organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Bromo-1-(3-fluoro­phenyl­sulfon­yl)-2-methyl­naphtho­[2,1-b]furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 4 September 2012; accepted 25 September 2012; online 29 September 2012)

In the title compound, C19H12BrFO3S, the 3-fluoro­phenyl ring makes a dihedral angle of 80.85 (5)° with the mean plane [r.m.s. deviation = 0.009 (2)Å] of the naphtho­furan fragment. In the crystal, mol­ecules are linked by slipped ππ inter­actions between the furan and the outer benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.756 (3) Å and slippage of 1.189 (3) Å].

Related literature

For background information and the crystal structures of related compounds, see: Choi et al. (2008[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o1158.], 2011[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o280.]).

[Scheme 1]

Experimental

Crystal data
  • C19H12BrFO3S

  • Mr = 419.26

  • Triclinic, [P \overline 1]

  • a = 7.7141 (2) Å

  • b = 8.1619 (2) Å

  • c = 13.4046 (4) Å

  • α = 74.277 (2)°

  • β = 86.410 (2)°

  • γ = 89.044 (2)°

  • V = 810.80 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.69 mm−1

  • T = 173 K

  • 0.28 × 0.24 × 0.23 mm

Data collection
  • Bruker SMART APEX II CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.573, Tmax = 0.746

  • 15010 measured reflections

  • 4031 independent reflections

  • 3483 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.075

  • S = 1.06

  • 4031 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing study of 7-bromo-2-methylnaphtho[2,1-b]furan derivatives containing 1-(4-methylphenylsulfonyl) (Choi et al., 2008) and 1-(4-fluorophenylsulfonyl) (Choi et al., 2011) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the naphthofuran unit is essentially planar, with a mean deviation of 0.009 (2)Å from the least-squares plane defined by the thirteen constituent atoms. The dihedral angle formed by the mean plane of the naphthofuran ring and the 3-fluorophenyl ring is 80.85 (5)°. In the crystal structure (Fig. 2), molecules are connected by slipped π···π interactions between the furan and outer benzene rings of neighbouring molecules, with a Cg1···Cg2i distance of 3.756 (3)Å and an interplanar distance of 3.563 (3)Å resulting in a slippage of 1.189 (3)Å (Cg1 and Cg2 are the centroids of the C1/C2/C11/O1/C12 furan ring and the C3–C8 benzene ring, respectively). Symmetry code: (i) -x+2, -y+1, -z+1.

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2008, 2011).

Experimental top

The 77% 3-chloroperoxybenzoic acid (336 mg, 1.5 mmol) was added in small portions to a stirred solution of 7-bromo-1-(3-fluorophenylsulfanyl)-2-methylnaphtho[2,1-b]furan (271 mg, 0.7 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 10 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (benzene) to afford the title compound as a colourless solid - yield 67%, m.p. 472–473 K; Rf = 0.68 (benzene). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95Å for aryl and 0.98Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl H atoms and Uiso(H) = 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized rotationally.

Structure description top

As a part of our ongoing study of 7-bromo-2-methylnaphtho[2,1-b]furan derivatives containing 1-(4-methylphenylsulfonyl) (Choi et al., 2008) and 1-(4-fluorophenylsulfonyl) (Choi et al., 2011) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the naphthofuran unit is essentially planar, with a mean deviation of 0.009 (2)Å from the least-squares plane defined by the thirteen constituent atoms. The dihedral angle formed by the mean plane of the naphthofuran ring and the 3-fluorophenyl ring is 80.85 (5)°. In the crystal structure (Fig. 2), molecules are connected by slipped π···π interactions between the furan and outer benzene rings of neighbouring molecules, with a Cg1···Cg2i distance of 3.756 (3)Å and an interplanar distance of 3.563 (3)Å resulting in a slippage of 1.189 (3)Å (Cg1 and Cg2 are the centroids of the C1/C2/C11/O1/C12 furan ring and the C3–C8 benzene ring, respectively). Symmetry code: (i) -x+2, -y+1, -z+1.

For background information and the crystal structures of related compounds, see: Choi et al. (2008, 2011).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of π···π interactions (dotted lines) in the crystal structure of the title compound. All H atoms were omitted for clarity. Symmetry code: (i) -x+2, -y+1, -z+1.
7-Bromo-1-(3-fluorophenylsulfonyl)-2-methylnaphtho[2,1-b]furan top
Crystal data top
C19H12BrFO3SZ = 2
Mr = 419.26F(000) = 420
Triclinic, P1Dx = 1.717 Mg m3
Hall symbol: -P 1Melting point = 472–473 K
a = 7.7141 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.1619 (2) ÅCell parameters from 7012 reflections
c = 13.4046 (4) Åθ = 2.6–28.3°
α = 74.277 (2)°µ = 2.69 mm1
β = 86.410 (2)°T = 173 K
γ = 89.044 (2)°Block, colourless
V = 810.80 (4) Å30.28 × 0.24 × 0.23 mm
Data collection top
Bruker SMART APEX II CCD
diffractometer
4031 independent reflections
Radiation source: rotating anode3483 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.047
Detector resolution: 10.0 pixels mm-1θmax = 28.3°, θmin = 1.6°
φ– and ω–scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1010
Tmin = 0.573, Tmax = 0.746l = 1716
15010 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0258P)2 + 0.4345P]
where P = (Fo2 + 2Fc2)/3
4031 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C19H12BrFO3Sγ = 89.044 (2)°
Mr = 419.26V = 810.80 (4) Å3
Triclinic, P1Z = 2
a = 7.7141 (2) ÅMo Kα radiation
b = 8.1619 (2) ŵ = 2.69 mm1
c = 13.4046 (4) ÅT = 173 K
α = 74.277 (2)°0.28 × 0.24 × 0.23 mm
β = 86.410 (2)°
Data collection top
Bruker SMART APEX II CCD
diffractometer
4031 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3483 reflections with I > 2σ(I)
Tmin = 0.573, Tmax = 0.746Rint = 0.047
15010 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.06Δρmax = 0.49 e Å3
4031 reflectionsΔρmin = 0.40 e Å3
227 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.57980 (3)0.18645 (3)0.314671 (17)0.03502 (8)
S10.84031 (6)0.35008 (6)0.82867 (4)0.02420 (11)
F10.3382 (2)0.0623 (2)0.89171 (12)0.0539 (4)
O10.90963 (19)0.80950 (18)0.64831 (11)0.0290 (3)
O20.92123 (19)0.21364 (19)0.79427 (12)0.0314 (3)
O30.90169 (19)0.3885 (2)0.91876 (11)0.0325 (3)
C10.8517 (2)0.5360 (2)0.72789 (15)0.0234 (4)
C20.8204 (2)0.5642 (2)0.61823 (15)0.0225 (4)
C30.7631 (2)0.4684 (2)0.55178 (15)0.0215 (4)
C40.7185 (3)0.2941 (2)0.58317 (15)0.0261 (4)
H40.72720.23230.65380.031*
C50.6630 (3)0.2119 (3)0.51466 (16)0.0275 (4)
H50.63250.09480.53760.033*
C60.6516 (2)0.3023 (3)0.41023 (16)0.0253 (4)
C70.6938 (3)0.4703 (3)0.37573 (16)0.0270 (4)
H70.68520.52860.30450.032*
C80.7502 (2)0.5582 (2)0.44463 (15)0.0234 (4)
C90.7940 (3)0.7335 (3)0.40720 (16)0.0274 (4)
H90.78450.78930.33570.033*
C100.8488 (3)0.8229 (3)0.47063 (16)0.0276 (4)
H100.87900.93990.44560.033*
C110.8588 (2)0.7340 (2)0.57511 (16)0.0247 (4)
C120.9047 (3)0.6874 (3)0.74099 (16)0.0277 (4)
C130.9565 (3)0.7507 (3)0.82888 (19)0.0394 (5)
H13A1.07690.71760.84360.059*
H13B0.88010.70120.89060.059*
H13C0.94670.87510.81040.059*
C140.6173 (2)0.2986 (3)0.85656 (14)0.0238 (4)
C150.5063 (3)0.4128 (3)0.88799 (16)0.0289 (4)
H150.54630.52230.88790.035*
C160.3356 (3)0.3642 (3)0.91954 (17)0.0354 (5)
H160.25750.44160.94040.043*
C170.2788 (3)0.2043 (3)0.92085 (17)0.0363 (5)
H170.16230.17040.94310.044*
C180.3928 (3)0.0953 (3)0.88949 (17)0.0349 (5)
C190.5630 (3)0.1383 (3)0.85604 (16)0.0298 (4)
H190.63940.06120.83360.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04802 (14)0.03053 (13)0.02960 (12)0.00014 (9)0.00906 (9)0.01191 (9)
S10.0227 (2)0.0285 (3)0.0205 (2)0.00142 (18)0.00143 (18)0.00511 (19)
F10.0640 (10)0.0522 (9)0.0498 (9)0.0291 (8)0.0038 (8)0.0209 (7)
O10.0344 (8)0.0268 (7)0.0263 (7)0.0069 (6)0.0010 (6)0.0084 (6)
O20.0297 (7)0.0319 (8)0.0309 (8)0.0074 (6)0.0006 (6)0.0064 (6)
O30.0311 (7)0.0439 (9)0.0238 (7)0.0008 (7)0.0066 (6)0.0101 (7)
C10.0226 (9)0.0264 (10)0.0206 (9)0.0019 (7)0.0018 (7)0.0061 (8)
C20.0218 (9)0.0231 (9)0.0219 (9)0.0006 (7)0.0024 (7)0.0055 (7)
C30.0180 (8)0.0241 (9)0.0217 (9)0.0011 (7)0.0024 (7)0.0056 (7)
C40.0311 (10)0.0240 (10)0.0215 (9)0.0004 (8)0.0007 (8)0.0039 (8)
C50.0335 (10)0.0218 (10)0.0264 (10)0.0009 (8)0.0005 (8)0.0052 (8)
C60.0244 (9)0.0295 (10)0.0245 (10)0.0013 (8)0.0028 (8)0.0114 (8)
C70.0288 (10)0.0285 (10)0.0223 (10)0.0029 (8)0.0028 (8)0.0044 (8)
C80.0220 (9)0.0249 (10)0.0219 (9)0.0014 (7)0.0005 (7)0.0047 (8)
C90.0302 (10)0.0261 (10)0.0224 (10)0.0008 (8)0.0013 (8)0.0007 (8)
C100.0286 (10)0.0228 (10)0.0288 (10)0.0038 (8)0.0022 (8)0.0030 (8)
C110.0233 (9)0.0248 (10)0.0263 (10)0.0028 (7)0.0017 (8)0.0081 (8)
C120.0275 (10)0.0310 (11)0.0249 (10)0.0034 (8)0.0034 (8)0.0090 (8)
C130.0503 (14)0.0389 (13)0.0328 (12)0.0120 (11)0.0007 (10)0.0160 (10)
C140.0245 (9)0.0287 (10)0.0161 (9)0.0011 (8)0.0013 (7)0.0021 (7)
C150.0287 (10)0.0309 (11)0.0250 (10)0.0022 (8)0.0013 (8)0.0041 (8)
C160.0276 (10)0.0470 (14)0.0281 (11)0.0073 (10)0.0001 (9)0.0050 (10)
C170.0250 (10)0.0559 (15)0.0252 (11)0.0068 (10)0.0041 (8)0.0053 (10)
C180.0413 (12)0.0402 (12)0.0224 (10)0.0150 (10)0.0042 (9)0.0056 (9)
C190.0363 (11)0.0321 (11)0.0209 (10)0.0009 (9)0.0005 (8)0.0075 (8)
Geometric parameters (Å, º) top
Br1—C61.8986 (19)C7—H70.9500
S1—O21.4358 (15)C8—C91.421 (3)
S1—O31.4363 (15)C9—C101.351 (3)
S1—C11.736 (2)C9—H90.9500
S1—C141.770 (2)C10—C111.398 (3)
F1—C181.352 (3)C10—H100.9500
O1—C121.365 (3)C12—C131.487 (3)
O1—C111.371 (2)C13—H13A0.9800
C1—C121.367 (3)C13—H13B0.9800
C1—C21.460 (3)C13—H13C0.9800
C2—C111.378 (3)C14—C191.382 (3)
C2—C31.428 (3)C14—C151.386 (3)
C3—C41.412 (3)C15—C161.388 (3)
C3—C81.434 (3)C15—H150.9500
C4—C51.367 (3)C16—C171.379 (3)
C4—H40.9500C16—H160.9500
C5—C61.402 (3)C17—C181.369 (3)
C5—H50.9500C17—H170.9500
C6—C71.361 (3)C18—C191.380 (3)
C7—C81.406 (3)C19—H190.9500
O2—S1—O3118.58 (9)C9—C10—C11116.43 (19)
O2—S1—C1109.57 (9)C9—C10—H10121.8
O3—S1—C1107.58 (9)C11—C10—H10121.8
O2—S1—C14107.07 (9)O1—C11—C2111.44 (17)
O3—S1—C14106.73 (9)O1—C11—C10122.61 (18)
C1—S1—C14106.70 (9)C2—C11—C10125.94 (19)
C12—O1—C11107.20 (15)O1—C12—C1109.96 (17)
C12—C1—C2107.40 (17)O1—C12—C13113.53 (18)
C12—C1—S1122.42 (15)C1—C12—C13136.5 (2)
C2—C1—S1130.10 (15)C12—C13—H13A109.5
C11—C2—C3118.08 (18)C12—C13—H13B109.5
C11—C2—C1104.00 (17)H13A—C13—H13B109.5
C3—C2—C1137.92 (18)C12—C13—H13C109.5
C4—C3—C2125.37 (18)H13A—C13—H13C109.5
C4—C3—C8117.97 (18)H13B—C13—H13C109.5
C2—C3—C8116.66 (17)C19—C14—C15121.94 (19)
C5—C4—C3121.73 (18)C19—C14—S1118.52 (15)
C5—C4—H4119.1C15—C14—S1119.23 (16)
C3—C4—H4119.1C14—C15—C16118.7 (2)
C4—C5—C6119.28 (19)C14—C15—H15120.6
C4—C5—H5120.4C16—C15—H15120.6
C6—C5—H5120.4C17—C16—C15120.5 (2)
C7—C6—C5121.39 (18)C17—C16—H16119.8
C7—C6—Br1119.44 (15)C15—C16—H16119.8
C5—C6—Br1119.15 (15)C18—C17—C16118.9 (2)
C6—C7—C8120.53 (18)C18—C17—H17120.5
C6—C7—H7119.7C16—C17—H17120.5
C8—C7—H7119.7F1—C18—C17119.1 (2)
C7—C8—C9119.75 (18)F1—C18—C19118.0 (2)
C7—C8—C3119.09 (18)C17—C18—C19122.9 (2)
C9—C8—C3121.16 (18)C18—C19—C14117.1 (2)
C10—C9—C8121.72 (19)C18—C19—H19121.5
C10—C9—H9119.1C14—C19—H19121.5
C8—C9—H9119.1
O2—S1—C1—C12132.60 (17)C12—O1—C11—C20.1 (2)
O3—S1—C1—C122.4 (2)C12—O1—C11—C10179.98 (18)
C14—S1—C1—C12111.81 (17)C3—C2—C11—O1179.17 (16)
O2—S1—C1—C243.6 (2)C1—C2—C11—O10.1 (2)
O3—S1—C1—C2173.78 (17)C3—C2—C11—C100.7 (3)
C14—S1—C1—C272.00 (19)C1—C2—C11—C10179.99 (19)
C12—C1—C2—C110.1 (2)C9—C10—C11—O1178.91 (18)
S1—C1—C2—C11176.57 (15)C9—C10—C11—C21.0 (3)
C12—C1—C2—C3178.9 (2)C11—O1—C12—C10.0 (2)
S1—C1—C2—C34.4 (3)C11—O1—C12—C13179.86 (17)
C11—C2—C3—C4179.95 (18)C2—C1—C12—O10.0 (2)
C1—C2—C3—C41.0 (4)S1—C1—C12—O1176.92 (13)
C11—C2—C3—C80.0 (3)C2—C1—C12—C13179.8 (2)
C1—C2—C3—C8178.9 (2)S1—C1—C12—C133.3 (4)
C2—C3—C4—C5179.37 (18)O2—S1—C14—C198.63 (18)
C8—C3—C4—C50.5 (3)O3—S1—C14—C19119.31 (16)
C3—C4—C5—C60.6 (3)C1—S1—C14—C19125.89 (16)
C4—C5—C6—C70.3 (3)O2—S1—C14—C15177.62 (15)
C4—C5—C6—Br1178.52 (15)O3—S1—C14—C1554.44 (18)
C5—C6—C7—C80.1 (3)C1—S1—C14—C1560.36 (18)
Br1—C6—C7—C8178.92 (14)C19—C14—C15—C160.1 (3)
C6—C7—C8—C9179.91 (18)S1—C14—C15—C16173.67 (16)
C6—C7—C8—C30.2 (3)C14—C15—C16—C170.9 (3)
C4—C3—C8—C70.1 (3)C15—C16—C17—C180.7 (3)
C2—C3—C8—C7179.79 (17)C16—C17—C18—F1179.29 (19)
C4—C3—C8—C9179.58 (17)C16—C17—C18—C190.3 (3)
C2—C3—C8—C90.5 (3)F1—C18—C19—C14178.59 (18)
C7—C8—C9—C10179.96 (19)C17—C18—C19—C141.0 (3)
C3—C8—C9—C100.2 (3)C15—C14—C19—C180.7 (3)
C8—C9—C10—C110.5 (3)S1—C14—C19—C18172.82 (15)

Experimental details

Crystal data
Chemical formulaC19H12BrFO3S
Mr419.26
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.7141 (2), 8.1619 (2), 13.4046 (4)
α, β, γ (°)74.277 (2), 86.410 (2), 89.044 (2)
V3)810.80 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.69
Crystal size (mm)0.28 × 0.24 × 0.23
Data collection
DiffractometerBruker SMART APEX II CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.573, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
15010, 4031, 3483
Rint0.047
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.075, 1.06
No. of reflections4031
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.40

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and DIAMOND (Brandenburg, 1998).

 

Acknowledgements

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan city.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o1158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o280.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds