metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-4,4′′-di­fluoro-1,1′:3′,1′′-terphenyl-2′-carboxylato-κ2O:O′)bis­[aqua(4,4′′-di­fluoro-1,1′:3′,1′′-terphenyl-2′-carboxyl­ato-κO)(pyridine-κN)cobalt(II)] di­ethyl ether disolvate

aDepartment of Bio & Nano Chemistry, College of Natural Sciences, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul 136-702, Republic of Korea, and bJeonju Center, Korea Basic Science Institute (KBSI), 664-14 Dukjin dong 1-ga, Dukjin-gu, Jeonju 561-756, Republic of Korea
*Correspondence e-mail: yoona@kookmin.ac.kr

(Received 23 August 2012; accepted 7 September 2012; online 15 September 2012)

The structure of the title compound, [Co2(C19H11F2O2)4(C5H5N)2(H2O)2]·2C4H10O, comprises two CoII atoms in a distorted square pyramidal coordination environment, straddling a crystallographic inversion center with a Co⋯Co separation of 3.1923 (15) Å. Each Co2+ cation is coordinated by three O atoms of three 4,4′′-difluoro-1,1′:3′,1′′-terphenyl-2′-carboxyl­ate ligands, one water O atom and one pyridine N atom, forming a CoO4N polyhedron. Strong intra­molecular O—H⋯O hydrogen bonds are observed between terminal metal-bound carboxyl­ate groups and water O atoms.

Related literature

For background to metal complexes with 4,4′′-difluoro-1,1′:3′,1′′-terphenyl-2′-carboxyl­ate ligands, see: Kannan et al. (2011[Kannan, S., Venkatachalam, G., Lee, H.-J., Kim, W., Koo, E., Do, Y. R., Yoon, S. (2011). Polyhedron, 30, 340-346.]) and to water-bridged di-cobalt complexes, see: Lee et al. (2002[Lee, D., Hung, P.-L., Spingler, B. & Lippard, S. J. (2002). Inorg. Chem. 41, 521-531.]). Bimetal systems, ligated by four carboxyl­ates and two histidines derived from the side chains of amino acids, are often found in metalloenzyme active sites, see: Holm et al. (1996[Holm, R. H., Kennepohl, P. & Solomon, E. I. (1996). Chem. Rev. 96, 2239-2314.]); Lippard & Berg (1994[Lippard, S. J. & Berg, J. M. (1994). Principles of Bioinorganic Chemistry. Mill Valley, CA: University Science Books.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2(C19H11F2O2)4(C5H5N)2(H2O)2]·2C4H10O

  • Mr = 1697.44

  • Triclinic, [P \overline 1]

  • a = 12.0347 (16) Å

  • b = 14.0597 (18) Å

  • c = 14.3547 (18) Å

  • α = 113.199 (3)°

  • β = 91.182 (3)°

  • γ = 113.336 (3)°

  • V = 2004.4 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 200 K

  • 0.24 × 0.16 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]) Tmin = 0.403, Tmax = 1

  • 15130 measured reflections

  • 9861 independent reflections

  • 4923 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.239

  • S = 1.06

  • 9861 reflections

  • 539 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.83 e Å−3

  • Δρmin = −1.68 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O4 2.025 (3)
Co1—O2 2.032 (3)
Co1—O3 2.040 (3)
Co1—N1 2.097 (4)
Co1—O5 2.230 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O6 0.84 1.87 2.602 (5) 145

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: SHELXTL (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; software used to prepare material for publication: SHELXTL[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.].

Supporting information


Comment top

In metalloenzyme active sites, bimetal systems, ligated by four carboxylates and two histidines derived from the side chains of amino acids, are often found (Lippard et al. 1994; Holm et al. 1996). Here, we report the structure of the water-containing di-nuclear Co(II) complex which crystallizes in the triclinic space group P1 with one half molecule in the asymmetric unit. Bond distances to the metal are given in Table 1 with the structure of the molecule shown in Fig 1. and its strong intramolecular O—H···O interactions detailed in Table 2.

Related literature top

For background to metal complexes with 4,4''-difluoro-1,1':3',1''-terphenyl -2'-carboxylate ligands, see: Kannan et al., (2011) and to water-bridged di-cobalt complexes, see: Lee et al. (2002). Bimetal systems, ligated by four carboxylates and two histidines derived from the side chains of amino acids, are often found in metalloenzyme active sites, see: Holm et al. (1996); Lippard & Berg (1994).

Experimental top

The sodium 4,4''-difluoro-1,1':3',1''-terphenyl-2'-carboxylate (0.200 g, 0.602 mmol) was added into cobalt(II) trifluoromethansulfonate (0.529 g, 1.21 mmol) in 10 ml of tetrahydrofuran at room temperature. After stirring for 30 min, triethylamine (0.122 g, 1.21 mmol) and pyridine (0.134 g, 1.69 mmol) were added. Immediately, the color of solution was changed from light violet to dark purple. After 30 min, water (0.0218 g, 1.21 mmol) was further added. The volatile fractions were removed under the reduced pressure. Resulting purple powder was dissolved in dicloromethane and insoluble fractions were filtered off. Purple block-shaped crystals were collected upon vapor diffusion of diethyl ether. Yield = 2.26% (0.0230 g)

Refinement top

H atoms were placed at calculated positions and refined as riding with C–H(aromatic) = 0.95 Å, C–H(CH3) = 0.98 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl groups. The O-bound H atoms of waters were located in a difference Fourier map and refined isotropically.

Structure description top

In metalloenzyme active sites, bimetal systems, ligated by four carboxylates and two histidines derived from the side chains of amino acids, are often found (Lippard et al. 1994; Holm et al. 1996). Here, we report the structure of the water-containing di-nuclear Co(II) complex which crystallizes in the triclinic space group P1 with one half molecule in the asymmetric unit. Bond distances to the metal are given in Table 1 with the structure of the molecule shown in Fig 1. and its strong intramolecular O—H···O interactions detailed in Table 2.

For background to metal complexes with 4,4''-difluoro-1,1':3',1''-terphenyl -2'-carboxylate ligands, see: Kannan et al., (2011) and to water-bridged di-cobalt complexes, see: Lee et al. (2002). Bimetal systems, ligated by four carboxylates and two histidines derived from the side chains of amino acids, are often found in metalloenzyme active sites, see: Holm et al. (1996); Lippard & Berg (1994).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering, the hydrogen bonds and with displacement ellipsoids drawn at the 50% probability level.
Bis(µ-4,4''-difluoro-1,1':3',1''-terphenyl-2'-carboxylato- κ2O:O')bis[aqua(4,4''-difluoro-1,1':3',1''-terphenyl- 2'-carboxylato-κO)(pyridine-κN)cobalt(II)] diethyl ether disolvate top
Crystal data top
[Co2(C19H11F2O2)4(C5H5N)2(H2O)2]·2C4H10OZ = 1
Mr = 1697.44F(000) = 878
Triclinic, P1Dx = 1.406 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.0347 (16) ÅCell parameters from 3108 reflections
b = 14.0597 (18) Åθ = 2.2–24.3°
c = 14.3547 (18) ŵ = 0.50 mm1
α = 113.199 (3)°T = 200 K
β = 91.182 (3)°Block, pink
γ = 113.336 (3)°0.24 × 0.16 × 0.10 mm
V = 2004.4 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
9861 independent reflections
Radiation source: sealed tube4923 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
phi and ω scansθmax = 28.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1615
Tmin = 0.403, Tmax = 1k = 1817
15130 measured reflectionsl = 1419
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.239H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0806P)2 + 3.4487P]
where P = (Fo2 + 2Fc2)/3
9861 reflections(Δ/σ)max < 0.001
539 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 1.68 e Å3
Crystal data top
[Co2(C19H11F2O2)4(C5H5N)2(H2O)2]·2C4H10Oγ = 113.336 (3)°
Mr = 1697.44V = 2004.4 (4) Å3
Triclinic, P1Z = 1
a = 12.0347 (16) ÅMo Kα radiation
b = 14.0597 (18) ŵ = 0.50 mm1
c = 14.3547 (18) ÅT = 200 K
α = 113.199 (3)°0.24 × 0.16 × 0.10 mm
β = 91.182 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
9861 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4923 reflections with I > 2σ(I)
Tmin = 0.403, Tmax = 1Rint = 0.042
15130 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.239H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.83 e Å3
9861 reflectionsΔρmin = 1.68 e Å3
539 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.60580 (6)0.59297 (6)0.60114 (5)0.0361 (2)
O50.4457 (3)0.4290 (3)0.5772 (3)0.0395 (8)
H50.42560.43470.63420.059*
O20.4692 (3)0.6439 (3)0.6041 (2)0.0379 (8)
N10.7461 (4)0.7539 (3)0.6268 (3)0.0371 (9)
O30.6498 (3)0.6358 (3)0.7548 (2)0.0387 (8)
O40.6902 (3)0.4936 (3)0.5279 (2)0.0381 (8)
C10.3618 (5)0.6013 (4)0.5535 (4)0.0354 (11)
C290.8383 (5)0.7648 (5)0.5777 (4)0.0516 (14)
H290.84130.69720.52830.062*
O60.4785 (3)0.5124 (3)0.7781 (3)0.0457 (9)
C250.2179 (5)0.4920 (5)0.6837 (4)0.0466 (13)
H250.30310.54430.70980.056*
C220.2740 (6)0.8489 (5)0.6312 (4)0.0545 (15)
H220.30240.92170.63000.065*
C240.1389 (5)0.5206 (5)0.6390 (4)0.0422 (12)
C190.1880 (5)0.6339 (5)0.6338 (4)0.0462 (13)
C30.5839 (5)0.5962 (4)0.8106 (4)0.0369 (11)
C100.6781 (5)0.4879 (5)0.9112 (4)0.0410 (12)
C260.4369 (5)0.8181 (5)0.5376 (4)0.0452 (13)
C210.3327 (5)0.7785 (5)0.5877 (4)0.0440 (13)
C40.6390 (4)0.6573 (4)0.9245 (4)0.0365 (11)
C80.7213 (5)0.6549 (5)1.0786 (4)0.0528 (15)
H80.74500.61651.11090.063*
C130.7536 (5)0.4762 (5)0.8393 (4)0.0504 (14)
H130.79660.53800.82200.061*
C70.7322 (6)0.7639 (5)1.1381 (4)0.0543 (15)
H70.76400.80001.21070.065*
C140.6089 (5)0.8327 (4)0.9435 (4)0.0421 (12)
C180.4481 (6)0.8445 (5)0.8503 (4)0.0503 (14)
H180.36720.81010.80970.060*
C170.6448 (6)1.0092 (5)0.9324 (5)0.0564 (15)
H170.69831.08690.94780.068*
C50.6501 (5)0.7689 (5)0.9859 (4)0.0413 (12)
C200.2899 (5)0.6711 (4)0.5899 (4)0.0387 (12)
C90.6757 (5)0.6000 (4)0.9712 (4)0.0402 (12)
C160.6841 (5)0.9464 (5)0.9671 (4)0.0504 (14)
H160.76500.98261.00830.060*
C150.4889 (5)0.7821 (5)0.8853 (4)0.0455 (13)
H150.43470.70450.86960.055*
C120.6227 (6)0.2921 (5)0.8832 (5)0.0562 (15)
H120.57630.22780.89640.067*
C230.1297 (6)0.7061 (6)0.6760 (4)0.0572 (16)
H230.05930.68150.70470.069*
C110.6128 (5)0.3943 (5)0.9315 (5)0.0519 (14)
H110.56020.40050.97970.062*
C60.6975 (5)0.8205 (5)1.0934 (4)0.0489 (14)
H60.70540.89561.13540.059*
C280.7429 (5)0.8496 (4)0.6971 (4)0.0505 (14)
H280.67640.84230.73250.061*
F10.4869 (4)1.0186 (3)0.8430 (3)0.0703 (10)
F30.0045 (4)0.2143 (3)0.6617 (3)0.0938 (14)
F20.7149 (4)0.1870 (3)0.7706 (3)0.0806 (12)
C450.1733 (6)0.3890 (5)0.6903 (4)0.0535 (15)
H450.22730.36820.71850.064*
C390.0140 (5)0.4445 (6)0.6039 (4)0.0536 (15)
H390.04090.46380.57500.064*
C340.4377 (6)0.7469 (5)0.4357 (4)0.0508 (14)
H340.37040.67280.39850.061*
C440.5280 (6)0.9570 (5)0.8759 (4)0.0499 (14)
C410.0492 (7)0.3168 (5)0.6554 (5)0.0603 (17)
C380.5357 (6)0.7841 (5)0.3893 (4)0.0565 (16)
H380.53550.73640.32040.068*
C420.7665 (6)0.3747 (5)0.7925 (4)0.0581 (16)
H420.81990.36720.74510.070*
C400.0312 (6)0.3408 (6)0.6105 (5)0.0632 (17)
H400.11620.28750.58460.076*
C360.6355 (6)0.9644 (5)0.5419 (5)0.0586 (16)
H360.70291.03890.57710.070*
C370.6318 (7)0.8897 (5)0.4439 (5)0.0579 (16)
C430.7007 (6)0.2865 (5)0.8166 (5)0.0547 (15)
C330.1753 (6)0.8128 (6)0.6754 (5)0.0643 (18)
H330.13740.86220.70640.077*
C350.5366 (6)0.9270 (5)0.5876 (5)0.0577 (16)
H350.53700.97750.65530.069*
C320.9283 (6)0.9697 (6)0.6685 (6)0.0684 (19)
H320.99121.04400.68310.082*
C310.8321 (6)0.9566 (5)0.7190 (5)0.0620 (17)
H310.82751.02260.76960.074*
C300.9310 (6)0.8715 (6)0.5956 (5)0.0635 (17)
H300.99570.87690.55820.076*
F40.7304 (4)0.9255 (3)0.3996 (3)0.0778 (11)
O70.0379 (4)0.7330 (4)0.9186 (3)0.0700 (12)
C470.0130 (6)0.8100 (6)0.9638 (5)0.0666 (18)
H47A0.04620.87741.02630.080*
H47B0.08980.77180.98480.080*
C460.0415 (7)0.8488 (6)0.8852 (5)0.078 (2)
H46A0.03500.88690.86500.117*
H46B0.07720.90290.91590.117*
H46C0.10060.78170.82380.117*
C480.0575 (7)0.6834 (6)0.9825 (5)0.075 (2)
H48A0.02160.64170.99890.090*
H48B0.11630.74411.04830.090*
C490.1097 (7)0.6012 (7)0.9234 (6)0.083 (2)
H49A0.05260.54370.85700.125*
H49B0.12040.56220.96410.125*
H49C0.18990.64410.91090.125*
H20.461 (8)0.368 (8)0.558 (7)0.13 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0396 (4)0.0341 (4)0.0313 (3)0.0161 (3)0.0051 (3)0.0114 (3)
O50.037 (2)0.036 (2)0.0378 (19)0.0103 (17)0.0062 (16)0.0154 (16)
O20.041 (2)0.0329 (18)0.0312 (17)0.0115 (16)0.0016 (15)0.0108 (15)
N10.038 (2)0.038 (2)0.032 (2)0.013 (2)0.0040 (18)0.0151 (19)
O30.041 (2)0.047 (2)0.0231 (16)0.0160 (17)0.0015 (14)0.0142 (15)
O40.042 (2)0.039 (2)0.0347 (18)0.0213 (17)0.0067 (15)0.0138 (16)
C10.049 (3)0.030 (3)0.029 (2)0.018 (2)0.008 (2)0.015 (2)
C290.051 (3)0.048 (3)0.050 (3)0.020 (3)0.014 (3)0.018 (3)
O60.037 (2)0.042 (2)0.042 (2)0.0055 (17)0.0018 (16)0.0152 (17)
C250.046 (3)0.052 (3)0.036 (3)0.019 (3)0.005 (2)0.016 (3)
C220.063 (4)0.053 (4)0.055 (3)0.033 (3)0.012 (3)0.024 (3)
C240.047 (3)0.047 (3)0.027 (2)0.020 (3)0.014 (2)0.011 (2)
C190.046 (3)0.049 (3)0.036 (3)0.024 (3)0.002 (2)0.010 (2)
C30.043 (3)0.042 (3)0.031 (2)0.020 (3)0.007 (2)0.020 (2)
C100.036 (3)0.044 (3)0.039 (3)0.016 (2)0.004 (2)0.015 (2)
C260.065 (4)0.037 (3)0.036 (3)0.030 (3)0.005 (3)0.011 (2)
C210.059 (3)0.045 (3)0.037 (3)0.033 (3)0.011 (3)0.016 (2)
C40.035 (3)0.036 (3)0.034 (2)0.015 (2)0.009 (2)0.011 (2)
C80.061 (4)0.066 (4)0.033 (3)0.030 (3)0.008 (3)0.022 (3)
C130.050 (3)0.054 (4)0.042 (3)0.020 (3)0.011 (3)0.018 (3)
C70.062 (4)0.058 (4)0.031 (3)0.028 (3)0.006 (3)0.007 (3)
C140.047 (3)0.031 (3)0.039 (3)0.014 (2)0.009 (2)0.010 (2)
C180.064 (4)0.049 (3)0.040 (3)0.034 (3)0.007 (3)0.014 (3)
C170.064 (4)0.037 (3)0.068 (4)0.022 (3)0.028 (3)0.023 (3)
C50.040 (3)0.045 (3)0.032 (3)0.013 (2)0.011 (2)0.016 (2)
C200.045 (3)0.047 (3)0.030 (2)0.027 (3)0.004 (2)0.016 (2)
C90.040 (3)0.044 (3)0.037 (3)0.019 (2)0.012 (2)0.017 (2)
C160.048 (3)0.039 (3)0.050 (3)0.014 (3)0.015 (3)0.011 (3)
C150.050 (3)0.037 (3)0.043 (3)0.017 (3)0.005 (3)0.013 (2)
C120.056 (4)0.048 (4)0.067 (4)0.026 (3)0.013 (3)0.025 (3)
C230.054 (4)0.066 (4)0.054 (3)0.037 (3)0.010 (3)0.018 (3)
C110.049 (3)0.056 (4)0.062 (4)0.025 (3)0.019 (3)0.034 (3)
C60.055 (3)0.049 (3)0.035 (3)0.022 (3)0.007 (3)0.013 (3)
C280.056 (4)0.029 (3)0.047 (3)0.016 (3)0.008 (3)0.002 (2)
F10.111 (3)0.061 (2)0.065 (2)0.055 (2)0.026 (2)0.0334 (19)
F30.112 (4)0.066 (3)0.101 (3)0.022 (3)0.042 (3)0.051 (3)
F20.091 (3)0.055 (2)0.084 (3)0.044 (2)0.009 (2)0.008 (2)
C450.060 (4)0.057 (4)0.045 (3)0.023 (3)0.018 (3)0.027 (3)
C390.042 (3)0.074 (4)0.040 (3)0.024 (3)0.015 (3)0.020 (3)
C340.075 (4)0.045 (3)0.038 (3)0.032 (3)0.005 (3)0.018 (3)
C440.076 (4)0.047 (3)0.041 (3)0.040 (3)0.024 (3)0.020 (3)
C410.073 (5)0.049 (4)0.057 (4)0.018 (3)0.029 (3)0.029 (3)
C380.087 (5)0.049 (4)0.043 (3)0.039 (4)0.016 (3)0.020 (3)
C420.060 (4)0.058 (4)0.045 (3)0.027 (3)0.015 (3)0.010 (3)
C400.057 (4)0.062 (4)0.052 (4)0.011 (3)0.021 (3)0.022 (3)
C360.071 (4)0.043 (3)0.056 (4)0.021 (3)0.015 (3)0.021 (3)
C370.082 (5)0.053 (4)0.051 (3)0.035 (4)0.024 (3)0.029 (3)
C430.054 (4)0.044 (3)0.056 (4)0.025 (3)0.003 (3)0.009 (3)
C330.079 (5)0.068 (4)0.065 (4)0.055 (4)0.017 (4)0.024 (4)
C350.081 (5)0.047 (4)0.043 (3)0.031 (3)0.009 (3)0.014 (3)
C320.053 (4)0.047 (4)0.086 (5)0.000 (3)0.007 (4)0.034 (4)
C310.067 (4)0.036 (3)0.065 (4)0.016 (3)0.003 (3)0.013 (3)
C300.055 (4)0.057 (4)0.074 (4)0.014 (3)0.017 (3)0.035 (4)
F40.101 (3)0.070 (3)0.078 (3)0.041 (2)0.045 (2)0.043 (2)
O70.074 (3)0.083 (3)0.062 (3)0.043 (3)0.019 (2)0.033 (3)
C470.050 (4)0.059 (4)0.067 (4)0.014 (3)0.014 (3)0.015 (3)
C460.070 (5)0.083 (5)0.071 (5)0.042 (4)0.003 (4)0.018 (4)
C480.061 (4)0.081 (5)0.068 (4)0.020 (4)0.001 (4)0.031 (4)
C490.077 (5)0.100 (6)0.072 (5)0.047 (5)0.008 (4)0.029 (4)
Geometric parameters (Å, º) top
Co1—O42.025 (3)C17—H170.9500
Co1—O22.032 (3)C5—C61.409 (7)
Co1—O32.040 (3)C16—H160.9500
Co1—N12.097 (4)C15—H150.9500
Co1—O52.230 (4)C12—C431.356 (8)
O5—H50.8400C12—C111.383 (8)
O5—H20.89 (9)C12—H120.9500
O2—C11.250 (6)C23—C331.381 (9)
N1—C291.317 (7)C23—H230.9500
N1—C281.342 (6)C11—H110.9500
O3—C31.267 (6)C6—H60.9500
O4—C1i1.273 (5)C28—C311.360 (8)
C1—O4i1.273 (5)C28—H280.9500
C1—C201.507 (7)F1—C441.367 (6)
C29—C301.385 (8)F3—C411.366 (7)
C29—H290.9500F2—C431.374 (6)
O6—O60.000 (8)C45—C411.372 (8)
O6—C31.255 (6)C45—H450.9500
C25—C451.375 (8)C39—C401.384 (9)
C25—C241.400 (7)C39—H390.9500
C25—H250.9500C34—C381.387 (8)
C22—C331.371 (9)C34—H340.9500
C22—C211.398 (7)C41—C401.366 (9)
C22—H220.9500C38—C371.357 (9)
C24—C391.388 (8)C38—H380.9500
C24—C191.498 (8)C42—C431.363 (9)
C19—C201.399 (7)C42—H420.9500
C19—C231.409 (7)C40—H400.9500
C3—O61.255 (6)C36—C371.372 (8)
C3—C41.499 (7)C36—C351.389 (9)
C10—C111.389 (7)C36—H360.9500
C10—C131.394 (7)C37—F41.369 (7)
C10—C91.481 (7)C33—H330.9500
C26—C351.394 (8)C35—H350.9500
C26—C341.413 (7)C32—C311.369 (9)
C26—C211.483 (8)C32—C301.379 (9)
C21—C201.403 (7)C32—H320.9500
C4—C91.411 (7)C31—H310.9500
C4—C51.413 (7)C30—H300.9500
C8—C71.378 (8)O7—C471.398 (7)
C8—C91.401 (7)O7—C481.418 (8)
C8—H80.9500C47—C461.519 (9)
C13—C421.392 (8)C47—H47A0.9900
C13—H130.9500C47—H47B0.9900
C7—C61.370 (8)C46—H46A0.9800
C7—H70.9500C46—H46B0.9800
C14—C161.380 (7)C46—H46C0.9800
C14—C151.399 (7)C48—C491.508 (9)
C14—C51.480 (7)C48—H48A0.9900
C18—C441.373 (8)C48—H48B0.9900
C18—C151.393 (7)C49—H49A0.9800
C18—H180.9500C49—H49B0.9800
C17—C441.356 (8)C49—H49C0.9800
C17—C161.385 (8)
O4—Co1—O2151.94 (13)C43—C12—C11117.9 (6)
O4—Co1—O3106.05 (13)C43—C12—H12121.0
O2—Co1—O399.17 (13)C11—C12—H12121.0
O4—Co1—N198.68 (15)C33—C23—C19119.8 (6)
O2—Co1—N193.70 (15)C33—C23—H23120.1
O3—Co1—N189.24 (14)C19—C23—H23120.1
O4—Co1—O586.10 (14)C12—C11—C10121.6 (6)
O2—Co1—O581.46 (14)C12—C11—H11119.2
O3—Co1—O590.60 (13)C10—C11—H11119.2
N1—Co1—O5175.07 (16)C7—C6—C5120.9 (5)
Co1—O5—H5109.5C7—C6—H6119.6
Co1—O5—H2116 (6)C5—C6—H6119.6
H5—O5—H2101.1N1—C28—C31121.9 (6)
C1—O2—Co1136.2 (3)N1—C28—H28119.1
C29—N1—C28118.7 (5)C31—C28—H28119.1
C29—N1—Co1122.5 (4)C41—C45—C25118.4 (6)
C28—N1—Co1118.8 (4)C41—C45—H45120.8
C3—O3—Co1129.3 (3)C25—C45—H45120.8
C1i—O4—Co1124.6 (3)C40—C39—C24120.7 (6)
O2—C1—O4i125.7 (4)C40—C39—H39119.6
O2—C1—C20116.9 (4)C24—C39—H39119.6
O4i—C1—C20117.3 (4)C38—C34—C26120.8 (6)
N1—C29—C30122.1 (6)C38—C34—H34119.6
N1—C29—H29118.9C26—C34—H34119.6
C30—C29—H29118.9C17—C44—F1119.0 (5)
O6—O6—C30 (10)C17—C44—C18122.9 (5)
C45—C25—C24120.7 (6)F1—C44—C18118.0 (6)
C45—C25—H25119.7F3—C41—C40118.4 (6)
C24—C25—H25119.7F3—C41—C45118.7 (6)
C33—C22—C21120.0 (6)C40—C41—C45122.9 (6)
C33—C22—H22120.0C37—C38—C34118.9 (5)
C21—C22—H22120.0C37—C38—H38120.5
C39—C24—C25118.8 (5)C34—C38—H38120.5
C39—C24—C19120.9 (5)C43—C42—C13118.3 (6)
C25—C24—C19120.2 (5)C43—C42—H42120.9
C20—C19—C23119.0 (5)C13—C42—H42120.9
C20—C19—C24122.6 (5)C41—C40—C39118.4 (6)
C23—C19—C24118.4 (5)C41—C40—H40120.8
O6—C3—O60.0 (5)C39—C40—H40120.8
O6—C3—O3125.4 (4)C37—C36—C35117.4 (6)
O6—C3—O3125.4 (4)C37—C36—H36121.3
O6—C3—C4118.8 (4)C35—C36—H36121.3
O6—C3—C4118.8 (4)C38—C37—F4119.2 (5)
O3—C3—C4115.7 (4)C38—C37—C36123.4 (6)
C11—C10—C13118.2 (5)F4—C37—C36117.4 (6)
C11—C10—C9120.6 (5)C12—C43—C42123.5 (6)
C13—C10—C9121.0 (5)C12—C43—F2118.7 (6)
C35—C26—C34117.2 (6)C42—C43—F2117.8 (6)
C35—C26—C21121.9 (5)C22—C33—C23121.4 (6)
C34—C26—C21120.9 (5)C22—C33—H33119.3
C22—C21—C20119.5 (5)C23—C33—H33119.3
C22—C21—C26118.9 (5)C36—C35—C26122.4 (5)
C20—C21—C26121.6 (4)C36—C35—H35118.8
C9—C4—C5119.8 (4)C26—C35—H35118.8
C9—C4—C3119.1 (4)C31—C32—C30117.8 (6)
C5—C4—C3121.1 (4)C31—C32—H32121.1
C7—C8—C9121.1 (5)C30—C32—H32121.1
C7—C8—H8119.5C28—C31—C32120.3 (6)
C9—C8—H8119.5C28—C31—H31119.9
C42—C13—C10120.5 (6)C32—C31—H31119.9
C42—C13—H13119.8C32—C30—C29119.2 (6)
C10—C13—H13119.8C32—C30—H30120.4
C6—C7—C8120.5 (5)C29—C30—H30120.4
C6—C7—H7119.8C47—O7—C48113.1 (5)
C8—C7—H7119.8O7—C47—C46108.7 (5)
C16—C14—C15118.2 (5)O7—C47—H47A110.0
C16—C14—C5120.9 (5)C46—C47—H47A110.0
C15—C14—C5120.7 (5)O7—C47—H47B110.0
C44—C18—C15118.2 (5)C46—C47—H47B110.0
C44—C18—H18120.9H47A—C47—H47B108.3
C15—C18—H18120.9C47—C46—H46A109.5
C44—C17—C16118.3 (6)C47—C46—H46B109.5
C44—C17—H17120.8H46A—C46—H46B109.5
C16—C17—H17120.8C47—C46—H46C109.5
C6—C5—C4118.9 (5)H46A—C46—H46C109.5
C6—C5—C14118.0 (5)H46B—C46—H46C109.5
C4—C5—C14123.0 (4)O7—C48—C49107.3 (6)
C19—C20—C21120.3 (5)O7—C48—H48A110.3
C19—C20—C1120.3 (5)C49—C48—H48A110.3
C21—C20—C1119.2 (5)O7—C48—H48B110.3
C8—C9—C4118.9 (5)C49—C48—H48B110.3
C8—C9—C10117.9 (5)H48A—C48—H48B108.5
C4—C9—C10123.0 (4)C48—C49—H49A109.5
C14—C16—C17121.7 (6)C48—C49—H49B109.5
C14—C16—H16119.1H49A—C49—H49B109.5
C17—C16—H16119.1C48—C49—H49C109.5
C18—C15—C14120.6 (5)H49A—C49—H49C109.5
C18—C15—H15119.7H49B—C49—H49C109.5
C14—C15—H15119.7
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O60.841.872.602 (5)145

Experimental details

Crystal data
Chemical formula[Co2(C19H11F2O2)4(C5H5N)2(H2O)2]·2C4H10O
Mr1697.44
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)12.0347 (16), 14.0597 (18), 14.3547 (18)
α, β, γ (°)113.199 (3), 91.182 (3), 113.336 (3)
V3)2004.4 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.24 × 0.16 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.403, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
15130, 9861, 4923
Rint0.042
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.239, 1.06
No. of reflections9861
No. of parameters539
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.83, 1.68

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—O42.025 (3)Co1—N12.097 (4)
Co1—O22.032 (3)Co1—O52.230 (4)
Co1—O32.040 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O60.841.872.602 (5)145.4
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0012349).

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationHolm, R. H., Kennepohl, P. & Solomon, E. I. (1996). Chem. Rev. 96, 2239–2314.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKannan, S., Venkatachalam, G., Lee, H.-J., Kim, W., Koo, E., Do, Y. R., Yoon, S. (2011). Polyhedron, 30, 340–346.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, D., Hung, P.-L., Spingler, B. & Lippard, S. J. (2002). Inorg. Chem. 41, 521–531.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLippard, S. J. & Berg, J. M. (1994). Principles of Bioinorganic Chemistry. Mill Valley, CA: University Science Books.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds