.15 (17)H20B—C20—H20C109.5
C9—S1—C2—C30.19 (14)C2—S1—C9—N2177.08 (15)
S1—C2—C3—N10.62 (19)C2—S1—C9—N10.30 (13)
S1—C2—C3—C17175.77 (14)C8—O4—C10—O31.0 (2)
C9—N1—C3—C20.9 (2)C8—O4—C10—C6178.56 (15)
C5—N1—C3—C2171.25 (15)C7—C6—C10—O3175.52 (17)
C9—N1—C3—C17175.79 (15)C5—C6—C10—O36.9 (2)
C5—N1—C3—C1712.1 (2)C7—C6—C10—O44.9 (3)
C9—N1—C5—C628.50 (19)C5—C6—C10—O4172.68 (14)
C3—N1—C5—C6159.69 (15)N1—C5—C11—C12147.17 (16)
C9—N1—C5—C1192.94 (17)C6—C5—C11—C1292.58 (19)
C3—N1—C5—C1178.87 (19)N1—C5—C11—C1638.2 (2)
N1—C5—C6—C728.9 (2)C6—C5—C11—C1682.0 (2)
C11—C5—C6—C793.96 (19)C16—C11—C12—C131.0 (3)
N1—C5—C6—C10153.39 (14)C5—C11—C12—C13173.77 (16)
C11—C5—C6—C1083.79 (17)C11—C12—C13—C140.4 (3)
C10—C6—C7—N2171.60 (16)C12—C13—C14—C150.2 (3)
C5—C6—C7—N211.0 (3)C13—C14—C15—C160.3 (3)
C10—C6—C7—C16.2 (3)C14—C15—C16—C110.3 (3)
C5—C6—C7—C1171.16 (16)C12—C11—C16—C150.9 (3)
C9—N2—C7—C610.1 (2)C5—C11—C16—C15173.75 (17)
C9—N2—C7—C1167.97 (15)C2—C3—C17—C18110.7 (2)
C10—O4—C8—C4171.20 (16)N1—C3—C17—C1873.2 (2)
C7—N2—C9—N110.8 (3)C19—O1—C18—O23.2 (3)
C7—N2—C9—S1166.12 (13)C19—O1—C18—C17178.60 (15)
C3—N1—C9—N2176.53 (16)C3—C17—C18—O2138.12 (19)
C5—N1—C9—N210.7 (2)C3—C17—C18—O143.6 (2)
C3—N1—C9—S10.71 (17)C18—O1—C19—C20172.85 (17)
C5—N1—C9—S1172.02 (11)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the thiazolopyrimidine ring.
D—H···AD—HH···AD···AD—H···A
C17—H17A···O2i0.972.473.415 (3)164
C5—H5···O2i0.982.593.429 (2)144
C20—H20B···N2ii0.962.703.516 (3)144
C4—H4C···Cg1iii0.963.033.897 (4)151
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x, y3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC20H22N2O4S
Mr386.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.0861 (4), 7.7954 (3), 23.4088 (10)
β (°) 95.000 (3)
V3)1833.52 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.18 × 0.16 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.964, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
11747, 3982, 3102
Rint0.037
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.118, 1.00
No. of reflections3982
No. of parameters247
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.29

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the thiazolopyrimidine ring.
D—H···AD—HH···AD···AD—H···A
C17—H17A···O2i0.9702.4713.415 (3)164
C5—H5···O2i0.9802.5863.429 (2)144
C20—H20B···N2ii0.9602.6953.516 (3)144
C4—H4C···Cg1iii0.9603.0323.897 (4)151
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x, y3/2, z1/2.
 

Acknowledgements

NSB is thankful to the University Grants Commission (UGC), India, for financial assistance and HN thanks for the fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconcin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGautrot, J. E., Hodge, P., Cupertino, D. & Helliwell, M. (2006). New J. Chem. 30, 1801–1807.  Web of Science CSD CrossRef CAS Google Scholar
First citationNagarajaiah, H. & Begum, N. S. (2011). Acta Cryst. E67, o3444.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNagarajaiah, H., Khazi, I. M. & Begum, N. S. (2012). J. Chem. Sci. 124, 847–855.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationZhi, H., Lan-mei, C., Lin-lin, Z., Si-jie, L., David, C. C. W., Huang-quan, L. & Chun, H. (2008). ARKIVOC, xiii, 266–277.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds