organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5,7,8′,11-Penta­meth­­oxy-13H-spiro­[dibenzo[a,g]fluorene-13,1′(4′H)-naphthalen]-4′-one toluene monosolvate

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 28 August 2012; accepted 6 September 2012; online 12 September 2012)

In the title compound, C35H28O6·C7H8, the dihedral angle between the mean planes through the naphthalene ring systems of the dibenzo[a,g]fluorene moiety is 22.44 (3)°. The aromatic ring system of the naphthalenone unit is approximately perpendicular to the mean plane of the five-membered ring, forming a dihedral angle of 87.51 (5)°. An intra­molecular C—H⋯O hydrogen bond is observed. In the crystal, pairs of C—H⋯π inter­actions link the mol­ecules, forming inversion dimers.

Related literature

For electrophilic aromatic aroylation of the 2,7-dimeth­oxy­naphthalene core, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]); Okamoto et al. (2011[Okamoto, A., Mitsui, R. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.]).

[Scheme 1]

Experimental

Crystal data
  • C35H28O6·C7H8

  • Mr = 636.71

  • Monoclinic, P 21 /c

  • a = 12.4106 (6) Å

  • b = 12.4974 (7) Å

  • c = 21.4941 (11) Å

  • β = 97.319 (3)°

  • V = 3306.6 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.68 mm−1

  • T = 193 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.773, Tmax = 0.876

  • 48937 measured reflections

  • 6036 independent reflections

  • 3696 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.124

  • S = 0.96

  • 6036 reflections

  • 440 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O4 0.95 2.22 2.810 (2) 120
C28—H28⋯Cg1i 0.95 2.65 3.550 (2) 159
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene (Okamoto & Yonezawa, 2009; Okamoto et al., 2011) and related compounds, we have found a unique trimerization reaction affording the title compound, C35H28O6.C7H8 (Fig. 1). The molecule is composed of dibenzo[a,g]fluorene and naphthalenone units originated from three naphthalene rings. The two units are connected by spiro bonding and configured in an approximately perpendicular fashion. The dihedral angle between the five-membered ring (C1/C2/C11/C12/C21) of the dibenzo[a,g]fluorene unit and the naphthalenone moiety (C21–C25/C30) is 87.51 (5)°. The dibenzo[a,g]fluorene unit is remarkably twisted, the dihedral angle between mean planes through the naphtlhalene ring systems [C1–C10 (Nap1) and C11–C20 (Nap2)] being 22.44 (3)°. This configuration presumably originates from the steric hindrance between the aromatic H3 atom of Nap1 and the O4 methoxy group of Nap2. Between these atoms an intramolecular hydrogen bond is observed (Table 1). In the crystal packing, centrosymmetrically-related molecules are linked into dimers via C—H···π hydrogen interactions (Table 1).

Related literature top

For electrophilic aromatic aroylation of the 2,7-dimethoxynaphthalene core, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011).

Experimental top

1,5-Dimethoxynaphthalene (0.6 mmol), 1,3-dinitrobenzene (0.09 mmol) and CH2Cl2 (3 ml) were placed into a dried flask, followed by stirring at room temperature for 5 min under nitrogen atmosphere. To the reaction mixture, TiCl4 (3.0 mmol) was slowly added. The reaction mixture was poured into ice-cold water after it had been stirred at room temperature for 6 h. The aqueous layer was extracted with CHCl3 (40 ml). The combined extracts were washed with 2M aqueous NaOH followed by washing with brine. The organic layer thus obtained was dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give the crude product (yield 99%), which was purified by preparative thin layer chromatography [toluene:EtOAc 40:1 v/v]. Transparent yellow single crystals suitable for X-ray diffraction were obtained by crystallization from toluene and hexane [1:1 v/v].

Refinement top

All H atoms were found in a difference Fourier map and refined as riding atoms, with C—H = 0.95 (aromatic), and 0.98 (methyl) Å, and with Uiso(H) = 1.2Ueq(C).

Structure description top

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene (Okamoto & Yonezawa, 2009; Okamoto et al., 2011) and related compounds, we have found a unique trimerization reaction affording the title compound, C35H28O6.C7H8 (Fig. 1). The molecule is composed of dibenzo[a,g]fluorene and naphthalenone units originated from three naphthalene rings. The two units are connected by spiro bonding and configured in an approximately perpendicular fashion. The dihedral angle between the five-membered ring (C1/C2/C11/C12/C21) of the dibenzo[a,g]fluorene unit and the naphthalenone moiety (C21–C25/C30) is 87.51 (5)°. The dibenzo[a,g]fluorene unit is remarkably twisted, the dihedral angle between mean planes through the naphtlhalene ring systems [C1–C10 (Nap1) and C11–C20 (Nap2)] being 22.44 (3)°. This configuration presumably originates from the steric hindrance between the aromatic H3 atom of Nap1 and the O4 methoxy group of Nap2. Between these atoms an intramolecular hydrogen bond is observed (Table 1). In the crystal packing, centrosymmetrically-related molecules are linked into dimers via C—H···π hydrogen interactions (Table 1).

For electrophilic aromatic aroylation of the 2,7-dimethoxynaphthalene core, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
1,5,7,8',11-Pentamethoxy-13H-spiro[dibenzo[a,g]fluorene- 13,1'(4'H)-naphthalen]-4'-one toluene monosolvate top
Crystal data top
C35H28O6·C7H8F(000) = 1344
Mr = 636.71Dx = 1.279 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ybcCell parameters from 17422 reflections
a = 12.4106 (6) Åθ = 3.5–68.3°
b = 12.4974 (7) ŵ = 0.68 mm1
c = 21.4941 (11) ÅT = 193 K
β = 97.319 (3)°Block, yellow
V = 3306.6 (3) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6036 independent reflections
Radiation source: rotating anode3696 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
Detector resolution: 10.000 pixels mm-1θmax = 68.2°, θmin = 3.6°
ω scansh = 1414
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1415
Tmin = 0.773, Tmax = 0.876l = 2525
48937 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0516P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.001
6036 reflectionsΔρmax = 0.20 e Å3
440 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00363 (18)
Crystal data top
C35H28O6·C7H8V = 3306.6 (3) Å3
Mr = 636.71Z = 4
Monoclinic, P21/cCu Kα radiation
a = 12.4106 (6) ŵ = 0.68 mm1
b = 12.4974 (7) ÅT = 193 K
c = 21.4941 (11) Å0.40 × 0.30 × 0.20 mm
β = 97.319 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6036 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
3696 reflections with I > 2σ(I)
Tmin = 0.773, Tmax = 0.876Rint = 0.087
48937 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 0.96Δρmax = 0.20 e Å3
6036 reflectionsΔρmin = 0.18 e Å3
440 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.98979 (11)0.35612 (11)0.34212 (7)0.0490 (4)
O20.95597 (10)0.11986 (11)0.32389 (7)0.0437 (4)
O30.39953 (10)0.00226 (11)0.43477 (7)0.0473 (4)
O40.61527 (11)0.33814 (11)0.29832 (7)0.0485 (4)
O50.83191 (10)0.04965 (12)0.46869 (6)0.0459 (4)
O60.74754 (13)0.36569 (12)0.33675 (8)0.0623 (5)
C10.82886 (14)0.06441 (16)0.33979 (8)0.0335 (5)
C20.77005 (14)0.15852 (16)0.34250 (8)0.0333 (5)
C30.82219 (15)0.25873 (16)0.34391 (8)0.0375 (5)
H30.78220.32250.34830.045*
C40.93038 (15)0.26346 (16)0.33897 (9)0.0370 (5)
C50.99190 (15)0.16964 (16)0.32933 (9)0.0362 (5)
C61.10248 (15)0.17731 (18)0.31978 (9)0.0420 (5)
H61.13590.24560.31920.050*
C71.16078 (16)0.08835 (18)0.31157 (9)0.0454 (5)
H71.23470.09480.30480.054*
C81.11359 (16)0.01339 (18)0.31294 (9)0.0425 (5)
H81.15570.07530.30740.051*
C91.00695 (15)0.02383 (16)0.32228 (8)0.0360 (5)
C100.94035 (14)0.06757 (16)0.33035 (8)0.0338 (5)
C110.65766 (14)0.13360 (16)0.35384 (9)0.0335 (5)
C120.65255 (14)0.02529 (16)0.36521 (8)0.0334 (5)
C130.56526 (14)0.02494 (16)0.38859 (9)0.0366 (5)
H130.56330.10050.39340.044*
C140.48304 (14)0.03814 (17)0.40435 (9)0.0374 (5)
C150.47837 (15)0.14984 (16)0.39028 (9)0.0365 (5)
C160.39034 (15)0.21306 (17)0.40481 (10)0.0441 (5)
H160.33540.18190.42590.053*
C170.38413 (16)0.31827 (18)0.38869 (10)0.0473 (6)
H170.32720.36100.40100.057*
C180.46042 (16)0.36447 (17)0.35417 (10)0.0446 (5)
H180.45340.43740.34180.054*
C190.54525 (15)0.30448 (17)0.33820 (9)0.0389 (5)
C200.56338 (14)0.19760 (16)0.36076 (9)0.0362 (5)
C210.75651 (14)0.03203 (15)0.35175 (8)0.0319 (5)
C220.72237 (14)0.09293 (17)0.29236 (9)0.0380 (5)
H220.70340.05250.25510.046*
C230.71654 (15)0.19880 (17)0.28762 (10)0.0410 (5)
H230.68940.23050.24860.049*
C240.75127 (16)0.26731 (18)0.34152 (10)0.0442 (5)
C250.79203 (15)0.21481 (16)0.40175 (10)0.0385 (5)
C260.82586 (17)0.28005 (19)0.45398 (11)0.0510 (6)
H260.82330.35570.45000.061*
C270.86239 (17)0.2340 (2)0.51039 (11)0.0546 (6)
H270.88600.27810.54550.066*
C280.86533 (16)0.12371 (19)0.51689 (10)0.0486 (6)
H280.89010.09250.55640.058*
C290.83248 (14)0.05930 (17)0.46608 (9)0.0376 (5)
C300.79658 (14)0.10423 (16)0.40684 (9)0.0341 (5)
C310.93609 (18)0.45288 (17)0.35525 (12)0.0601 (7)
H31A0.90890.44680.39590.072*
H31B0.98740.51270.35640.072*
H31C0.87510.46570.32240.072*
C321.01937 (16)0.21448 (16)0.32372 (10)0.0471 (6)
H32A1.05300.21780.28490.057*
H32B1.07620.21380.35980.057*
H32C0.97270.27710.32630.057*
C330.59652 (18)0.43963 (18)0.26869 (12)0.0603 (7)
H33A0.64920.45080.23900.072*
H33B0.52270.44170.24620.072*
H33C0.60480.49620.30050.072*
C340.40275 (16)0.10806 (16)0.45303 (10)0.0477 (6)
H34A0.47600.12620.47280.057*
H34B0.35060.12040.48290.057*
H34C0.38380.15300.41590.057*
C350.87216 (17)0.09981 (19)0.52663 (10)0.0534 (6)
H35A0.82950.07610.55940.064*
H35B0.94850.08010.53830.064*
H35C0.86620.17770.52200.064*
C360.6690 (2)0.60751 (19)0.55973 (15)0.0693 (7)
C370.5588 (2)0.62074 (19)0.55166 (14)0.0686 (7)
H370.51990.60900.51120.082*
C380.5035 (2)0.6496 (2)0.59848 (18)0.0782 (8)
H380.42680.65710.59060.094*
C390.5543 (3)0.6681 (2)0.65627 (18)0.0884 (10)
H390.51390.69010.68870.106*
C400.6641 (4)0.6553 (2)0.66847 (15)0.0885 (10)
H400.70030.66760.70950.106*
C410.7230 (2)0.6240 (2)0.62027 (19)0.0827 (9)
H410.79930.61390.62850.099*
C420.7292 (3)0.5760 (3)0.50638 (19)0.1418 (16)
H42A0.69340.51420.48460.170*
H42B0.80420.55720.52270.170*
H42C0.72930.63600.47700.170*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0438 (8)0.0383 (9)0.0650 (10)0.0040 (7)0.0074 (7)0.0013 (8)
O20.0378 (8)0.0389 (9)0.0560 (9)0.0039 (6)0.0116 (7)0.0003 (7)
O30.0391 (8)0.0442 (10)0.0614 (10)0.0000 (6)0.0175 (7)0.0008 (7)
O40.0465 (8)0.0435 (9)0.0559 (10)0.0059 (7)0.0087 (7)0.0140 (7)
O50.0532 (9)0.0491 (10)0.0341 (8)0.0018 (7)0.0004 (6)0.0046 (7)
O60.0713 (11)0.0374 (10)0.0785 (12)0.0002 (8)0.0111 (9)0.0042 (9)
C10.0350 (10)0.0386 (12)0.0264 (10)0.0006 (9)0.0022 (8)0.0001 (9)
C20.0356 (11)0.0357 (12)0.0282 (11)0.0024 (9)0.0028 (8)0.0010 (9)
C30.0402 (11)0.0357 (13)0.0360 (11)0.0040 (9)0.0028 (9)0.0007 (9)
C40.0380 (11)0.0386 (13)0.0342 (11)0.0048 (9)0.0034 (9)0.0052 (10)
C50.0350 (11)0.0424 (13)0.0312 (11)0.0000 (9)0.0043 (8)0.0046 (10)
C60.0373 (11)0.0469 (14)0.0422 (12)0.0041 (10)0.0075 (9)0.0054 (11)
C70.0353 (11)0.0573 (15)0.0446 (13)0.0013 (11)0.0096 (10)0.0034 (11)
C80.0388 (11)0.0493 (14)0.0406 (12)0.0057 (10)0.0089 (9)0.0010 (10)
C90.0370 (11)0.0410 (13)0.0306 (11)0.0013 (9)0.0060 (9)0.0004 (10)
C100.0336 (10)0.0414 (13)0.0263 (10)0.0021 (9)0.0037 (8)0.0014 (9)
C110.0319 (10)0.0374 (12)0.0306 (11)0.0023 (8)0.0014 (8)0.0012 (9)
C120.0301 (10)0.0385 (12)0.0306 (11)0.0030 (9)0.0000 (8)0.0002 (9)
C130.0363 (11)0.0334 (12)0.0398 (12)0.0003 (9)0.0038 (9)0.0013 (9)
C140.0294 (10)0.0430 (13)0.0397 (12)0.0023 (9)0.0044 (9)0.0033 (10)
C150.0327 (10)0.0397 (13)0.0363 (11)0.0016 (9)0.0016 (9)0.0031 (10)
C160.0358 (11)0.0450 (14)0.0514 (14)0.0030 (10)0.0052 (10)0.0053 (11)
C170.0399 (12)0.0448 (14)0.0567 (15)0.0080 (10)0.0044 (10)0.0090 (12)
C180.0421 (12)0.0382 (13)0.0510 (13)0.0059 (10)0.0041 (10)0.0039 (11)
C190.0344 (11)0.0388 (13)0.0420 (12)0.0014 (9)0.0016 (9)0.0002 (10)
C200.0337 (11)0.0376 (12)0.0363 (11)0.0019 (9)0.0012 (9)0.0034 (9)
C210.0311 (10)0.0330 (12)0.0316 (11)0.0017 (8)0.0038 (8)0.0009 (9)
C220.0329 (11)0.0456 (14)0.0355 (12)0.0034 (9)0.0039 (9)0.0012 (10)
C230.0395 (11)0.0428 (14)0.0404 (12)0.0014 (10)0.0038 (9)0.0086 (10)
C240.0380 (12)0.0382 (14)0.0581 (15)0.0024 (10)0.0131 (10)0.0022 (12)
C250.0366 (11)0.0367 (13)0.0436 (13)0.0042 (9)0.0105 (9)0.0033 (10)
C260.0495 (13)0.0457 (15)0.0593 (16)0.0071 (11)0.0130 (11)0.0127 (12)
C270.0550 (14)0.0658 (18)0.0433 (14)0.0107 (12)0.0068 (11)0.0192 (13)
C280.0450 (12)0.0621 (17)0.0388 (13)0.0032 (11)0.0057 (10)0.0069 (12)
C290.0320 (10)0.0453 (14)0.0358 (12)0.0020 (9)0.0057 (9)0.0040 (10)
C300.0274 (10)0.0395 (13)0.0361 (11)0.0022 (9)0.0070 (8)0.0045 (10)
C310.0607 (15)0.0394 (15)0.0811 (18)0.0034 (11)0.0128 (13)0.0049 (13)
C320.0475 (12)0.0417 (14)0.0526 (14)0.0085 (10)0.0080 (10)0.0072 (11)
C330.0546 (14)0.0498 (16)0.0761 (17)0.0024 (11)0.0068 (12)0.0210 (14)
C340.0445 (12)0.0442 (15)0.0563 (14)0.0044 (10)0.0130 (10)0.0042 (11)
C350.0517 (13)0.0665 (17)0.0408 (13)0.0010 (11)0.0005 (10)0.0137 (12)
C360.082 (2)0.0468 (17)0.083 (2)0.0064 (14)0.0237 (17)0.0103 (15)
C370.083 (2)0.0510 (17)0.0682 (19)0.0048 (14)0.0024 (16)0.0049 (14)
C380.0738 (19)0.0569 (19)0.105 (3)0.0048 (14)0.0179 (19)0.0036 (18)
C390.131 (3)0.054 (2)0.088 (3)0.011 (2)0.046 (2)0.0019 (18)
C400.147 (3)0.0517 (19)0.060 (2)0.015 (2)0.016 (2)0.0054 (15)
C410.0654 (18)0.0530 (19)0.124 (3)0.0079 (14)0.0097 (19)0.0057 (19)
C420.177 (4)0.098 (3)0.171 (4)0.016 (3)0.104 (3)0.037 (3)
Geometric parameters (Å, º) top
O1—C41.370 (2)C21—C301.521 (2)
O1—C311.426 (2)C22—C231.328 (3)
O2—C91.359 (2)C22—H220.9500
O2—C321.421 (2)C23—C241.461 (3)
O3—C141.370 (2)C23—H230.9500
O3—C341.433 (2)C24—C251.482 (3)
O4—C191.362 (2)C25—C301.387 (3)
O4—C331.425 (2)C25—C261.407 (3)
O5—C291.363 (2)C26—C271.366 (3)
O5—C351.426 (2)C26—H260.9500
O6—C241.234 (2)C27—C281.386 (3)
C1—C21.389 (2)C27—H270.9500
C1—C101.424 (2)C28—C291.376 (3)
C1—C211.544 (3)C28—H280.9500
C2—C31.408 (2)C29—C301.411 (3)
C2—C111.479 (2)C31—H31A0.9800
C3—C41.362 (2)C31—H31B0.9800
C3—H30.9500C31—H31C0.9800
C4—C51.429 (3)C32—H32A0.9800
C5—C61.417 (2)C32—H32B0.9800
C5—C101.428 (3)C32—H32C0.9800
C6—C71.350 (3)C33—H33A0.9800
C6—H60.9500C33—H33B0.9800
C7—C81.402 (3)C33—H33C0.9800
C7—H70.9500C34—H34A0.9800
C8—C91.370 (2)C34—H34B0.9800
C8—H80.9500C34—H34C0.9800
C9—C101.433 (3)C35—H35A0.9800
C11—C121.378 (3)C35—H35B0.9800
C11—C201.441 (2)C35—H35C0.9800
C12—C131.400 (2)C36—C371.366 (4)
C12—C211.535 (2)C36—C411.401 (4)
C13—C141.366 (2)C36—C421.499 (4)
C13—H130.9500C37—C381.338 (4)
C14—C151.428 (3)C37—H370.9500
C15—C161.415 (3)C38—C391.340 (4)
C15—C201.429 (3)C38—H380.9500
C16—C171.359 (3)C39—C401.363 (4)
C16—H160.9500C39—H390.9500
C17—C181.400 (3)C40—C411.398 (4)
C17—H170.9500C40—H400.9500
C18—C191.371 (3)C41—H410.9500
C18—H180.9500C42—H42A0.9800
C19—C201.429 (3)C42—H42B0.9800
C21—C221.500 (3)C42—H42C0.9800
C4—O1—C31117.67 (16)C24—C23—H23119.5
C9—O2—C32118.37 (15)O6—C24—C23120.9 (2)
C14—O3—C34116.71 (15)O6—C24—C25121.3 (2)
C19—O4—C33118.36 (16)C23—C24—C25117.83 (19)
C29—O5—C35118.16 (16)C30—C25—C26120.6 (2)
C2—C1—C10120.50 (18)C30—C25—C24121.07 (19)
C2—C1—C21109.51 (16)C26—C25—C24118.3 (2)
C10—C1—C21129.90 (17)C27—C26—C25119.7 (2)
C1—C2—C3120.75 (17)C27—C26—H26120.1
C1—C2—C11109.89 (17)C25—C26—H26120.1
C3—C2—C11128.60 (17)C26—C27—C28120.6 (2)
C4—C3—C2119.47 (18)C26—C27—H27119.7
C4—C3—H3120.3C28—C27—H27119.7
C2—C3—H3120.3C29—C28—C27120.0 (2)
C3—C4—O1124.25 (18)C29—C28—H28120.0
C3—C4—C5121.75 (18)C27—C28—H28120.0
O1—C4—C5114.00 (17)O5—C29—C28123.67 (19)
C6—C5—C10120.44 (18)O5—C29—C30115.60 (17)
C6—C5—C4120.73 (18)C28—C29—C30120.7 (2)
C10—C5—C4118.82 (17)C25—C30—C29118.22 (18)
C7—C6—C5120.6 (2)C25—C30—C21121.58 (17)
C7—C6—H6119.7C29—C30—C21120.06 (18)
C5—C6—H6119.7O1—C31—H31A109.5
C6—C7—C8120.79 (19)O1—C31—H31B109.5
C6—C7—H7119.6H31A—C31—H31B109.5
C8—C7—H7119.6O1—C31—H31C109.5
C9—C8—C7120.23 (19)H31A—C31—H31C109.5
C9—C8—H8119.9H31B—C31—H31C109.5
C7—C8—H8119.9O2—C32—H32A109.5
O2—C9—C8123.33 (18)O2—C32—H32B109.5
O2—C9—C10115.04 (16)H32A—C32—H32B109.5
C8—C9—C10121.63 (19)O2—C32—H32C109.5
C1—C10—C5118.16 (17)H32A—C32—H32C109.5
C1—C10—C9125.50 (18)H32B—C32—H32C109.5
C5—C10—C9116.33 (17)O4—C33—H33A109.5
C12—C11—C20118.07 (17)O4—C33—H33B109.5
C12—C11—C2107.55 (16)H33A—C33—H33B109.5
C20—C11—C2134.06 (18)O4—C33—H33C109.5
C11—C12—C13124.01 (17)H33A—C33—H33C109.5
C11—C12—C21111.47 (16)H33B—C33—H33C109.5
C13—C12—C21124.46 (18)O3—C34—H34A109.5
C14—C13—C12117.84 (19)O3—C34—H34B109.5
C14—C13—H13121.1H34A—C34—H34B109.5
C12—C13—H13121.1O3—C34—H34C109.5
C13—C14—O3124.34 (19)H34A—C34—H34C109.5
C13—C14—C15121.55 (18)H34B—C34—H34C109.5
O3—C14—C15114.11 (17)O5—C35—H35A109.5
C16—C15—C14120.71 (18)O5—C35—H35B109.5
C16—C15—C20119.95 (19)H35A—C35—H35B109.5
C14—C15—C20119.34 (17)O5—C35—H35C109.5
C17—C16—C15120.3 (2)H35A—C35—H35C109.5
C17—C16—H16119.9H35B—C35—H35C109.5
C15—C16—H16119.9C37—C36—C41116.9 (3)
C16—C17—C18120.9 (2)C37—C36—C42121.6 (3)
C16—C17—H17119.5C41—C36—C42121.5 (3)
C18—C17—H17119.5C38—C37—C36122.6 (3)
C19—C18—C17120.0 (2)C38—C37—H37118.7
C19—C18—H18120.0C36—C37—H37118.7
C17—C18—H18120.0C37—C38—C39121.2 (3)
O4—C19—C18124.07 (19)C37—C38—H38119.4
O4—C19—C20114.62 (17)C39—C38—H38119.4
C18—C19—C20121.25 (19)C38—C39—C40119.9 (3)
C19—C20—C15116.60 (17)C38—C39—H39120.0
C19—C20—C11125.36 (18)C40—C39—H39120.0
C15—C20—C11117.98 (18)C39—C40—C41119.6 (3)
C22—C21—C30112.98 (16)C39—C40—H40120.2
C22—C21—C12104.13 (14)C41—C40—H40120.2
C30—C21—C12109.23 (14)C40—C41—C36119.7 (3)
C22—C21—C1111.19 (15)C40—C41—H41120.1
C30—C21—C1116.95 (15)C36—C41—H41120.1
C12—C21—C1100.82 (15)C36—C42—H42A109.5
C23—C22—C21125.26 (19)C36—C42—H42B109.5
C23—C22—H22117.4H42A—C42—H42B109.5
C21—C22—H22117.4C36—C42—H42C109.5
C22—C23—C24121.0 (2)H42A—C42—H42C109.5
C22—C23—H23119.5H42B—C42—H42C109.5
C10—C1—C2—C38.0 (3)O4—C19—C20—C1111.6 (3)
C21—C1—C2—C3169.04 (16)C18—C19—C20—C11171.08 (18)
C10—C1—C2—C11178.89 (16)C16—C15—C20—C199.9 (3)
C21—C1—C2—C111.8 (2)C14—C15—C20—C19169.58 (17)
C1—C2—C3—C43.7 (3)C16—C15—C20—C11172.52 (17)
C11—C2—C3—C4172.72 (17)C14—C15—C20—C118.0 (3)
C2—C3—C4—O1177.48 (17)C12—C11—C20—C19165.59 (18)
C2—C3—C4—C53.1 (3)C2—C11—C20—C1921.8 (3)
C31—O1—C4—C34.0 (3)C12—C11—C20—C1511.7 (3)
C31—O1—C4—C5176.49 (17)C2—C11—C20—C15160.88 (19)
C3—C4—C5—C6175.38 (18)C11—C12—C21—C22107.55 (18)
O1—C4—C5—C64.1 (3)C13—C12—C21—C2274.9 (2)
C3—C4—C5—C105.5 (3)C11—C12—C21—C30131.50 (17)
O1—C4—C5—C10175.01 (16)C13—C12—C21—C3046.0 (2)
C10—C5—C6—C70.1 (3)C11—C12—C21—C17.76 (19)
C4—C5—C6—C7179.06 (18)C13—C12—C21—C1169.75 (17)
C5—C6—C7—C80.6 (3)C2—C1—C21—C22106.63 (17)
C6—C7—C8—C90.4 (3)C10—C1—C21—C2276.7 (2)
C32—O2—C9—C88.1 (3)C2—C1—C21—C30121.54 (17)
C32—O2—C9—C10172.65 (15)C10—C1—C21—C3055.2 (2)
C7—C8—C9—O2179.73 (18)C2—C1—C21—C123.29 (18)
C7—C8—C9—C100.5 (3)C10—C1—C21—C12173.41 (17)
C2—C1—C10—C55.4 (3)C30—C21—C22—C236.2 (2)
C21—C1—C10—C5170.98 (17)C12—C21—C22—C23112.2 (2)
C2—C1—C10—C9175.28 (17)C1—C21—C22—C23140.00 (19)
C21—C1—C10—C98.3 (3)C21—C22—C23—C244.2 (3)
C6—C5—C10—C1179.67 (17)C22—C23—C24—O6178.75 (19)
C4—C5—C10—C11.2 (3)C22—C23—C24—C250.6 (3)
C6—C5—C10—C90.9 (3)O6—C24—C25—C30179.69 (18)
C4—C5—C10—C9178.19 (16)C23—C24—C25—C300.3 (3)
O2—C9—C10—C10.2 (3)O6—C24—C25—C260.5 (3)
C8—C9—C10—C1179.49 (18)C23—C24—C25—C26179.91 (17)
O2—C9—C10—C5179.56 (15)C30—C25—C26—C270.7 (3)
C8—C9—C10—C51.2 (3)C24—C25—C26—C27179.06 (18)
C1—C2—C11—C126.9 (2)C25—C26—C27—C280.7 (3)
C3—C2—C11—C12163.06 (19)C26—C27—C28—C290.8 (3)
C1—C2—C11—C20180.0 (2)C35—O5—C29—C282.9 (3)
C3—C2—C11—C2010.1 (3)C35—O5—C29—C30177.09 (15)
C20—C11—C12—C136.1 (3)C27—C28—C29—O5179.35 (18)
C2—C11—C12—C13168.34 (17)C27—C28—C29—C300.7 (3)
C20—C11—C12—C21176.39 (15)C26—C25—C30—C292.1 (3)
C2—C11—C12—C219.2 (2)C24—C25—C30—C29177.71 (16)
C11—C12—C13—C143.8 (3)C26—C25—C30—C21177.65 (16)
C21—C12—C13—C14173.39 (17)C24—C25—C30—C212.2 (3)
C12—C13—C14—O3171.61 (17)O5—C29—C30—C25177.95 (16)
C12—C13—C14—C157.9 (3)C28—C29—C30—C252.1 (3)
C34—O3—C14—C132.6 (3)O5—C29—C30—C212.3 (2)
C34—O3—C14—C15176.89 (17)C28—C29—C30—C21177.68 (16)
C13—C14—C15—C16177.56 (18)C22—C21—C30—C255.0 (2)
O3—C14—C15—C162.9 (3)C12—C21—C30—C25110.42 (19)
C13—C14—C15—C202.0 (3)C1—C21—C30—C25135.98 (18)
O3—C14—C15—C20177.56 (16)C22—C21—C30—C29179.54 (15)
C14—C15—C16—C17177.03 (19)C12—C21—C30—C2965.1 (2)
C20—C15—C16—C172.5 (3)C1—C21—C30—C2948.5 (2)
C15—C16—C17—C184.0 (3)C41—C36—C37—C381.0 (4)
C16—C17—C18—C192.5 (3)C42—C36—C37—C38179.5 (3)
C33—O4—C19—C183.3 (3)C36—C37—C38—C390.6 (4)
C33—O4—C19—C20173.86 (17)C37—C38—C39—C401.5 (4)
C17—C18—C19—O4171.42 (18)C38—C39—C40—C410.7 (4)
C17—C18—C19—C205.6 (3)C39—C40—C41—C360.9 (4)
O4—C19—C20—C15165.71 (16)C37—C36—C41—C401.7 (4)
C18—C19—C20—C1511.6 (3)C42—C36—C41—C40178.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O40.952.222.810 (2)120
C28—H28···Cg1i0.952.653.550 (2)159
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC35H28O6·C7H8
Mr636.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)12.4106 (6), 12.4974 (7), 21.4941 (11)
β (°) 97.319 (3)
V3)3306.6 (3)
Z4
Radiation typeCu Kα
µ (mm1)0.68
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.773, 0.876
No. of measured, independent and
observed [I > 2σ(I)] reflections
48937, 6036, 3696
Rint0.087
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.124, 0.96
No. of reflections6036
No. of parameters440
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O40.952.222.810 (2)120
C28—H28···Cg1i0.952.653.550 (2)159
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

The authors express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice. This work was partially supported by the Sasagawa Scientific Research Grant from the Japan Science Society.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationOkamoto, A., Mitsui, R. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds