organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-{[(2,2′-Dieth­­oxy-1,1′-bi­naphthalene-6,6′-di­yl)bis­­(4,1-phenyl­ene)]bis­­(methan­ylyl­­idene)}dimalono­nitrile

aDepartment of Chemistry and Chemical Engineering, Huainan Normal University, 278 Xueyuan Road, Tianjiaan District, Huainan 232001, People's Republic of China
*Correspondence e-mail: shkchelite@163.com

(Received 19 August 2012; accepted 29 August 2012; online 5 September 2012)

The title compound, C44H30N4O2, was prepared from 6,6′-dibromo-2,2′-dieth­oxy-1,1′-binaphthalene through a coupling reaction with 4-(4,4,5,5-tetra­methyl-1,3,2-dioxaborolan-2-yl)benzaldehyde followed by a Knoevenagel reaction with malononitrile. The dihedral angle between the symmetry-related naphthalene ring systems is 68.82 (8)° while the dihedral angle between the the naphthalene ring system and the adjacent benzene ring is 16.92 (7)°. Four symmetry-independent mol­ecules which are linked by inter­molecular C—H⋯π inter­action generate the packing motif in the crystal structure. One of the CN groups is disordered over two sets of sites in a 0.60 (2):0.40 (2) ratio.

Related literature

For applications of 6,6′-dibromo-[1,1′-binaphthalene]-2,2′-diol and its derivatives in asymmetric synthesis, see: Hu et al. (1996[Hu, Q.-S., Vitharana, D., Zheng, X.-F., Wu, C., Kwan, C. M. S. & Pu, L. (1996). J. Org. Chem. 61, 8370-8377.]); Lou et al. (2006[Lou, S., Moquist, P. N. & Schaus, S. E. (2006). J. Am. Chem. Soc. 128, 12660-12661.]); Brunel (2006[Brunel, J. M. (2006). Chem. Rev. 105, 857-897.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C44H30N4O2

  • Mr = 646.72

  • Tetragonal, P 43 21 2

  • a = 8.4556 (12) Å

  • c = 46.991 (9) Å

  • V = 3359.7 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.24 × 0.15 × 0.08 mm

Data collection
  • Rigaku MM007HF diffractometer with Saturn724+ CCD detector

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2008[Rigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.789, Tmax = 1.000

  • 11840 measured reflections

  • 1901 independent reflections

  • 1825 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.095

  • S = 1.15

  • 1901 reflections

  • 246 parameters

  • 40 restraints

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C11-C16 and C14/C15/C17–C20 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Cg3i 0.95 2.90 3.710 (3) 144
C10—H10⋯Cg2i 0.95 2.50 3.363 (3) 150
C22—H22CCg2ii 0.98 2.94 3.769 (3) 143
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z-{\script{1\over 4}}]; (ii) y+1, x, -z.

Data collection: CrystalClear (Rigaku/MSC, 2008[Rigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Chiral compounds especially when used as chiral ligands are particularly important in asymmetric synthesis. 6,6'-dibromo-[1,1'-binaphthalene]-2,2'-diol and its derivatives have received considerable attention in the literature. They are attractive from several points of view in application (Hu et al., 1996; Lou et al., 2006; Brunel, 2006). As part of our search for new 6,6'-dibromo-[1,1'-binaphthalene]-2,2'-diol compounds, we synthesized the title compound (I), whose X-ray crystal structure is reported herein. No classical inter- or intramolecular hydrogen bonds were found in the structure. Bond lengths (Allen et al., 1987) and angles are within normal ranges. The angle between the planes of the naphthalene rings is 68.82 °.

Related literature top

For applications of 6,6'-dibromo-[1,1'-binaphthalene]-2,2'-diol and its derivatives in asymmetric synthesis, see: Hu et al. (1996); Lou et al. (2006); Brunel (2006). For standard bond lengths, see: Allen et al. (1987).

Experimental top

6,6'-dibromo-2,2'-diethoxy-1,1'-binaphthalene (1 g, 2 mmol) in dry THF (45 ml) was treated with 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde (1 g, 4.3 mmol) through a coupling reaction to give 4,4'-(2,2'-diethoxy-[1,1'-binaphthalene]-6,6'-diyl)dibenzaldehyde which then reacted with malononitrile to give the title compound as a yellow solid in 83% yield (2 steps). Single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of CH\2Cl\2/n-hexane solution over a period of several days.

Refinement top

All H atoms were placed in calculated positions, (C - H = 0.95 Å for aromatic, 0.99 Å for methylene and 0.98 Å for methyl H atoms), and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. In the absence of significant anomalous scattering effects, Friedel pairs were merged in the final refinement.

Structure description top

Chiral compounds especially when used as chiral ligands are particularly important in asymmetric synthesis. 6,6'-dibromo-[1,1'-binaphthalene]-2,2'-diol and its derivatives have received considerable attention in the literature. They are attractive from several points of view in application (Hu et al., 1996; Lou et al., 2006; Brunel, 2006). As part of our search for new 6,6'-dibromo-[1,1'-binaphthalene]-2,2'-diol compounds, we synthesized the title compound (I), whose X-ray crystal structure is reported herein. No classical inter- or intramolecular hydrogen bonds were found in the structure. Bond lengths (Allen et al., 1987) and angles are within normal ranges. The angle between the planes of the naphthalene rings is 68.82 °.

For applications of 6,6'-dibromo-[1,1'-binaphthalene]-2,2'-diol and its derivatives in asymmetric synthesis, see: Hu et al. (1996); Lou et al. (2006); Brunel (2006). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2008); cell refinement: CrystalClear (Rigaku/MSC, 2008); data reduction: CrystalClear (Rigaku/MSC, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound with 35% probability ellipsoid and the atom-numbering scheme.
[Figure 2] Fig. 2. Crystal packing of the title compound [symmetry code: (i) x+1/2, -y+1/2, -z+1/4].
2,2'-{[(2,2'-Diethoxy-1,1'-binaphthalene-6,6'-diyl)bis(4,1- phenylene)]bis(methanylylidene)}dimalononitrile top
Crystal data top
C44H30N4O2Dx = 1.279 Mg m3
Mr = 646.72Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43212Cell parameters from 7189 reflections
a = 8.4556 (12) Åθ = 1.3–25.4°
c = 46.991 (9) ŵ = 0.08 mm1
V = 3359.7 (10) Å3T = 173 K
Z = 4Plate, yellow
F(000) = 13520.24 × 0.15 × 0.08 mm
Data collection top
Rigaku MM007HF
diffractometer with Saturn724+ CCD detector
1901 independent reflections
Radiation source: Rotating Anode1825 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.043
Detector resolution: 28.5714 pixels mm-1θmax = 25.3°, θmin = 2.5°
ω scans at fixed χ = 45°h = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2008)
k = 810
Tmin = 0.789, Tmax = 1.000l = 5655
11840 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0325P)2 + 1.0613P]
where P = (Fo2 + 2Fc2)/3
1901 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.17 e Å3
40 restraintsΔρmin = 0.14 e Å3
Crystal data top
C44H30N4O2Z = 4
Mr = 646.72Mo Kα radiation
Tetragonal, P43212µ = 0.08 mm1
a = 8.4556 (12) ÅT = 173 K
c = 46.991 (9) Å0.24 × 0.15 × 0.08 mm
V = 3359.7 (10) Å3
Data collection top
Rigaku MM007HF
diffractometer with Saturn724+ CCD detector
1901 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2008)
1825 reflections with I > 2σ(I)
Tmin = 0.789, Tmax = 1.000Rint = 0.043
11840 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04340 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.15Δρmax = 0.17 e Å3
1901 reflectionsΔρmin = 0.14 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.7522 (2)0.4017 (2)0.00856 (3)0.0384 (4)
N10.4620 (3)0.2058 (3)0.23834 (4)0.0487 (6)
N20.4836 (17)0.5495 (19)0.1722 (4)0.084 (5)0.40 (2)
C20.4126 (17)0.4452 (17)0.1812 (3)0.053 (3)0.40 (2)
N2'0.5300 (8)0.4570 (17)0.15877 (19)0.083 (3)0.60 (2)
C2'0.4429 (10)0.3911 (14)0.17341 (18)0.052 (2)0.60 (2)
C10.4034 (3)0.2527 (3)0.21824 (5)0.0393 (6)
C30.3335 (3)0.3113 (3)0.19219 (4)0.0378 (6)
C40.1873 (3)0.2674 (3)0.18449 (5)0.0416 (7)
H40.13520.20040.19770.050*
C50.0950 (3)0.3054 (3)0.15924 (4)0.0382 (6)
C60.1387 (3)0.4106 (3)0.13769 (5)0.0433 (7)
H60.23660.46540.13880.052*
C70.0394 (3)0.4350 (3)0.11469 (4)0.0429 (7)
H70.07060.50770.10030.051*
C80.1050 (3)0.3565 (3)0.11186 (4)0.0343 (6)
C90.1473 (3)0.2537 (3)0.13358 (5)0.0465 (7)
H90.24460.19810.13240.056*
C100.0515 (4)0.2308 (4)0.15674 (5)0.0510 (8)
H100.08590.16230.17150.061*
C110.2097 (3)0.3794 (3)0.08678 (4)0.0323 (6)
C120.1510 (3)0.4466 (3)0.06116 (4)0.0317 (6)
H120.04320.47780.06020.038*
C130.2448 (3)0.4678 (3)0.03786 (4)0.0300 (5)
H130.20090.51440.02120.036*
C140.4059 (3)0.4221 (3)0.03779 (4)0.0298 (5)
C150.4660 (3)0.3549 (3)0.06345 (4)0.0330 (6)
C160.3656 (3)0.3356 (3)0.08715 (4)0.0373 (6)
H160.40770.29050.10400.045*
C170.6258 (3)0.3076 (3)0.06415 (5)0.0407 (7)
H170.66810.26440.08120.049*
C180.7207 (3)0.3226 (3)0.04090 (4)0.0402 (6)
H180.82780.28910.04180.048*
C190.6604 (3)0.3879 (3)0.01535 (4)0.0336 (6)
C200.5060 (3)0.4402 (3)0.01356 (4)0.0290 (5)
C210.9066 (3)0.3277 (4)0.00773 (5)0.0444 (7)
H21B0.97280.37820.00710.053*
H21A0.89580.21400.00310.053*
C220.9817 (4)0.3469 (4)0.03612 (5)0.0612 (9)
H22C1.08600.29640.03600.092*
H22A0.91510.29710.05070.092*
H22B0.99350.45970.04040.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0297 (10)0.0549 (12)0.0307 (8)0.0026 (9)0.0028 (7)0.0034 (8)
N10.0508 (15)0.0606 (16)0.0348 (10)0.0123 (13)0.0046 (11)0.0004 (11)
N20.074 (7)0.088 (8)0.089 (8)0.031 (6)0.031 (6)0.036 (7)
C20.049 (6)0.055 (6)0.056 (6)0.006 (5)0.013 (4)0.017 (5)
N2'0.059 (4)0.127 (8)0.062 (4)0.017 (4)0.008 (3)0.035 (5)
C2'0.043 (4)0.075 (5)0.039 (3)0.001 (4)0.005 (3)0.010 (3)
C10.0405 (16)0.0455 (16)0.0320 (11)0.0067 (13)0.0014 (11)0.0021 (11)
C30.0402 (16)0.0434 (16)0.0298 (11)0.0030 (13)0.0034 (11)0.0053 (11)
C40.0444 (17)0.0506 (17)0.0299 (11)0.0004 (14)0.0020 (11)0.0085 (12)
C50.0461 (16)0.0423 (16)0.0261 (10)0.0009 (13)0.0048 (11)0.0045 (10)
C60.0406 (16)0.0567 (18)0.0326 (12)0.0080 (14)0.0031 (11)0.0093 (12)
C70.0448 (16)0.0551 (18)0.0287 (11)0.0052 (14)0.0002 (11)0.0127 (11)
C80.0410 (15)0.0383 (15)0.0236 (10)0.0049 (12)0.0002 (10)0.0006 (10)
C90.0489 (17)0.0541 (18)0.0366 (12)0.0131 (15)0.0110 (12)0.0146 (12)
C100.0564 (19)0.0589 (19)0.0378 (13)0.0142 (16)0.0111 (13)0.0197 (13)
C110.0376 (15)0.0367 (14)0.0226 (10)0.0047 (12)0.0007 (10)0.0004 (10)
C120.0319 (14)0.0358 (14)0.0272 (10)0.0034 (11)0.0015 (9)0.0020 (10)
C130.0337 (14)0.0337 (13)0.0227 (10)0.0034 (11)0.0040 (9)0.0031 (9)
C140.0328 (14)0.0331 (14)0.0236 (10)0.0053 (11)0.0031 (9)0.0022 (9)
C150.0363 (15)0.0392 (15)0.0236 (10)0.0031 (11)0.0047 (10)0.0010 (10)
C160.0437 (16)0.0470 (16)0.0213 (10)0.0006 (13)0.0048 (10)0.0040 (10)
C170.0400 (16)0.0538 (18)0.0282 (11)0.0033 (13)0.0077 (11)0.0033 (12)
C180.0308 (14)0.0561 (18)0.0338 (11)0.0001 (13)0.0056 (11)0.0038 (12)
C190.0354 (15)0.0413 (15)0.0242 (10)0.0066 (12)0.0007 (10)0.0056 (10)
C200.0303 (14)0.0321 (14)0.0245 (10)0.0042 (11)0.0033 (9)0.0045 (10)
C210.0308 (15)0.0590 (19)0.0433 (13)0.0011 (14)0.0002 (11)0.0104 (13)
C220.0456 (19)0.084 (3)0.0536 (15)0.0034 (17)0.0156 (14)0.0032 (17)
Geometric parameters (Å, º) top
O1—C191.371 (3)C11—C121.421 (3)
O1—C211.448 (3)C12—C131.364 (3)
N1—C11.138 (3)C12—H120.9500
N2—C21.148 (8)C13—C141.416 (3)
C2—C31.413 (9)C13—H130.9500
N2'—C2'1.151 (6)C14—C201.427 (3)
C2'—C31.446 (7)C14—C151.426 (3)
C1—C31.447 (3)C15—C161.410 (3)
C3—C41.340 (4)C15—C171.410 (4)
C4—C51.456 (3)C16—H160.9500
C4—H40.9500C17—C181.361 (3)
C5—C101.395 (4)C17—H170.9500
C5—C61.398 (3)C18—C191.416 (3)
C6—C71.384 (3)C18—H180.9500
C6—H60.9500C19—C201.381 (3)
C7—C81.397 (4)C20—C20i1.498 (4)
C7—H70.9500C21—C221.487 (3)
C8—C91.387 (3)C21—H21B0.9900
C8—C111.486 (3)C21—H21A0.9900
C9—C101.370 (3)C22—H22C0.9800
C9—H90.9500C22—H22A0.9800
C10—H100.9500C22—H22B0.9800
C11—C161.369 (4)
C19—O1—C21116.82 (19)C12—C13—C14121.7 (2)
N2—C2—C3176.6 (14)C12—C13—H13119.1
N2'—C2'—C3178.8 (9)C14—C13—H13119.1
N1—C1—C3178.2 (3)C13—C14—C20122.9 (2)
C4—C3—C2124.0 (5)C13—C14—C15116.7 (2)
C4—C3—C2'123.7 (4)C20—C14—C15120.4 (2)
C2—C3—C2'25.8 (5)C16—C15—C17121.7 (2)
C4—C3—C1120.7 (2)C16—C15—C14120.0 (2)
C2—C3—C1113.0 (6)C17—C15—C14118.3 (2)
C2'—C3—C1114.5 (4)C11—C16—C15122.6 (2)
C3—C4—C5130.8 (2)C11—C16—H16118.7
C3—C4—H4114.6C15—C16—H16118.7
C5—C4—H4114.6C18—C17—C15121.3 (2)
C10—C5—C6117.5 (2)C18—C17—H17119.3
C10—C5—C4116.4 (2)C15—C17—H17119.3
C6—C5—C4126.1 (2)C17—C18—C19120.3 (2)
C7—C6—C5120.0 (2)C17—C18—H18119.8
C7—C6—H6120.0C19—C18—H18119.8
C5—C6—H6120.0O1—C19—C20117.2 (2)
C6—C7—C8122.3 (2)O1—C19—C18121.6 (2)
C6—C7—H7118.9C20—C19—C18121.1 (2)
C8—C7—H7118.9C19—C20—C14118.5 (2)
C9—C8—C7116.9 (2)C19—C20—C20i121.5 (2)
C9—C8—C11120.8 (2)C14—C20—C20i119.9 (2)
C7—C8—C11122.3 (2)O1—C21—C22108.3 (2)
C10—C9—C8121.4 (3)O1—C21—H21B110.0
C10—C9—H9119.3C22—C21—H21B110.0
C8—C9—H9119.3O1—C21—H21A110.0
C9—C10—C5121.9 (2)C22—C21—H21A110.0
C9—C10—H10119.1H21B—C21—H21A108.4
C5—C10—H10119.1C21—C22—H22C109.5
C16—C11—C12117.1 (2)C21—C22—H22A109.5
C16—C11—C8121.9 (2)H22C—C22—H22A109.5
C12—C11—C8121.1 (2)C21—C22—H22B109.5
C13—C12—C11122.0 (2)H22C—C22—H22B109.5
C13—C12—H12119.0H22A—C22—H22B109.5
C11—C12—H12119.0
N2—C2—C3—C4137 (20)C8—C11—C12—C13179.6 (2)
N2—C2—C3—C2'39 (19)C11—C12—C13—C140.8 (4)
N2—C2—C3—C160 (21)C12—C13—C14—C20178.8 (2)
N2'—C2'—C3—C4117 (46)C12—C13—C14—C150.9 (3)
N2'—C2'—C3—C218 (45)C13—C14—C15—C160.5 (3)
N2'—C2'—C3—C175 (46)C20—C14—C15—C16179.2 (2)
N1—C1—C3—C4134 (10)C13—C14—C15—C17179.8 (2)
N1—C1—C3—C262 (10)C20—C14—C15—C170.1 (4)
N1—C1—C3—C2'34 (10)C12—C11—C16—C150.1 (4)
C2—C3—C4—C520.8 (11)C8—C11—C16—C15179.3 (2)
C2'—C3—C4—C510.3 (8)C17—C15—C16—C11179.3 (2)
C1—C3—C4—C5177.6 (3)C14—C15—C16—C110.1 (4)
C3—C4—C5—C10175.7 (3)C16—C15—C17—C18178.1 (3)
C3—C4—C5—C65.3 (5)C14—C15—C17—C181.1 (4)
C10—C5—C6—C71.4 (4)C15—C17—C18—C190.5 (4)
C4—C5—C6—C7179.7 (3)C21—O1—C19—C20172.0 (2)
C5—C6—C7—C80.5 (4)C21—O1—C19—C188.0 (3)
C6—C7—C8—C91.2 (4)C17—C18—C19—O1178.8 (2)
C6—C7—C8—C11178.3 (2)C17—C18—C19—C201.2 (4)
C7—C8—C9—C100.1 (4)O1—C19—C20—C14177.8 (2)
C11—C8—C9—C10179.6 (3)C18—C19—C20—C142.2 (4)
C8—C9—C10—C52.1 (5)O1—C19—C20—C20i1.4 (3)
C6—C5—C10—C92.7 (4)C18—C19—C20—C20i178.6 (2)
C4—C5—C10—C9178.3 (3)C13—C14—C20—C19178.2 (2)
C9—C8—C11—C1617.4 (4)C15—C14—C20—C191.5 (3)
C7—C8—C11—C16163.2 (3)C13—C14—C20—C20i1.7 (3)
C9—C8—C11—C12162.0 (2)C15—C14—C20—C20i177.98 (19)
C7—C8—C11—C1217.5 (4)C19—O1—C21—C22176.2 (2)
C16—C11—C12—C130.3 (4)
Symmetry code: (i) y, x, z.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C11-C16 and C14/C15/C17–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···Cg3ii0.952.903.710 (3)144
C10—H10···Cg2ii0.952.503.363 (3)150
C22—H22C···Cg2iii0.982.943.769 (3)143
Symmetry codes: (ii) x+1/2, y1/2, z1/4; (iii) y+1, x, z.

Experimental details

Crystal data
Chemical formulaC44H30N4O2
Mr646.72
Crystal system, space groupTetragonal, P43212
Temperature (K)173
a, c (Å)8.4556 (12), 46.991 (9)
V3)3359.7 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.24 × 0.15 × 0.08
Data collection
DiffractometerRigaku MM007HF
diffractometer with Saturn724+ CCD detector
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2008)
Tmin, Tmax0.789, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11840, 1901, 1825
Rint0.043
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.095, 1.15
No. of reflections1901
No. of parameters246
No. of restraints40
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.14

Computer programs: CrystalClear (Rigaku/MSC, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C11-C16 and C14/C15/C17–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···Cg3i0.952.903.710 (3)144
C10—H10···Cg2i0.952.503.363 (3)150
C22—H22C···Cg2ii0.982.943.769 (3)143
Symmetry codes: (i) x+1/2, y1/2, z1/4; (ii) y+1, x, z.
 

Acknowledgements

This project was supported by the Natural Science Foundation of Anhui Province (KJ2011Z340).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBrunel, J. M. (2006). Chem. Rev. 105, 857–897.  Web of Science CrossRef Google Scholar
First citationHu, Q.-S., Vitharana, D., Zheng, X.-F., Wu, C., Kwan, C. M. S. & Pu, L. (1996). J. Org. Chem. 61, 8370–8377.  CrossRef CAS Web of Science Google Scholar
First citationLou, S., Moquist, P. N. & Schaus, S. E. (2006). J. Am. Chem. Soc. 128, 12660–12661.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds