organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(9H-Fluoren-9-yl)-1,3-di­phenyl­propan-1-one

aSchool of Chemical and Environmental Engineering, Hubei University for Nationalities, Enshi, Hubei 445000, Peoples' Republic of China
*Correspondence e-mail: fu.feng@yahoo.com.cn

(Received 7 July 2012; accepted 17 July 2012; online 5 September 2012)

In the title compound, C28H22O, the fluorene ring system is approximately planar [maximum deviation = 0.044 (2) Å] and forms dihedral angles of 69.88 (6) and 89.46 (6)° with the phenyl rings. The crystal packing is stabilized by weak ππ stacking inter­actions, with centroid–centroid distances of 3.7172 (13) and 3.7827 (11) Å.

Related literature

For the structure of fluorene, see: Gerkin et al. (1984[Gerkin, R. E., Lundstedt, A. P. & Reppart, W. J. (1984). Acta Cryst. C40, 1892-1894.]). For background to the electronic properties of copolymers of poly(alkyl­fluorene), see: Kreyenschmidt et al. (1998[Kreyenschmidt, M., Klaerner, G., Fuhrer, T., Ashenhurst, J., Karg, S., Chen, W. D., Lee, V. Y., Scott, J. C. & Miller, R. D. (1998). Macromolecules, 31, 1099-1103.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C28H22O

  • Mr = 374.46

  • Monoclinic, C 2/c

  • a = 15.2433 (5) Å

  • b = 18.3109 (6) Å

  • c = 14.7468 (5) Å

  • β = 95.708 (6)°

  • V = 4095.7 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.16 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 13271 measured reflections

  • 5048 independent reflections

  • 4128 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.162

  • S = 1.22

  • 5048 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Since the publication of its solid-state structure (Gerkin et al., 1984), fluorene and its derivatives have received considerable attention due to their good optical properties and high luminescent efficiencies (Kreyenschmidt et al., 1998). To our knowledge, up to now 2150 structures of fluorene derivatives have been deposited at the Cambridge Crystallographic Data Center (CSD, Version 5.33 of November 2011, plus one update; Allen, 2002). As a contribution to this research field, the structure of the title compound is reported herein.

In the tile compound (Fig. 1), the three fused rings of the fluorene ring system are essentially coplanar, with a maximum deviation from the planarity of 0.044 (2) Å for atom C11. The fluorene moiety forms dihedral angles of 69.88 (6) and 89.46 (6)° with the C1–C6 and C23–C28 phenyl rings, respectively. In the crystal, molecules interact through weak ππ stacking interactions (Fig. 2): Cg1···Cg1i, 3.7827(119 Å; Cg2···Cg2i, 3.7172 (13) Å (Cg1 and Cg2 are the centroids of the C8/C9C14–C16 and C15–C20 rings; symmetry code: (i) -x, y, 1/2-z). There exist neither classical nor non-classical hydrogen bonds.

Related literature top

For the structure of fluorene, see: Gerkin et al. (1984). For background to the electronic properties of copolymers of poly(alkylfluorene), see: Kreyenschmidt et al. (1998). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Fluorene (2 mmol), chalcone (2 mmol) and NaOH (4 mmol) were mixed in mortar, and the mixture was ground at room temperature for 20 min. The mixture was then washed in sequence with 15 ml aqueous solution of HCl (3%) and ethanol (95%), and the crude product was isolated by filtration. The filtrate was purified by recrystallization from anhydrous ethanol to give the title compound as colourless crystals in 77% yield. Suitable crystals for X-ray analysis were obtained by slow evaporation of a methanol solution at room temperature (m.p. 400–402 K). IR (KBr, ν cm-1): 3055, 3021, 2893, 1668, 1596, 1450, 1316, 1232, 1009, 830, 746, 685; 1H NMR (DMSO-d6, δ): 6.92–8.03 (m, 18H); 4.01 (d, 1H, J = 4.2 Hz), 3.64 (m, 1H), 3.42 (d, 2H, J = 7.0 Hz). Elemental analysis calculated for C28H22O: C 89.84, H5.88%; found: C 89.97, H 5.71%.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å for phenyl H atoms, C—H = 0.97 Å for methylene H atoms, C—H= 0.98 Å for methylidyne H atoms and Uiso(H) = 1.2Ueq(C).

Structure description top

Since the publication of its solid-state structure (Gerkin et al., 1984), fluorene and its derivatives have received considerable attention due to their good optical properties and high luminescent efficiencies (Kreyenschmidt et al., 1998). To our knowledge, up to now 2150 structures of fluorene derivatives have been deposited at the Cambridge Crystallographic Data Center (CSD, Version 5.33 of November 2011, plus one update; Allen, 2002). As a contribution to this research field, the structure of the title compound is reported herein.

In the tile compound (Fig. 1), the three fused rings of the fluorene ring system are essentially coplanar, with a maximum deviation from the planarity of 0.044 (2) Å for atom C11. The fluorene moiety forms dihedral angles of 69.88 (6) and 89.46 (6)° with the C1–C6 and C23–C28 phenyl rings, respectively. In the crystal, molecules interact through weak ππ stacking interactions (Fig. 2): Cg1···Cg1i, 3.7827(119 Å; Cg2···Cg2i, 3.7172 (13) Å (Cg1 and Cg2 are the centroids of the C8/C9C14–C16 and C15–C20 rings; symmetry code: (i) -x, y, 1/2-z). There exist neither classical nor non-classical hydrogen bonds.

For the structure of fluorene, see: Gerkin et al. (1984). For background to the electronic properties of copolymers of poly(alkylfluorene), see: Kreyenschmidt et al. (1998). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Partial packing diagram of the title compound showing the ππ stacking interactions as dashed lines.
3-(9H-Fluoren-9-yl)-1,3-diphenylpropan-1-one top
Crystal data top
C28H22OF(000) = 1584
Mr = 374.46Dx = 1.215 Mg m3
Monoclinic, C2/cMelting point = 400–402 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 15.2433 (5) ÅCell parameters from 3982 reflections
b = 18.3109 (6) Åθ = 2.3–28.1°
c = 14.7468 (5) ŵ = 0.07 mm1
β = 95.708 (6)°T = 298 K
V = 4095.7 (2) Å3Block, colourless
Z = 80.16 × 0.15 × 0.10 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4128 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 28.4°, θmin = 2.1°
phi and ω scansh = 1920
13271 measured reflectionsk = 2224
5048 independent reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + (0.0477P)2 + 2.3194P]
where P = (Fo2 + 2Fc2)/3
5048 reflections(Δ/σ)max = 0.004
262 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C28H22OV = 4095.7 (2) Å3
Mr = 374.46Z = 8
Monoclinic, C2/cMo Kα radiation
a = 15.2433 (5) ŵ = 0.07 mm1
b = 18.3109 (6) ÅT = 298 K
c = 14.7468 (5) Å0.16 × 0.15 × 0.10 mm
β = 95.708 (6)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4128 reflections with I > 2σ(I)
13271 measured reflectionsRint = 0.023
5048 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.22Δρmax = 0.22 e Å3
5048 reflectionsΔρmin = 0.22 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.14569 (12)0.11851 (10)0.03405 (13)0.0459 (4)
C20.20036 (14)0.14528 (11)0.02784 (15)0.0559 (5)
H20.25670.16110.00680.067*
C30.17366 (16)0.14913 (14)0.11970 (16)0.0683 (6)
H30.21200.16690.15980.082*
C40.09067 (18)0.12685 (15)0.15199 (18)0.0751 (7)
H40.07240.12940.21400.090*
C50.03446 (16)0.10059 (15)0.09216 (18)0.0758 (7)
H50.02210.08570.11380.091*
C60.06160 (14)0.09625 (12)0.00046 (16)0.0617 (6)
H60.02310.07810.03920.074*
C70.17433 (11)0.11080 (10)0.13490 (13)0.0443 (4)
H70.17050.05860.14890.053*
C80.11128 (12)0.15036 (10)0.19542 (13)0.0467 (4)
H80.05130.13230.17860.056*
C90.13425 (12)0.13692 (11)0.29630 (14)0.0490 (5)
C100.14903 (15)0.07194 (13)0.34257 (18)0.0657 (6)
H100.14460.02770.31140.079*
C110.17051 (16)0.07338 (16)0.43584 (19)0.0774 (8)
H110.18190.02990.46730.093*
C120.17513 (15)0.13817 (17)0.48230 (17)0.0743 (7)
H120.18840.13800.54520.089*
C130.16042 (14)0.20393 (14)0.43720 (15)0.0628 (6)
H130.16330.24780.46910.075*
C140.14135 (12)0.20290 (11)0.34337 (13)0.0488 (5)
C150.12700 (12)0.26283 (11)0.27773 (13)0.0475 (4)
C160.10951 (11)0.23314 (10)0.19053 (13)0.0444 (4)
C170.09007 (13)0.27879 (11)0.11672 (14)0.0545 (5)
H170.07690.25960.05860.065*
C180.09050 (16)0.35316 (13)0.13054 (16)0.0665 (6)
H180.07760.38420.08110.080*
C190.10963 (17)0.38238 (12)0.21625 (17)0.0688 (6)
H190.11040.43280.22380.083*
C200.12763 (15)0.33779 (12)0.29069 (15)0.0602 (6)
H200.14000.35750.34870.072*
C210.27009 (11)0.13279 (11)0.16106 (13)0.0475 (4)
H21A0.28080.17960.13330.057*
H21B0.27930.13900.22660.057*
C220.33620 (12)0.07789 (11)0.13221 (13)0.0470 (4)
C230.42934 (12)0.10156 (10)0.12556 (12)0.0444 (4)
C240.45648 (13)0.17306 (12)0.13258 (15)0.0571 (5)
H240.41630.20920.14420.069*
C250.54291 (15)0.19192 (14)0.12254 (18)0.0692 (6)
H250.56030.24060.12720.083*
C260.60281 (14)0.13910 (15)0.10580 (16)0.0684 (7)
H260.66090.15180.09890.082*
C270.57709 (16)0.06803 (15)0.09925 (19)0.0764 (7)
H270.61790.03210.08810.092*
C280.49115 (14)0.04871 (12)0.10894 (17)0.0641 (6)
H280.47440.00010.10430.077*
O10.31441 (10)0.01523 (8)0.11616 (13)0.0772 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0368 (10)0.0394 (9)0.0612 (12)0.0054 (7)0.0038 (8)0.0116 (8)
C20.0440 (11)0.0609 (12)0.0624 (13)0.0019 (9)0.0031 (9)0.0031 (10)
C30.0618 (15)0.0774 (16)0.0656 (15)0.0123 (12)0.0064 (11)0.0042 (12)
C40.0691 (16)0.0899 (18)0.0632 (15)0.0204 (14)0.0096 (12)0.0109 (13)
C50.0489 (13)0.0919 (18)0.0825 (18)0.0019 (12)0.0142 (12)0.0216 (14)
C60.0426 (11)0.0694 (14)0.0725 (15)0.0037 (10)0.0017 (10)0.0144 (11)
C70.0325 (9)0.0396 (9)0.0611 (12)0.0010 (7)0.0053 (8)0.0051 (8)
C80.0288 (9)0.0538 (11)0.0584 (12)0.0011 (7)0.0084 (8)0.0029 (9)
C90.0323 (9)0.0560 (11)0.0605 (12)0.0021 (8)0.0138 (8)0.0075 (9)
C100.0542 (13)0.0599 (13)0.0847 (17)0.0082 (10)0.0153 (11)0.0182 (12)
C110.0576 (15)0.0874 (19)0.0884 (19)0.0026 (13)0.0135 (13)0.0446 (16)
C120.0523 (13)0.113 (2)0.0582 (14)0.0074 (13)0.0100 (10)0.0270 (15)
C130.0485 (12)0.0865 (16)0.0547 (13)0.0009 (11)0.0118 (9)0.0044 (11)
C140.0324 (9)0.0639 (12)0.0513 (11)0.0042 (8)0.0113 (8)0.0042 (9)
C150.0355 (10)0.0562 (11)0.0524 (11)0.0085 (8)0.0118 (8)0.0001 (9)
C160.0298 (9)0.0524 (10)0.0523 (11)0.0091 (7)0.0107 (7)0.0012 (8)
C170.0509 (12)0.0629 (13)0.0507 (11)0.0182 (10)0.0097 (9)0.0007 (9)
C180.0736 (16)0.0621 (13)0.0660 (14)0.0266 (11)0.0177 (12)0.0148 (11)
C190.0804 (17)0.0478 (12)0.0800 (16)0.0189 (11)0.0173 (13)0.0013 (11)
C200.0613 (14)0.0602 (13)0.0600 (13)0.0120 (10)0.0107 (10)0.0109 (10)
C210.0330 (9)0.0545 (11)0.0548 (11)0.0029 (8)0.0038 (8)0.0089 (9)
C220.0388 (10)0.0480 (11)0.0541 (11)0.0082 (8)0.0038 (8)0.0024 (8)
C230.0391 (10)0.0543 (11)0.0401 (9)0.0112 (8)0.0049 (7)0.0072 (8)
C240.0412 (11)0.0588 (12)0.0723 (14)0.0069 (9)0.0105 (9)0.0007 (10)
C250.0490 (13)0.0721 (15)0.0875 (17)0.0053 (11)0.0125 (11)0.0076 (13)
C260.0368 (11)0.0958 (18)0.0745 (15)0.0075 (11)0.0149 (10)0.0249 (13)
C270.0486 (13)0.0822 (17)0.102 (2)0.0239 (12)0.0258 (13)0.0210 (14)
C280.0490 (12)0.0581 (13)0.0871 (16)0.0151 (10)0.0164 (11)0.0100 (11)
O10.0536 (9)0.0466 (8)0.1322 (16)0.0064 (7)0.0130 (9)0.0068 (9)
Geometric parameters (Å, º) top
C1—C21.385 (3)C14—C151.465 (3)
C1—C61.392 (3)C15—C201.386 (3)
C1—C71.514 (3)C15—C161.397 (3)
C2—C31.377 (3)C16—C171.381 (3)
C2—H20.9300C17—C181.377 (3)
C3—C41.369 (3)C17—H170.9300
C3—H30.9300C18—C191.377 (3)
C4—C51.376 (4)C18—H180.9300
C4—H40.9300C19—C201.374 (3)
C5—C61.377 (3)C19—H190.9300
C5—H50.9300C20—H200.9300
C6—H60.9300C21—C221.514 (2)
C7—C211.526 (2)C21—H21A0.9700
C7—C81.554 (2)C21—H21B0.9700
C7—H70.9800C22—O11.211 (2)
C8—C91.514 (3)C22—C231.497 (3)
C8—C161.518 (3)C23—C241.374 (3)
C8—H80.9800C23—C281.389 (3)
C9—C101.379 (3)C24—C251.384 (3)
C9—C141.392 (3)C24—H240.9300
C10—C111.382 (4)C25—C261.369 (3)
C10—H100.9300C25—H250.9300
C11—C121.368 (4)C26—C271.360 (4)
C11—H110.9300C26—H260.9300
C12—C131.383 (3)C27—C281.378 (3)
C12—H120.9300C27—H270.9300
C13—C141.385 (3)C28—H280.9300
C13—H130.9300
C2—C1—C6117.1 (2)C9—C14—C15108.76 (17)
C2—C1—C7123.13 (17)C20—C15—C16120.69 (19)
C6—C1—C7119.78 (18)C20—C15—C14130.71 (19)
C3—C2—C1121.9 (2)C16—C15—C14108.60 (17)
C3—C2—H2119.1C17—C16—C15119.75 (18)
C1—C2—H2119.1C17—C16—C8130.05 (18)
C4—C3—C2120.0 (2)C15—C16—C8110.12 (16)
C4—C3—H3120.0C18—C17—C16119.0 (2)
C2—C3—H3120.0C18—C17—H17120.5
C3—C4—C5119.6 (2)C16—C17—H17120.5
C3—C4—H4120.2C19—C18—C17121.2 (2)
C5—C4—H4120.2C19—C18—H18119.4
C4—C5—C6120.3 (2)C17—C18—H18119.4
C4—C5—H5119.9C20—C19—C18120.7 (2)
C6—C5—H5119.9C20—C19—H19119.7
C5—C6—C1121.2 (2)C18—C19—H19119.7
C5—C6—H6119.4C19—C20—C15118.7 (2)
C1—C6—H6119.4C19—C20—H20120.6
C1—C7—C21113.49 (15)C15—C20—H20120.6
C1—C7—C8112.72 (15)C22—C21—C7113.60 (16)
C21—C7—C8111.24 (15)C22—C21—H21A108.8
C1—C7—H7106.3C7—C21—H21A108.8
C21—C7—H7106.3C22—C21—H21B108.8
C8—C7—H7106.3C7—C21—H21B108.8
C9—C8—C16102.14 (15)H21A—C21—H21B107.7
C9—C8—C7113.13 (15)O1—C22—C23120.33 (17)
C16—C8—C7116.57 (15)O1—C22—C21120.44 (17)
C9—C8—H8108.2C23—C22—C21119.22 (17)
C16—C8—H8108.2C24—C23—C28118.21 (18)
C7—C8—H8108.2C24—C23—C22123.47 (17)
C10—C9—C14120.1 (2)C28—C23—C22118.30 (18)
C10—C9—C8129.6 (2)C23—C24—C25120.8 (2)
C14—C9—C8110.35 (17)C23—C24—H24119.6
C9—C10—C11119.1 (2)C25—C24—H24119.6
C9—C10—H10120.4C26—C25—C24120.1 (2)
C11—C10—H10120.4C26—C25—H25119.9
C12—C11—C10120.7 (2)C24—C25—H25119.9
C12—C11—H11119.7C27—C26—C25119.7 (2)
C10—C11—H11119.7C27—C26—H26120.1
C11—C12—C13121.1 (2)C25—C26—H26120.1
C11—C12—H12119.5C26—C27—C28120.6 (2)
C13—C12—H12119.5C26—C27—H27119.7
C12—C13—C14118.4 (2)C28—C27—H27119.7
C12—C13—H13120.8C27—C28—C23120.5 (2)
C14—C13—H13120.8C27—C28—H28119.7
C13—C14—C9120.5 (2)C23—C28—H28119.7
C13—C14—C15130.7 (2)
C6—C1—C2—C30.7 (3)C13—C14—C15—C16179.84 (19)
C7—C1—C2—C3177.51 (19)C9—C14—C15—C161.1 (2)
C1—C2—C3—C40.7 (3)C20—C15—C16—C171.9 (3)
C2—C3—C4—C50.1 (4)C14—C15—C16—C17177.38 (16)
C3—C4—C5—C60.4 (4)C20—C15—C16—C8179.05 (17)
C4—C5—C6—C10.4 (4)C14—C15—C16—C80.3 (2)
C2—C1—C6—C50.2 (3)C9—C8—C16—C17178.08 (18)
C7—C1—C6—C5178.1 (2)C7—C8—C16—C1758.1 (3)
C2—C1—C7—C212.0 (2)C9—C8—C16—C151.34 (19)
C6—C1—C7—C21176.14 (17)C7—C8—C16—C15125.17 (17)
C2—C1—C7—C8125.57 (19)C15—C16—C17—C181.6 (3)
C6—C1—C7—C856.3 (2)C8—C16—C17—C18178.06 (19)
C1—C7—C8—C9174.43 (15)C16—C17—C18—C190.2 (3)
C21—C7—C8—C956.8 (2)C17—C18—C19—C200.9 (4)
C1—C7—C8—C1667.6 (2)C18—C19—C20—C150.6 (3)
C21—C7—C8—C1661.2 (2)C16—C15—C20—C190.8 (3)
C16—C8—C9—C10176.92 (19)C14—C15—C20—C19178.3 (2)
C7—C8—C9—C1050.8 (3)C1—C7—C21—C2273.5 (2)
C16—C8—C9—C142.01 (19)C8—C7—C21—C22158.13 (16)
C7—C8—C9—C14128.12 (17)C7—C21—C22—O120.7 (3)
C14—C9—C10—C110.3 (3)C7—C21—C22—C23160.49 (16)
C8—C9—C10—C11179.11 (19)O1—C22—C23—C24172.4 (2)
C9—C10—C11—C121.5 (3)C21—C22—C23—C248.9 (3)
C10—C11—C12—C131.4 (4)O1—C22—C23—C285.8 (3)
C11—C12—C13—C140.4 (3)C21—C22—C23—C28172.95 (18)
C12—C13—C14—C92.2 (3)C28—C23—C24—C250.6 (3)
C12—C13—C14—C15176.83 (19)C22—C23—C24—C25177.6 (2)
C10—C9—C14—C132.1 (3)C23—C24—C25—C260.3 (4)
C8—C9—C14—C13178.83 (16)C24—C25—C26—C270.1 (4)
C10—C9—C14—C15177.08 (17)C25—C26—C27—C280.3 (4)
C8—C9—C14—C152.0 (2)C26—C27—C28—C230.0 (4)
C13—C14—C15—C200.6 (3)C24—C23—C28—C270.4 (3)
C9—C14—C15—C20179.7 (2)C22—C23—C28—C27177.9 (2)

Experimental details

Crystal data
Chemical formulaC28H22O
Mr374.46
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)15.2433 (5), 18.3109 (6), 14.7468 (5)
β (°) 95.708 (6)
V3)4095.7 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.16 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13271, 5048, 4128
Rint0.023
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.162, 1.22
No. of reflections5048
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.22

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge financial support from the Project of Hubei Provincial Department of Education (No. D20122903).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGerkin, R. E., Lundstedt, A. P. & Reppart, W. J. (1984). Acta Cryst. C40, 1892–1894.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKreyenschmidt, M., Klaerner, G., Fuhrer, T., Ashenhurst, J., Karg, S., Chen, W. D., Lee, V. Y., Scott, J. C. & Miller, R. D. (1998). Macromolecules, 31, 1099–1103.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds