metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bromidobis[3-(1H-pyrazol-1-yl-κN2)propionamide-κO]copper(II) bromide methanol monosolvate

aChemisches Institut, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany, and bDepartment of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA
*Correspondence e-mail: frank.edelmann@ovgu.de

(Received 2 August 2012; accepted 5 September 2012; online 8 September 2012)

The title copper(II) N-pyrazolylpropanamide (PPA) complex, [CuBr(PPA)2]Br, was obtained in 78% yield by treatment of CuBr2 with an excess of the ligand in methanol. Crystallization from the mother liquid afforded the title compound, i.e. the methanol solvate [CuBr(C6H9N3O)2]Br·CH3OH or [CuBr(PPA)2]Br·MeOH, as bright green crystals. In the solid state, the title salt comprises isolated [CuBr(PPA)2]+ cations, separated bromide ions and methanol of crystallization. In the cation, the central CuII ion is coordinated by two N,O-chelating PPA ligands and one Br ion. The coordination geometry around the CuII ion is distorted trigonal–bipyramidal with the bromide ligand and the amide O atoms occupying the equatorial positions [Cu—Br = 2.4443 (4) Å; Cu—O = 2.035 (2) and 2.179 (2) Å], while the pyrazole N atoms coordinate in the axial positions [Cu—N = 1.975 (2) and 1.976 (2) Å]. In the crystal, the three constituents are linked by N—H⋯Br, O—H⋯Br, and N—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For related complexes containing multifunctional ligands with substituted pyrazole groups, see: Gracia-Anton et al. (2003[Gracia-Anton, G., Pons, J., Solans, X., Font-Bardia, M. & Ros, J. (2003). Eur. J. Inorg. Chem. pp. 2992-3000.]); Mukherjee (2000[Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151-218.]); Pal et al. (2005[Pal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880-3889.]); Shaw et al. (2004[Shaw, J. L., Cardon, T. B., Lorigan, G. A. & Ziegler, C. J. (2004). Eur. J. Inorg. Chem. pp. 1073-1080.]). For acryl­amide complexes, see: Girma et al. (2005a[Girma, K. B., Lorenz, V., Blaurock, S. & Edelmann, F. T. (2005a). Coord. Chem. Rev. 249, 1283-1293.],b[Girma, K. B., Lorenz, V., Blaurock, S. & Edelmann, F. T. (2005b). Z. Anorg. Allg. Chem. 631, 1419-1422.],c[Girma, K. B., Lorenz, V., Blaurock, S. & Edelmann, F. T. (2005c). Z. Anorg. Allg. Chem. 631, 2763-2769.], 2006[Girma, K. B., Lorenz, V., Blaurock, S. & Edelmann, F. T. (2006). Z. Anorg. Allg. Chem. 632, 1874-1878.]). For related complexes containing 3-pyrazol-1-yl-propionamide, see: Girma et al. (2008[Girma, K. B., Lorenz, V., Blaurock, S. & Edelmann, F. T. (2008). Z. Anorg. Allg. Chem. 634, 267-273.]); Wagner et al. (2012[Wagner, T., Hrib, C. G., Lorenz, V., Edelmann, F. T., Amenta, D. S., Burnside, C. J. & Gilje, J. W. (2012). Z. Anorg. Allg. Chem. 638. In the press. doi:10.1002/zaac.201200139.]).

[Scheme 1]

Experimental

Crystal data
  • [CuBr(C6H9N3O)2]Br·CH4O

  • Mr = 533.73

  • Monoclinic, P 21 /n

  • a = 10.5075 (4) Å

  • b = 12.6951 (4) Å

  • c = 15.1551 (7) Å

  • β = 102.821 (3)°

  • V = 1971.19 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.19 mm−1

  • T = 150 K

  • 0.40 × 0.40 × 0.30 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.046, Tmax = 0.139

  • 22729 measured reflections

  • 5320 independent reflections

  • 4728 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.079

  • S = 1.21

  • 5320 reflections

  • 231 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1NB⋯O3i 0.88 2.07 2.926 (3) 163
N1—H1NA⋯Br2 0.88 2.56 3.434 (3) 173
N4—H4NA⋯O3ii 0.88 2.09 2.956 (3) 168
O3—H1O⋯Br2 0.81 (5) 2.41 (5) 3.215 (3) 175 (5)
N4—H4NB⋯Br2iii 0.88 2.71 3.548 (3) 160
Symmetry codes: (i) -x+2, -y+1, -z; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x+2, -y+2, -z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie. (2002). X-AREA and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002[Stoe & Cie. (2002). X-AREA and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Currently there is a considerable interest in the use of multifunctional ligands containing substituted pyrazole groups because of their potential applications in catalysis and their ability to form complexes that mimic structural and catalytic functions in metalloproteins (Gracia-Anton et al., 2003; Mukherjee, 2000; Pal et al., 2005; Shaw et al., 2004). As part of our continuing interest in the coordination chemistry of acrylamide (Girma et al., 2005a; Girma et al., 2005b; Girma et al., 2005c; Girma et al., 2006) and acrylamide-based ligands we have earlier synthesized and characterized an acrylamide-derived pyrazole ligand, N-pyrazolylpropanamide (= PPA) (Girma et al., 2008). This ligand is readily accessible in large quantities by base-catalyzed Michael addition of pyrazole to acrylamide. The first PPA complexes to be reported were (PPA)2CuCl2 and (PPA)4Co3Cl6 with copper(II) and cobalt(II) chlorides, respectively. Both complexes contain the ligand in a seven-membered ring N,O-chelating fashion. Especially remarkable was the unusual zwitterionic structure of the trinuclear cobalt complex, which additionally comprises bridging N-pyrazolylpropanamide ligands (Girma et al., 2008). Most recently, the syntheses and single-crystal X-ray structures of several new first-row transition metal complexes containing the multifunctional acrylamide-derived PPA have been reported. The general synthesis involved treatment of the appropriate transition metal salts with an excess of PPA in ethanolic solution in the presence of triethylorthoformate as dehydrating agent. This way the perchlorates of iron(II) and cobalt(II) afforded the complexes [(PPA)2M(EtOH)2](ClO4)2 (M = Fe, Co) in good yields (82% resp. 85%). Light green (PPA)2NiCl2 has been obtained analogously from NiCl2.6H2O. Hydration of (PPA)2NiCl2 afforded the dark green cationic nickel(II) complex [(PPA)2Ni(H2O)4]Cl2. In the complexes with M = Fe, Co, and Ni the N-pyrazolylpropanamide acts as N,O-chelating ligand. In contrast, monodentate N-coordination via the pyrazolyl ring was found for the dicoordinate silver(I) complex [(PPA)2Ag]NO3.H2O (Wagner et al., 2012).

In the course of these investigations we now studied the reaction of copper(II) dibromide with PPA. A reaction carried out in methanol solution using an excess over 2 equivalents of PPA afforded a green, microcrystalline solid which was shown by elemental analysis and its IR spectrum to be the bromide analogue of the previously reported (PPA)2CuCl2 (Girma et al., 2008), i.e. (PPA)2CuBr2. Comparison of the IR spectra of the free ligand PPA and (PPA)2CuBr2 revealed a significant decrease to lower wavenumbers in the CO absorptions (1690 cm-1 in PPA vs. 1661 cm-1 in (PPA)2CuBr2 and 1664 cm-1 in (PPA)2CuCl2). This CO absorption shift is consistent with a decrease in the electron density of the amide carbonyl moiety resulting from coordination to the cationic copper(II) center. Crystallization of (PPA)2CuBr2 directly from the mother liquid afforded the title compound, i.e. the methanol-solvate, as bright green, X-ray quality single crystals. Surprisingly, the X-ray crystal structure determination revealed the presence of the ionic product [CuBr(PPA)2]Br.MeOH with 5-coordinate copper. In the solid state, [CuBr(PPA)2]Br.MeOH comprises isolated [CuBr(PPA)2]+ cations, separated bromide ions and methanol of crystallization (Fig. 1). In the cation, the central Cu2+ ion is coordinated by two N,O-chelating PPA ligands and one Br- ion. The coordination geometry around copper can be best described as distorted trigonal-bipyramidal with the bromo ligand and the amide O atoms occupying the equatorial positions (Cu—Br 2.4443 (4) Å; Cu—O 2.035 (2) and 2.179 (2) Å), while the pyrazolyl N-atoms coordinate in the axial positions (Cu—N 1.975 (2) and 1.976 (2) Å). This is in contrast to the neutral hexacoordinate chloro-analogue (PPA)2CuCl2 in which the coordination geometry around the central Cu2+ ion is octahedral (Girma et al., 2008). The angles at Cu in the equatorial plane of the [CuBr(PPA)2]+ cation are 109.30 (8)° (O1—Cu—O2), 116.80 (6)° (O2—Cu—Br1), and 133.76 (6)° (O1—Cu—Br1), respectively. The axial angle at Cu (N3—Cu—N6) is 174.53 (9)°. The planes of the opposing pyrazole rings are inclined to each other by ~71°.

Like all previously reported transition metal PPA complexes (Wagner et al., 2012), the title compound also forms a hydrogen-bonded network in the solid state (Fig. 2). The crystal structure consists of chains of [CuBr(PPA)2]+ cations linked by N—H···Br, O—H···Br, and N—H···O hydrogen bonds. The uncoordinated bromide ions are connected via O—H···Br hydrogen bonds to the methanol of crystallization and via two N—H···Br interactions with the amide NH2 groups of different cations. N—H···O hydrogen bonds between amide NH2 groups and the methanol of crystallization interconnect the chains.

Related literature top

For related complexes containing multifunctional ligands with substituted pyrazole groups, see: Gracia-Anton et al. (2003); Mukherjee (2000); Pal et al. (2005); Shaw et al. (2004). For acrylamide complexes, see: Girma et al. (2005a,b,c, 2006). For related complexes containing 3-pyrazol-1-yl-propionamide, see: Girma et al. (2008); Wagner et al. (2012).

Experimental top

A solution of CuBr2 (0.6 g, 1.69 mmol) in methanol (50 ml) was combined with a solution of N-pyrazolylpropanamide (= PPA, 0.8 g, 5.5 mmol) in methanol (30 ml). After stirring for 24 h at room temperature, the reaction mixture was concentrated in vacuo to a total volume of ca 50 ml, whereupon a large quantity of the title compound precipitated in its unsolvated form [CuBr(PPA)2]Br in the form of a green, microcrystalline solid in 78% yield (1.05 g). Bright green, X-ray quality crystals of the title compound [CuBr(PPA)2]Br.MeOH were obtained upon standing of the mother liquid at room temperature for 14 d.

Anal. Calcd. for unsolvated C12H18Br2CuN6O2 (Mr = 501.66): C 28.73%; H 3.62%; N 16.75%; Br 31.86%. Found: C 28.35%; H 3.46%; N 17.03%; Br 31.47%. IR (KBr): 3436m ν(N—H), 3336m ν(N—H), 3298m, 3188m, 3020w, 2964m, 2847w, 1661s ν(C=O), 1594m; ν(C=C), 1494w, 1450m, 1429m, 1418m, 1375w, 1325m, 1285m, 1262s, 1230m, 1175m, 1098vs, 1022vs, 957m, 949m, 868w, 801vs, 768m, 759m, 628m cm-1.

Refinement top

The hydrogen atoms were included in idealized positions using a riding model, with N—H = 0.88 Å, aromatic C—H = 0.95 Å, methylene C—H = 0.99 Å [Uiso(H) = 1.2Ueq(C)] and methyl C—H = 0.98 Å [Uiso(H) = 1.5Ueq(C)]. The O—H proton of methanol was freely refined.

Structure description top

Currently there is a considerable interest in the use of multifunctional ligands containing substituted pyrazole groups because of their potential applications in catalysis and their ability to form complexes that mimic structural and catalytic functions in metalloproteins (Gracia-Anton et al., 2003; Mukherjee, 2000; Pal et al., 2005; Shaw et al., 2004). As part of our continuing interest in the coordination chemistry of acrylamide (Girma et al., 2005a; Girma et al., 2005b; Girma et al., 2005c; Girma et al., 2006) and acrylamide-based ligands we have earlier synthesized and characterized an acrylamide-derived pyrazole ligand, N-pyrazolylpropanamide (= PPA) (Girma et al., 2008). This ligand is readily accessible in large quantities by base-catalyzed Michael addition of pyrazole to acrylamide. The first PPA complexes to be reported were (PPA)2CuCl2 and (PPA)4Co3Cl6 with copper(II) and cobalt(II) chlorides, respectively. Both complexes contain the ligand in a seven-membered ring N,O-chelating fashion. Especially remarkable was the unusual zwitterionic structure of the trinuclear cobalt complex, which additionally comprises bridging N-pyrazolylpropanamide ligands (Girma et al., 2008). Most recently, the syntheses and single-crystal X-ray structures of several new first-row transition metal complexes containing the multifunctional acrylamide-derived PPA have been reported. The general synthesis involved treatment of the appropriate transition metal salts with an excess of PPA in ethanolic solution in the presence of triethylorthoformate as dehydrating agent. This way the perchlorates of iron(II) and cobalt(II) afforded the complexes [(PPA)2M(EtOH)2](ClO4)2 (M = Fe, Co) in good yields (82% resp. 85%). Light green (PPA)2NiCl2 has been obtained analogously from NiCl2.6H2O. Hydration of (PPA)2NiCl2 afforded the dark green cationic nickel(II) complex [(PPA)2Ni(H2O)4]Cl2. In the complexes with M = Fe, Co, and Ni the N-pyrazolylpropanamide acts as N,O-chelating ligand. In contrast, monodentate N-coordination via the pyrazolyl ring was found for the dicoordinate silver(I) complex [(PPA)2Ag]NO3.H2O (Wagner et al., 2012).

In the course of these investigations we now studied the reaction of copper(II) dibromide with PPA. A reaction carried out in methanol solution using an excess over 2 equivalents of PPA afforded a green, microcrystalline solid which was shown by elemental analysis and its IR spectrum to be the bromide analogue of the previously reported (PPA)2CuCl2 (Girma et al., 2008), i.e. (PPA)2CuBr2. Comparison of the IR spectra of the free ligand PPA and (PPA)2CuBr2 revealed a significant decrease to lower wavenumbers in the CO absorptions (1690 cm-1 in PPA vs. 1661 cm-1 in (PPA)2CuBr2 and 1664 cm-1 in (PPA)2CuCl2). This CO absorption shift is consistent with a decrease in the electron density of the amide carbonyl moiety resulting from coordination to the cationic copper(II) center. Crystallization of (PPA)2CuBr2 directly from the mother liquid afforded the title compound, i.e. the methanol-solvate, as bright green, X-ray quality single crystals. Surprisingly, the X-ray crystal structure determination revealed the presence of the ionic product [CuBr(PPA)2]Br.MeOH with 5-coordinate copper. In the solid state, [CuBr(PPA)2]Br.MeOH comprises isolated [CuBr(PPA)2]+ cations, separated bromide ions and methanol of crystallization (Fig. 1). In the cation, the central Cu2+ ion is coordinated by two N,O-chelating PPA ligands and one Br- ion. The coordination geometry around copper can be best described as distorted trigonal-bipyramidal with the bromo ligand and the amide O atoms occupying the equatorial positions (Cu—Br 2.4443 (4) Å; Cu—O 2.035 (2) and 2.179 (2) Å), while the pyrazolyl N-atoms coordinate in the axial positions (Cu—N 1.975 (2) and 1.976 (2) Å). This is in contrast to the neutral hexacoordinate chloro-analogue (PPA)2CuCl2 in which the coordination geometry around the central Cu2+ ion is octahedral (Girma et al., 2008). The angles at Cu in the equatorial plane of the [CuBr(PPA)2]+ cation are 109.30 (8)° (O1—Cu—O2), 116.80 (6)° (O2—Cu—Br1), and 133.76 (6)° (O1—Cu—Br1), respectively. The axial angle at Cu (N3—Cu—N6) is 174.53 (9)°. The planes of the opposing pyrazole rings are inclined to each other by ~71°.

Like all previously reported transition metal PPA complexes (Wagner et al., 2012), the title compound also forms a hydrogen-bonded network in the solid state (Fig. 2). The crystal structure consists of chains of [CuBr(PPA)2]+ cations linked by N—H···Br, O—H···Br, and N—H···O hydrogen bonds. The uncoordinated bromide ions are connected via O—H···Br hydrogen bonds to the methanol of crystallization and via two N—H···Br interactions with the amide NH2 groups of different cations. N—H···O hydrogen bonds between amide NH2 groups and the methanol of crystallization interconnect the chains.

For related complexes containing multifunctional ligands with substituted pyrazole groups, see: Gracia-Anton et al. (2003); Mukherjee (2000); Pal et al. (2005); Shaw et al. (2004). For acrylamide complexes, see: Girma et al. (2005a,b,c, 2006). For related complexes containing 3-pyrazol-1-yl-propionamide, see: Girma et al. (2008); Wagner et al. (2012).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ion-pair of the title compound in the crystal. Thermal ellipsoids represent 50% probability levels. H-atom radii are arbitrary.
[Figure 2] Fig. 2. Packing diagram of the title compound. Hydrogen bonds: 1 N(1)—H(1NB)···O(3)i, 2 N(1)—H(1NA)···Br(2), 3 N(4)—H(4NA)···O(3)ii, 4 O(3)—H(1O)···Br(2), 5 N(4)—H(4NB)···Br(2)iii. See Table 1 for details.
Bromidobis[3-(1H-pyrazol-1-yl-κN2)propionamide- κO]copper(II) bromide methanol monosolvate top
Crystal data top
[CuBr(C6H9N3O)2]Br·CH4OF(000) = 1060
Mr = 533.73Dx = 1.798 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.5075 (4) ÅCell parameters from 30970 reflections
b = 12.6951 (4) Åθ = 2.0–29.6°
c = 15.1551 (7) ŵ = 5.19 mm1
β = 102.821 (3)°T = 150 K
V = 1971.19 (13) Å3Prism, red
Z = 40.40 × 0.40 × 0.30 mm
Data collection top
Stoe IPDS 2T
diffractometer
5320 independent reflections
Radiation source: fine-focus sealed tube4728 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 6.67 pixels mm-1θmax = 29.2°, θmin = 2.1°
ω and φ scansh = 1414
Absorption correction: multi-scan
(Blessing, 1995)
k = 1617
Tmin = 0.046, Tmax = 0.139l = 2020
22729 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.21 w = 1/[σ2(Fo2) + (0.0324P)2 + 1.2084P]
where P = (Fo2 + 2Fc2)/3
5320 reflections(Δ/σ)max = 0.001
231 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
[CuBr(C6H9N3O)2]Br·CH4OV = 1971.19 (13) Å3
Mr = 533.73Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.5075 (4) ŵ = 5.19 mm1
b = 12.6951 (4) ÅT = 150 K
c = 15.1551 (7) Å0.40 × 0.40 × 0.30 mm
β = 102.821 (3)°
Data collection top
Stoe IPDS 2T
diffractometer
5320 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
4728 reflections with I > 2σ(I)
Tmin = 0.046, Tmax = 0.139Rint = 0.048
22729 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.21Δρmax = 0.74 e Å3
5320 reflectionsΔρmin = 0.70 e Å3
231 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8900 (3)0.6996 (2)0.06693 (18)0.0305 (5)
C20.7834 (3)0.6821 (3)0.15080 (18)0.0370 (6)
H2A0.81830.69900.20470.044*
H2B0.75940.60650.15430.044*
C30.6616 (3)0.7466 (2)0.15415 (18)0.0336 (6)
H3A0.68710.81990.13610.040*
H3B0.60960.74810.21720.040*
C40.4774 (3)0.6412 (3)0.1195 (2)0.0391 (7)
H40.43950.61810.17920.047*
C50.4364 (3)0.6148 (2)0.0431 (2)0.0397 (7)
H50.36480.57100.03860.048*
C60.5219 (3)0.6655 (2)0.02672 (19)0.0319 (5)
H60.51810.66130.08870.038*
C70.6471 (2)1.0403 (2)0.04321 (17)0.0261 (5)
C80.6850 (3)1.1169 (2)0.03418 (19)0.0338 (6)
H8A0.60951.16330.03480.041*
H8B0.75671.16190.02290.041*
C90.7282 (3)1.0670 (2)0.12653 (17)0.0294 (5)
H9A0.72691.12110.17340.035*
H9B0.66521.01130.13330.035*
C100.9713 (3)1.0667 (2)0.1824 (2)0.0355 (6)
H100.98091.13290.21260.043*
C111.0701 (3)1.0012 (3)0.1729 (2)0.0386 (7)
H111.16111.01200.19480.046*
C121.0095 (3)0.9150 (2)0.12412 (19)0.0330 (6)
H121.05370.85580.10690.040*
C130.9020 (4)0.5691 (3)0.1716 (3)0.0615 (11)
H13A0.83510.52500.18920.092*
H13B0.88110.57840.10580.092*
H13C0.90440.63800.20110.092*
N10.9979 (3)0.6464 (2)0.06237 (19)0.0463 (7)
H1NA1.06360.65410.01540.056*
H1NB1.00490.60300.10630.056*
N20.5811 (2)0.70573 (19)0.09558 (15)0.0310 (5)
N30.6103 (2)0.72132 (17)0.00452 (14)0.0268 (4)
N40.6262 (2)1.0830 (2)0.12477 (15)0.0340 (5)
H4NA0.60051.04340.17310.041*
H4NB0.63791.15110.13070.041*
N50.8581 (2)1.02134 (18)0.14175 (14)0.0279 (4)
N60.8801 (2)0.92774 (17)0.10504 (14)0.0269 (4)
O10.8780 (2)0.76128 (17)0.00574 (13)0.0347 (4)
O20.63174 (19)0.94471 (15)0.03194 (13)0.0311 (4)
O31.0247 (2)0.51986 (18)0.19866 (14)0.0375 (5)
Br10.69094 (3)0.80080 (2)0.204039 (17)0.03143 (7)
Br21.23867 (3)0.66180 (2)0.131810 (19)0.03514 (8)
Cu10.74194 (3)0.82447 (2)0.05558 (2)0.02424 (8)
H1O1.078 (5)0.559 (4)0.184 (3)0.065 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0342 (13)0.0303 (13)0.0272 (12)0.0011 (11)0.0074 (10)0.0035 (10)
C20.0414 (15)0.0441 (17)0.0247 (12)0.0063 (13)0.0054 (11)0.0076 (11)
C30.0390 (15)0.0367 (15)0.0235 (11)0.0061 (12)0.0033 (10)0.0008 (10)
C40.0333 (14)0.0382 (15)0.0401 (15)0.0011 (12)0.0040 (12)0.0116 (12)
C50.0337 (14)0.0304 (14)0.0536 (18)0.0014 (12)0.0066 (13)0.0055 (13)
C60.0340 (13)0.0264 (13)0.0349 (13)0.0019 (11)0.0066 (11)0.0021 (10)
C70.0242 (11)0.0241 (11)0.0289 (11)0.0065 (9)0.0034 (9)0.0009 (9)
C80.0427 (15)0.0227 (12)0.0331 (13)0.0043 (11)0.0020 (11)0.0025 (10)
C90.0324 (13)0.0264 (12)0.0293 (12)0.0019 (10)0.0064 (10)0.0043 (10)
C100.0378 (14)0.0306 (14)0.0350 (14)0.0056 (12)0.0011 (11)0.0061 (11)
C110.0291 (14)0.0406 (16)0.0427 (15)0.0041 (12)0.0008 (12)0.0059 (13)
C120.0283 (13)0.0360 (14)0.0331 (13)0.0015 (11)0.0038 (10)0.0034 (11)
C130.065 (2)0.058 (2)0.073 (3)0.027 (2)0.039 (2)0.025 (2)
N10.0405 (14)0.0560 (17)0.0387 (13)0.0153 (13)0.0012 (11)0.0196 (12)
N20.0329 (11)0.0318 (12)0.0247 (10)0.0035 (9)0.0010 (8)0.0022 (9)
N30.0312 (11)0.0234 (10)0.0237 (9)0.0026 (8)0.0013 (8)0.0005 (8)
N40.0432 (13)0.0277 (11)0.0292 (11)0.0018 (10)0.0040 (10)0.0035 (9)
N50.0307 (11)0.0259 (11)0.0259 (10)0.0003 (9)0.0034 (8)0.0050 (8)
N60.0276 (10)0.0257 (10)0.0267 (10)0.0028 (8)0.0045 (8)0.0039 (8)
O10.0329 (10)0.0386 (11)0.0322 (9)0.0020 (9)0.0063 (8)0.0129 (8)
O20.0359 (10)0.0240 (9)0.0295 (9)0.0021 (8)0.0008 (7)0.0014 (7)
O30.0475 (13)0.0313 (11)0.0350 (10)0.0007 (9)0.0118 (9)0.0026 (8)
Br10.03704 (14)0.03321 (14)0.02379 (11)0.00164 (11)0.00622 (9)0.00264 (9)
Br20.03229 (14)0.03990 (16)0.03307 (14)0.00045 (11)0.00691 (10)0.00324 (11)
Cu10.02684 (15)0.02305 (14)0.02175 (14)0.00120 (12)0.00305 (11)0.00200 (10)
Geometric parameters (Å, º) top
C1—O11.241 (3)C9—H9B0.9900
C1—N11.309 (4)C10—N51.343 (3)
C1—C21.513 (4)C10—C111.363 (5)
C2—C31.510 (4)C10—H100.9500
C2—H2A0.9900C11—C121.393 (4)
C2—H2B0.9900C11—H110.9500
C3—N21.451 (4)C12—N61.336 (3)
C3—H3A0.9900C12—H120.9500
C3—H3B0.9900C13—O31.410 (4)
C4—N21.347 (4)C13—H13A0.9800
C4—C51.365 (5)C13—H13B0.9800
C4—H40.9500C13—H13C0.9800
C5—C61.385 (4)N1—H1NA0.8800
C5—H50.9500N1—H1NB0.8800
C6—N31.336 (4)N2—N31.360 (3)
C6—H60.9500N3—Cu11.975 (2)
C7—O21.241 (3)N4—H4NA0.8800
C7—N41.323 (3)N4—H4NB0.8800
C7—C81.507 (4)N5—N61.354 (3)
C8—C91.511 (4)N6—Cu11.976 (2)
C8—H8A0.9900O1—Cu12.035 (2)
C8—H8B0.9900O2—Cu12.179 (2)
C9—N51.453 (3)O3—H1O0.81 (5)
C9—H9A0.9900Br1—Cu12.4443 (4)
O1—C1—N1121.1 (3)C10—C11—H11127.3
O1—C1—C2122.8 (3)C12—C11—H11127.3
N1—C1—C2116.1 (2)N6—C12—C11110.1 (3)
C3—C2—C1114.3 (2)N6—C12—H12124.9
C3—C2—H2A108.7C11—C12—H12124.9
C1—C2—H2A108.7O3—C13—H13A109.5
C3—C2—H2B108.7O3—C13—H13B109.5
C1—C2—H2B108.7H13A—C13—H13B109.5
H2A—C2—H2B107.6O3—C13—H13C109.5
N2—C3—C2113.0 (2)H13A—C13—H13C109.5
N2—C3—H3A109.0H13B—C13—H13C109.5
C2—C3—H3A109.0C1—N1—H1NA120.0
N2—C3—H3B109.0C1—N1—H1NB120.0
C2—C3—H3B109.0H1NA—N1—H1NB120.0
H3A—C3—H3B107.8C4—N2—N3110.4 (2)
N2—C4—C5108.1 (3)C4—N2—C3126.8 (2)
N2—C4—H4126.0N3—N2—C3122.5 (2)
C5—C4—H4126.0C6—N3—N2105.3 (2)
C4—C5—C6105.1 (3)C6—N3—Cu1131.25 (19)
C4—C5—H5127.5N2—N3—Cu1122.79 (18)
C6—C5—H5127.5C7—N4—H4NA120.0
N3—C6—C5111.1 (3)C7—N4—H4NB120.0
N3—C6—H6124.4H4NA—N4—H4NB120.0
C5—C6—H6124.4C10—N5—N6110.5 (2)
O2—C7—N4122.0 (2)C10—N5—C9127.4 (2)
O2—C7—C8122.9 (2)N6—N5—C9121.7 (2)
N4—C7—C8115.0 (2)C12—N6—N5106.0 (2)
C7—C8—C9115.0 (2)C12—N6—Cu1128.97 (19)
C7—C8—H8A108.5N5—N6—Cu1124.08 (17)
C9—C8—H8A108.5C1—O1—Cu1141.98 (19)
C7—C8—H8B108.5C7—O2—Cu1134.49 (17)
C9—C8—H8B108.5C13—O3—H1O107 (3)
H8A—C8—H8B107.5N3—Cu1—N6174.53 (9)
N5—C9—C8113.1 (2)N3—Cu1—O191.11 (9)
N5—C9—H9A109.0N6—Cu1—O184.46 (9)
C8—C9—H9A109.0N3—Cu1—O287.74 (8)
N5—C9—H9B109.0N6—Cu1—O290.72 (8)
C8—C9—H9B109.0O1—Cu1—O2109.30 (8)
H9A—C9—H9B107.8N3—Cu1—Br193.94 (7)
N5—C10—C11107.9 (3)N6—Cu1—Br191.43 (7)
N5—C10—H10126.0O1—Cu1—Br1133.76 (6)
C11—C10—H10126.0O2—Cu1—Br1116.80 (6)
C10—C11—C12105.4 (3)
O1—C1—C2—C30.5 (4)C9—N5—N6—C12173.5 (2)
N1—C1—C2—C3178.8 (3)C10—N5—N6—Cu1170.06 (19)
C1—C2—C3—N276.3 (3)C9—N5—N6—Cu116.9 (3)
N2—C4—C5—C60.8 (3)N1—C1—O1—Cu1150.9 (3)
C4—C5—C6—N30.6 (3)C2—C1—O1—Cu129.7 (5)
O2—C7—C8—C911.3 (4)N4—C7—O2—Cu1136.7 (2)
N4—C7—C8—C9171.4 (3)C8—C7—O2—Cu146.1 (4)
C7—C8—C9—N574.4 (3)C6—N3—Cu1—O1137.5 (2)
N5—C10—C11—C120.3 (4)N2—N3—Cu1—O152.8 (2)
C10—C11—C12—N60.0 (4)C6—N3—Cu1—O2113.2 (2)
C5—C4—N2—N30.7 (3)N2—N3—Cu1—O256.5 (2)
C5—C4—N2—C3175.0 (3)C6—N3—Cu1—Br13.5 (2)
C2—C3—N2—C495.8 (3)N2—N3—Cu1—Br1173.20 (19)
C2—C3—N2—N377.8 (3)C12—N6—Cu1—O129.6 (2)
C5—C6—N3—N20.2 (3)N5—N6—Cu1—O1163.2 (2)
C5—C6—N3—Cu1170.8 (2)C12—N6—Cu1—O2139.0 (2)
C4—N2—N3—C60.4 (3)N5—N6—Cu1—O253.9 (2)
C3—N2—N3—C6174.9 (2)C12—N6—Cu1—Br1104.2 (2)
C4—N2—N3—Cu1172.32 (19)N5—N6—Cu1—Br162.93 (19)
C3—N2—N3—Cu113.2 (3)C1—O1—Cu1—N312.4 (3)
C11—C10—N5—N60.4 (3)C1—O1—Cu1—N6164.4 (3)
C11—C10—N5—C9173.0 (3)C1—O1—Cu1—O275.5 (3)
C8—C9—N5—C1094.8 (3)C1—O1—Cu1—Br1109.0 (3)
C8—C9—N5—N677.1 (3)C7—O2—Cu1—N3177.4 (3)
C11—C12—N6—N50.3 (3)C7—O2—Cu1—N62.6 (3)
C11—C12—N6—Cu1169.2 (2)C7—O2—Cu1—O187.0 (3)
C10—N5—N6—C120.4 (3)C7—O2—Cu1—Br189.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NB···O3i0.882.072.926 (3)163
N1—H1NA···Br20.882.563.434 (3)173
N4—H4NA···O3ii0.882.092.956 (3)168
O3—H1O···Br20.81 (5)2.41 (5)3.215 (3)175 (5)
N4—H4NB···Br2iii0.882.713.548 (3)160
Symmetry codes: (i) x+2, y+1, z; (ii) x1/2, y+3/2, z1/2; (iii) x+2, y+2, z.

Experimental details

Crystal data
Chemical formula[CuBr(C6H9N3O)2]Br·CH4O
Mr533.73
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)10.5075 (4), 12.6951 (4), 15.1551 (7)
β (°) 102.821 (3)
V3)1971.19 (13)
Z4
Radiation typeMo Kα
µ (mm1)5.19
Crystal size (mm)0.40 × 0.40 × 0.30
Data collection
DiffractometerStoe IPDS 2T
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.046, 0.139
No. of measured, independent and
observed [I > 2σ(I)] reflections
22729, 5320, 4728
Rint0.048
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.079, 1.21
No. of reflections5320
No. of parameters231
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.74, 0.70

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NB···O3i0.882.072.926 (3)163.2
N1—H1NA···Br20.882.563.434 (3)173.0
N4—H4NA···O3ii0.882.092.956 (3)167.5
O3—H1O···Br20.81 (5)2.41 (5)3.215 (3)175 (5)
N4—H4NB···Br2iii0.882.713.548 (3)160.0
Symmetry codes: (i) x+2, y+1, z; (ii) x1/2, y+3/2, z1/2; (iii) x+2, y+2, z.
 

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGirma, K. B., Lorenz, V., Blaurock, S. & Edelmann, F. T. (2005a). Coord. Chem. Rev. 249, 1283–1293.  Web of Science CrossRef CAS Google Scholar
First citationGirma, K. B., Lorenz, V., Blaurock, S. & Edelmann, F. T. (2005b). Z. Anorg. Allg. Chem. 631, 1419–1422.  Web of Science CSD CrossRef CAS Google Scholar
First citationGirma, K. B., Lorenz, V., Blaurock, S. & Edelmann, F. T. (2005c). Z. Anorg. Allg. Chem. 631, 2763–2769.  Web of Science CSD CrossRef CAS Google Scholar
First citationGirma, K. B., Lorenz, V., Blaurock, S. & Edelmann, F. T. (2006). Z. Anorg. Allg. Chem. 632, 1874–1878.  Web of Science CSD CrossRef CAS Google Scholar
First citationGirma, K. B., Lorenz, V., Blaurock, S. & Edelmann, F. T. (2008). Z. Anorg. Allg. Chem. 634, 267–273.  Web of Science CSD CrossRef CAS Google Scholar
First citationGracia-Anton, G., Pons, J., Solans, X., Font-Bardia, M. & Ros, J. (2003). Eur. J. Inorg. Chem. pp. 2992–3000.  Google Scholar
First citationMukherjee, R. (2000). Coord. Chem. Rev. 203, 151–218.  Web of Science CrossRef CAS Google Scholar
First citationPal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880–3889.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationShaw, J. L., Cardon, T. B., Lorigan, G. A. & Ziegler, C. J. (2004). Eur. J. Inorg. Chem. pp. 1073–1080.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie. (2002). X-AREA and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWagner, T., Hrib, C. G., Lorenz, V., Edelmann, F. T., Amenta, D. S., Burnside, C. J. & Gilje, J. W. (2012). Z. Anorg. Allg. Chem. 638. In the press. doi:10.1002/zaac.201200139.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds