organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Carbamoyl-3,4,5,6-tetra­fluoro­benzoic acid

aDepartment of Chemistry, Jinan University, Guangzhou 510632, People's Republic of China
*Correspondence e-mail: txush@jnu.edu.cn

(Received 8 June 2012; accepted 22 August 2012; online 5 September 2012)

In the title compound, C8H3F4NO3, the carb­oxy group lies nearly in the plane of the ring with a C—C—C—O torsion angle of −10.5 (4)°. The carbamoyl group is almost perpendic­ular to the benzene ring [C—C—C—O torsion angle = 82.2 (4) °]. In the crystal, molecules are linked via O—H⋯O and N—H⋯O hydrogen bonds involving the carbamoyl and carb­oxy groups.

Related literature

For general background to the title compound and its preparation, see: Xu et al. (2008[Xu, W.-J., Liao, X.-J., Xu, S.-H., Diao, J.-Z., Du, B., Zhou, X.-L. & Pan, S.-S. (2008). Org. Lett. 10, 4569-4572.]); Li et al. (1999[Li, H. T., Jiang, X. H., Ye, Y. H., Fan, C. X., Todd, R. & Goodman, M. (1999). Org. Lett. 1, 91-93.]); Poshkus & Herweh (1957[Poshkus, A. C. & Herweh, J. E. (1957). J. Am. Chem. Soc. 79, 6127-6132.]); Cai et al. (1992[Cai, S.-X., Denis, J. G. & John, F. W. K. (1992). J. Org. Chem. 57, 1299-1304.]); Lee et al. (2005[Lee, J., Chubb, A. J., Moman, E., McLoughlin, B. M., Sharkey, C. T., Kelly, J. G., Nolan, K. B., Devocelle, M. & Fitzgerald, D. J. (2005). Org. Biomol. Chem., 3, 3678-3685.]); Guo et al. (2011[Guo, W., Liao, X.-J., Li, G.-Q. & Xu, S.-H. (2011). Acta Cryst. E67, o1511.]); Liao et al. (2011[Liao, X.-J., Guo, W. & Xu, S.-H. (2011). Acta Cryst. E67, o1732.]).

[Scheme 1]

Experimental

Crystal data
  • C8H3F4NO3

  • Mr = 237.11

  • Monoclinic, P 21 /c

  • a = 14.5872 (6) Å

  • b = 6.9193 (3) Å

  • c = 8.6129 (4) Å

  • β = 100.086 (4)°

  • V = 855.89 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.78 mm−1

  • T = 268 K

  • 0.42 × 0.31 × 0.17 mm

Data collection
  • Agilent Xcalibur Gemini ultra Sapphire-3 CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]) Tmin = 0.643, Tmax = 1.000

  • 2346 measured reflections

  • 1312 independent reflections

  • 1240 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.091

  • S = 1.14

  • 1312 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.82 1.78 2.5965 (18) 172
N1—H1A⋯O2ii 0.86 2.11 2.940 (2) 161
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The title compound, C8H3F4NO3 (Scheme 1, Fig. 1), as an intermediate in the synthesis of coupling reagent (Xu et al., 2008; Li et al., 1999; Poshkus & Herweh, 1957), was prepared by the reaction of 3,4,5,6-tetrafluorophthalic anhydride and ammonia gas at 268 K (Cai et al., 1992; Lee et al., 2005; Guo et al., 2011; Liao et al., 2011) with yield about 90%. The bond lengths and angles in the title molecule are unexceptional. The carboxyl group lies nearly in the plane of phenyl ring - torsion angle C6/C1/C8/O2 = -10.5 (4)°. The aminoacyl group is practically perpendicular to phenyl ring - torsion angle C1/C6/C7/O3 = 82.2 (4)°. In the crystal structure there are some intermolecular hydrogen bonds between the carbonyl- and amino-groups (Table 1) which form a network.

Related literature top

For general background to the title compound and its preparation, see: Xu et al. (2008); Li et al. (1999); Poshkus & Herweh (1957); Cai et al. (1992); Lee et al. (2005); Guo et al. (2011); Liao et al. (2011).

Experimental top

The 44.0 g 3,4,5,6-tetrafluorophthalic anhydride and 700 ml tetrahydrofuran were mixed to form a solution. After stirred solution was cooled to 268 K, ammonia gas was added at the pressure of 0.1 MPa for 1.5 h formed white solid. The white solid residue was dissolved in 350 ml distilled water, tetrahydrofuran was removed in vacuum at room temperature. Hydrochloric acid (2N) was added to adjust solution pH1 at 268 K, after the resulting the title product was obtained by filtration. The crude product was recrystallized from distilled water and methanol to give colourless crystals of the title product.

Refinement top

All H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with distances: 0.86Å (NH2), 0.82Å (OH) with Uiso(H) = 1.2Ueq(N) and Uiso(H) = 1.5Ueq(O) .

Structure description top

2-Carbamoyl-3,4,5,6-tetrafluorobenzoic acid

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
(I) top
Crystal data top
C8H3F4NO3F(000) = 472
Mr = 237.11Dx = 1.840 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
a = 14.5872 (6) ÅCell parameters from 1702 reflections
b = 6.9193 (3) Åθ = 5.2–62.6°
c = 8.6129 (4) ŵ = 1.78 mm1
β = 100.086 (4)°T = 268 K
V = 855.89 (7) Å3Block, colourless
Z = 40.42 × 0.31 × 0.17 mm
Data collection top
Agilent Xcalibur Gemini ultra Sapphire-3 CCD
diffractometer
1312 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source1240 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.013
Detector resolution: 16.0288 pixels mm-1θmax = 62.7°, θmin = 7.1°
ω scansh = 1516
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 47
Tmin = 0.643, Tmax = 1.000l = 99
2346 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.5536P]
where P = (Fo2 + 2Fc2)/3
1312 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C8H3F4NO3V = 855.89 (7) Å3
Mr = 237.11Z = 4
Monoclinic, P21/cCu Kα radiation
a = 14.5872 (6) ŵ = 1.78 mm1
b = 6.9193 (3) ÅT = 268 K
c = 8.6129 (4) Å0.42 × 0.31 × 0.17 mm
β = 100.086 (4)°
Data collection top
Agilent Xcalibur Gemini ultra Sapphire-3 CCD
diffractometer
1312 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1240 reflections with I > 2σ(I)
Tmin = 0.643, Tmax = 1.000Rint = 0.013
2346 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.14Δρmax = 0.23 e Å3
1312 reflectionsΔρmin = 0.17 e Å3
146 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro (Agilent Technologies, 2011); Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.27285 (8)0.04074 (16)0.69216 (13)0.0293 (3)
F40.11543 (8)0.66145 (18)0.36824 (14)0.0328 (3)
F20.09507 (9)0.02888 (19)0.54379 (17)0.0416 (4)
O30.39455 (9)0.41810 (19)0.84775 (14)0.0219 (3)
F30.01714 (8)0.3444 (2)0.38240 (16)0.0394 (4)
O10.27710 (9)0.8186 (2)0.40108 (15)0.0253 (4)
H10.31570.90230.39290.038*
O20.39129 (9)0.7021 (2)0.58320 (16)0.0280 (4)
N10.45248 (11)0.2650 (2)0.65574 (18)0.0234 (4)
H1A0.50590.24930.71500.028*
H1B0.44310.22270.56040.028*
C10.25134 (12)0.5238 (3)0.5229 (2)0.0182 (4)
C50.23637 (13)0.1978 (3)0.6119 (2)0.0213 (4)
C60.29012 (12)0.3598 (3)0.6086 (2)0.0173 (4)
C40.14478 (14)0.1886 (3)0.5367 (2)0.0266 (5)
C30.10574 (13)0.3486 (3)0.4559 (2)0.0259 (5)
C80.31341 (12)0.6916 (3)0.5074 (2)0.0182 (4)
C20.15862 (13)0.5134 (3)0.4498 (2)0.0223 (4)
C70.38555 (12)0.3533 (3)0.7106 (2)0.0174 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0368 (7)0.0204 (6)0.0312 (6)0.0008 (5)0.0074 (5)0.0066 (5)
F40.0216 (6)0.0325 (7)0.0399 (7)0.0031 (5)0.0069 (5)0.0090 (5)
F20.0326 (7)0.0308 (7)0.0608 (9)0.0166 (6)0.0066 (6)0.0017 (6)
O30.0257 (7)0.0245 (7)0.0145 (7)0.0056 (6)0.0007 (5)0.0019 (5)
F30.0163 (6)0.0463 (8)0.0514 (8)0.0076 (5)0.0056 (5)0.0016 (6)
O10.0235 (7)0.0248 (8)0.0254 (7)0.0043 (6)0.0017 (6)0.0084 (6)
O20.0205 (7)0.0282 (8)0.0318 (8)0.0053 (6)0.0053 (6)0.0070 (6)
N10.0191 (8)0.0329 (10)0.0168 (8)0.0069 (7)0.0009 (6)0.0051 (7)
C10.0191 (9)0.0204 (10)0.0153 (9)0.0009 (7)0.0036 (7)0.0015 (7)
C50.0257 (10)0.0190 (10)0.0203 (9)0.0030 (8)0.0068 (8)0.0016 (7)
C60.0186 (9)0.0200 (10)0.0140 (8)0.0013 (7)0.0052 (7)0.0020 (7)
C40.0237 (10)0.0265 (11)0.0312 (11)0.0084 (8)0.0090 (8)0.0043 (9)
C30.0153 (9)0.0326 (12)0.0288 (10)0.0020 (8)0.0013 (8)0.0046 (9)
C80.0191 (9)0.0198 (10)0.0150 (9)0.0012 (7)0.0015 (7)0.0004 (7)
C20.0187 (9)0.0262 (11)0.0208 (9)0.0036 (8)0.0004 (7)0.0014 (8)
C70.0213 (9)0.0157 (9)0.0153 (9)0.0004 (7)0.0032 (7)0.0023 (7)
Geometric parameters (Å, º) top
F1—C51.346 (2)N1—C71.308 (2)
F4—C21.336 (2)C1—C61.416 (3)
F2—C41.329 (2)C1—C81.493 (3)
O3—C71.249 (2)C1—C21.390 (3)
F3—C31.336 (2)C5—C61.371 (3)
O1—H10.8200C5—C41.380 (3)
O1—C81.312 (2)C6—C71.511 (2)
O2—C81.209 (2)C4—C31.377 (3)
N1—H1A0.8600C3—C21.383 (3)
N1—H1B0.8600
C8—O1—H1109.5F2—C4—C3120.74 (17)
H1A—N1—H1B120.0C3—C4—C5118.76 (18)
C7—N1—H1A120.0F3—C3—C4120.14 (18)
C7—N1—H1B120.0F3—C3—C2119.97 (18)
C6—C1—C8118.48 (16)C4—C3—C2119.88 (17)
C2—C1—C6117.56 (17)O1—C8—C1113.98 (15)
C2—C1—C8123.83 (17)O2—C8—O1124.27 (17)
F1—C5—C6119.64 (16)O2—C8—C1121.69 (16)
F1—C5—C4117.84 (17)F4—C2—C1122.02 (17)
C6—C5—C4122.52 (18)F4—C2—C3115.95 (16)
C1—C6—C7124.76 (16)C3—C2—C1122.02 (18)
C5—C6—C1119.22 (16)O3—C7—N1123.22 (17)
C5—C6—C7115.81 (16)O3—C7—C6118.21 (15)
F2—C4—C5120.50 (18)N1—C7—C6118.29 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.821.782.5965 (18)172
N1—H1A···O3ii0.862.823.281 (2)116
N1—H1A···O2ii0.862.112.940 (2)161
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC8H3F4NO3
Mr237.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)268
a, b, c (Å)14.5872 (6), 6.9193 (3), 8.6129 (4)
β (°) 100.086 (4)
V3)855.89 (7)
Z4
Radiation typeCu Kα
µ (mm1)1.78
Crystal size (mm)0.42 × 0.31 × 0.17
Data collection
DiffractometerAgilent Xcalibur Gemini ultra Sapphire-3 CCD
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.643, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
2346, 1312, 1240
Rint0.013
(sin θ/λ)max1)0.576
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.091, 1.14
No. of reflections1312
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.17

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.821.782.5965 (18)172.4
N1—H1A···O3ii0.862.823.281 (2)115.6
N1—H1A···O2ii0.862.112.940 (2)161.2
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y1/2, z+3/2.
 

Acknowledgements

This work was supported by grants from the National Natural Science Fund (Nos. 21172094 and 20772048), Guangdong Science and Technology Plan projects (No. 2011 A080504007) and Tianhe Science and Technology Plan projects (No. 104ZH134).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationCai, S.-X., Denis, J. G. & John, F. W. K. (1992). J. Org. Chem. 57, 1299–1304.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGuo, W., Liao, X.-J., Li, G.-Q. & Xu, S.-H. (2011). Acta Cryst. E67, o1511.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, J., Chubb, A. J., Moman, E., McLoughlin, B. M., Sharkey, C. T., Kelly, J. G., Nolan, K. B., Devocelle, M. & Fitzgerald, D. J. (2005). Org. Biomol. Chem., 3, 3678–3685.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, H. T., Jiang, X. H., Ye, Y. H., Fan, C. X., Todd, R. & Goodman, M. (1999). Org. Lett. 1, 91–93.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiao, X.-J., Guo, W. & Xu, S.-H. (2011). Acta Cryst. E67, o1732.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPoshkus, A. C. & Herweh, J. E. (1957). J. Am. Chem. Soc. 79, 6127–6132.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, W.-J., Liao, X.-J., Xu, S.-H., Diao, J.-Z., Du, B., Zhou, X.-L. & Pan, S.-S. (2008). Org. Lett. 10, 4569–4572.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds