organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1,3-Dioxoisoindolin-2-yl)acetic acid–N′-[(E)-4-meth­­oxy­benzyl­­idene]pyridine-4-carbohydrazide (2/1)

a'Vinča' Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, University of Belgrade, PO Box 522, 11001 Belgrade, Serbia, bManchester Metropolitan University, Chemistry and Environmental Division, Manchester M1 5GD, England, cKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq, and dChemistry Department, Tikrit University, Tikrit, Iraq
*Correspondence e-mail: snovak@vin.bg.ac.rs

(Received 28 August 2012; accepted 4 September 2012; online 8 September 2012)

In the crystal structure of the title compound, 2C10H7NO4·C14H13N3O2, the two independent acid mol­ecules are connected through strong O—H⋯N and O—H⋯O hydrogen bonds to the central mol­ecule of the anti­tubercular drug N′-[(E)-4-meth­oxy­benzyl­idene]pyridine-4-carbohydrazide. Two such trimolecular units related by an inversion centre inter­act through a pair of N—H⋯O hydrogen bonds, forming a 3 + 3 mol­ecular aggregate. The dihedral angle between the aromatic rings of the hydrazone mol­ecule is 1.99 (12)°. The crystal packing features weak C—H⋯O and ππ stacking inter­actions, with centroid–centroid distances of 3.8460 (19) and 3.8703 (13) Å.

Related literature

For anti-tuberculosis drugs containing the isoniazid core structure, see: Bijev (2006[Bijev, A. (2006). Lett. Drug. Des. Discov. 3, 506-512.]); Imramovský et al. (2007[Imramovský, A., Polanc, S., Vinšnová, J., Kočevar, M., Jampílek, J., Rečková, Z. & Kaustová, J. (2007). Bioorg. Med. Chem. 15, 2551-2559.]); Maccari et al. (2005[Maccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509-2513.]); Schultheiss & Newman (2009[Schultheiss, N. & Newman, A. (2009). Cryst. Growth Des. 9, 2950-2967.]); Shindikar & Viswanathan (2005[Shindikar, A. V. & Viswanathan, C. L. (2005). Bioorg. Med. Chem. Lett. 15, 1803-1806.]); Sinha et al. (2005[Sinha, N., Jain, S., Tilekar, A., Upadhayaya, R. S., Kishore, N., Jana, G. H. & Arora, S. K. (2005). Bioorg. Med. Chem. Lett. 15, 1573-1576.]). For crystal structures with N′-[(E)-(4-meth­oxy­phen­yl)methyl­idene]pyridine-4-carbo­hydrazide, see: Jing et al. (2005[Jing, Z.-L., Fan, Z., Yu, M., Chen, X. & Deng, Q.-L. (2005). Acta Cryst. E61, o3208-o3209.]); Lin & Liu (2007[Lin, M. & Liu, S.-X. (2007). Acta Cryst. E63, o3974.]); Shanmuga Sundara Raj et al. (1999[Shanmuga Sundara Raj, S., Fun, H.-K., Lu, Z.-L., Xiao, W., Tong, Y.-X. & Kang, B.-S. (1999). Acta Cryst. C55, 942-944.]); Wardell et al. (2007[Wardell, S. M. S. V., de Souza, M. V. N., Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. B63, 879-895.]). For crystal structures with 2-(1,3-dioxoisoindolin-2-yl)acetic acid, see: Barooah et al. (2006[Barooah, N., Sarma, R. J., Batsanov, A. S. & Baruah, J. B. (2006). J. Mol. Struct. 791, 122-130.]); Feeder & Jones (1994[Feeder, N. & Jones, W. (1994). Acta Cryst. C50, 820-823.], 1996[Feeder, N. & Jones, W. (1996). Acta Cryst. C52, 913-919.]). For a related co-crystal, see: Mohamed et al. (2012[Mohamed, S. K., Farrukh, M. A., Akkurt, M., Albayati, M. R. & Abdelhamid, A. A. (2012). Acta Cryst. E68, o2442.]). For the synthesis of 2-(1,3-dioxoisoindolin-2-yl)acetic acid, see: Rajpurohit & Sah (2005[Rajpurohit, S. & Sah, P. (2005). Asian J. Chem. 17, 949-954.]).

[Scheme 1]

Experimental

Crystal data
  • 2C10H7NO4·C14H13N3O2

  • Mr = 665.61

  • Triclinic, [P \overline 1]

  • a = 8.1238 (4) Å

  • b = 12.7963 (7) Å

  • c = 15.9191 (11) Å

  • α = 105.590 (5)°

  • β = 101.160 (5)°

  • γ = 97.535 (4)°

  • V = 1534.19 (17) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.91 mm−1

  • T = 293 K

  • 0.16 × 0.10 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur (Sapphire3, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.963, Tmax = 1.000

  • 10334 measured reflections

  • 5912 independent reflections

  • 4836 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.116

  • S = 1.06

  • 5912 reflections

  • 456 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2A—H1OA⋯N1 1.00 (3) 1.60 (3) 2.5997 (19) 177 (2)
O2B—H1OB⋯O1 0.93 (2) 1.75 (2) 2.6736 (16) 170 (2)
N2—H1N2⋯O4Bi 0.87 (2) 2.22 (2) 3.0549 (18) 161 (2)
C2A—H2A2⋯O3Bii 0.97 2.57 3.477 (2) 156
C5B—H5B⋯O1iii 0.93 2.51 3.158 (2) 126
C7B—H7B⋯O3Biv 0.93 2.55 3.275 (2) 135
C5—H5⋯O3Av 0.93 2.48 3.341 (2) 154
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x-1, y-1, z-1; (iii) -x+1, -y+3, -z+1; (iv) x+1, y, z; (v) -x-1, -y+1, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Compounds incorporating the isoniazid (INH) core structure have shown high inhibitory activity in vitro (Bijev, 2006; Imramovský et al., 2007) and in mice towards M. tuberculosis H37Rv, ATCC 27294, M. tuberculosis clinical isolates and isoniazid-resistant M. tuberculosis (Maccari et al., 2005; Schultheiss & Newman 2009; Shindikar & Viswanathan, 2005; Sinha et al., 2005). In the present study we report the crystal structure of a novel, tricomponent cocrystal (I) containing the isoniazid-related hydrazone N'-[(E)-(4-methoxyphenyl)methylidene]pyridine-4-carbohydrazide and 2-(1,3-dioxoisoindolin-2-yl)acetic acid in a 1:2 molar ratio.

The asymmetric unit of (I) contains one hydrazone molecule and two crystallographically independent molecules of the acid denoted as A and B in Fig. 1. The A and B molecules tightly connect to the hydrazone via short and directional O2a—H1Oa···N1 and O2b— H1Ob···O1 hydrogen bond, respectively (Table 1). The interactions of A and B molecules significantly differ as their carboxyl acid groups, serving as proton donors, find different acceptors within the hydrazone molecule i.e. pyridinyl N1 and carboxyl O1 (Fig. 1). The interaction O2a—H1Oa···N1 which directly involves the acidic –COOH group and the most basic pyridinyl N1 atom causes the noticeable elongation of O2—H1Oa bond in molecule A (Table 1), yet no proton transfer occurs and all components remain neutral.

Besides the different engagement in the strongest interactions, the important difference between molecules A and B concerns their conformation. Thus the O1 carbonyl atom adopts trans and cis orientation relating to N1 atom in A and B. In addition, the O1—C1—C2—N1 torsion angle is 161.2 (2) and 1.4 (2)°, in molecules A and B respectively. It is worth mentioning that in a previously reported cocrystal (Mohamed et al., 2012) as well as in the crystal structures of 2-(1,3-dioxoisoindolin-2-yl)acetic acid containing one molecule in the asymmetric unit (Feeder & Jones, 1996), two independent molecules (Barooah et al., 2006) or the same molecule as monohydrate (Feeder & Jones, 1994), the value of the corresponding torsion angle O1—C1—C2—N1 is below 15.8° indicating the preferred conformation is similar to that of molecule B.

There are several crystal structures of hydrazone N'-[(E)-(4-methoxyphenyl)methylidene]pyridine-4-carbohydrazide describing this compound as monohydrate crystallizing in two forms, monoclinic (Jing et al., 2005; Shanmuga Sundara Raj et al., 1999; Wardell et al., 2007) and orthorhombic (Lin & Liu, 2007). The present form of the molecule shows no particular difference in bond lengths and angles in comparison to the previous ones.

The above described trimer with strongly intermolecular hydrogen-bonded components (Fig. 1), undergoes further arrangement via much weaker interamolecular interactions. Two such trimolecular units related by an inversion centre interact through a pair of N2—H1N2···O4b hydrogen bonds (Table 1) forming a 3 + 3 molecular aggregate.

Apart from this classical N—H···O hydrogen bond, the arrangement of the molecules in the cocrystal is further based on weak C— H···O (Table 1) and ππ interactions. Figure 2 displays the three-dimensional crystal packing as viewed down the a axis. The molecules of hydrazone are stacked in the ac plane with the perpendicular interplanar distances of 3.44 [for molecule at (-x, -y + 2, -z + 1)] and 3.46 Å [for molecule at (-x + 1, -y + 2, -z + 1)]. On the other hand, the acid molecules arrange along the c axis in an AABBAABB sequence, with the perpendicular distances between the rings ranging from 3.31 to 3.43 Å. Considering only the six membered aromatic rings one can observe only a modest overlap: Cg1···Cg2 (-x, -y + 2, -z + 1) = 3.8460 (10) Å, where Cg1 and Cg2 are the centroids of the N1—C5 and C8—C13 rings, respectively and Cg4···Cg4 (x + 1/2, -y + 1, -z) 3.8703 (13) Å where Cg4 is the centroid of the C4a—C9a ring.

Related literature top

For anti-tuberculosis drugs containing the isoniazid core structure, see: Bijev (2006); Imramovský et al. (2007); Maccari et al. (2005); Schultheiss & Newman (2009); Shindikar & Viswanathan (2005); Sinha et al. (2005). For crystal structures with N'-[(E)-(4-methoxyphenyl)methylidene]pyridine-4-carbohydrazide, see: Jing et al. (2005); Lin & Liu (2007); Shanmuga Sundara Raj et al. (1999); Wardell et al. (2007). For crystal structures with 2-(1,3-dioxoisoindolin-2-yl)acetic acid, see: Barooah et al. (2006); Feeder & Jones (1994, 1996). For a related co-crystal, see: Mohamed et al. (2012). For the synthesis of 2-(1,3-dioxoisoindolin-2-yl)acetic acid, see: Rajpurohit & Sah (2005).

Experimental top

The cocrystallized solid (I) was obtained unintentionally from a reaction of 0.01 mol (2.55 g) of N'-[(E)-(4-methoxyphenyl)methylidene]pyridine-4-carbohydrazide with 0.02 mol (4.10 g) of (1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)acetic acid in 50 ml ethanol. The reaction mixture was heated for 6 h at 351 K, then poured on crushed ice (50 g). The resulting solid was filtered off, washed with cold ethanol and recrystallized from ethanol. Yellow crystals suitable for X-ray diffraction analysis were grown up in a diluted ethanolic solution over two days. M.p. 472- 474 K. Crystals of the title compound can also be obtained by a simple crystallization of two components dissolved in ethanol.

2-(1,3-Dioxoisoindolin-2-yl)acetic acid was prepared according to the literature procedure (Rajpurohit & Sah, 2005). N'-[(E)-(4-methoxyphenyl)methylidene]pyridine-4-carbohydrazide was prepared by the reaction of an equimolar solution of isoniazid (0.01 mol; 1.37 g) and p-methoxybenzaldehyde (0.01 mol; 1.21 g) in ethanol. The reaction mixture was heated at 351 K and monitored by TLC until completed after 4 h, then left at fume cupboard where the solvent evaporated. The resulting solid was recrystallized from ethanol in a very good yield (87%); m.p. 435–437 K.

Refinement top

H atoms bonded to C atoms were placed at calculated positions, with C—H distances fixed at 0.93 Å for aromatic C(sp2) atoms and at 0.96 and 0.97 Å for methyl and methylene C(sp3) atoms, respectively. The corresponding isotropic displacement parameters of the H atoms were set equal to 1.2Ueq or 1.5Ueq of the parent C(sp2) or C(sp3) atoms, respectively. A rotating model was employed for the methyl group. The H atoms attached to N and O atoms were located in a difference Fourier map and refined isotropically.

Structure description top

Compounds incorporating the isoniazid (INH) core structure have shown high inhibitory activity in vitro (Bijev, 2006; Imramovský et al., 2007) and in mice towards M. tuberculosis H37Rv, ATCC 27294, M. tuberculosis clinical isolates and isoniazid-resistant M. tuberculosis (Maccari et al., 2005; Schultheiss & Newman 2009; Shindikar & Viswanathan, 2005; Sinha et al., 2005). In the present study we report the crystal structure of a novel, tricomponent cocrystal (I) containing the isoniazid-related hydrazone N'-[(E)-(4-methoxyphenyl)methylidene]pyridine-4-carbohydrazide and 2-(1,3-dioxoisoindolin-2-yl)acetic acid in a 1:2 molar ratio.

The asymmetric unit of (I) contains one hydrazone molecule and two crystallographically independent molecules of the acid denoted as A and B in Fig. 1. The A and B molecules tightly connect to the hydrazone via short and directional O2a—H1Oa···N1 and O2b— H1Ob···O1 hydrogen bond, respectively (Table 1). The interactions of A and B molecules significantly differ as their carboxyl acid groups, serving as proton donors, find different acceptors within the hydrazone molecule i.e. pyridinyl N1 and carboxyl O1 (Fig. 1). The interaction O2a—H1Oa···N1 which directly involves the acidic –COOH group and the most basic pyridinyl N1 atom causes the noticeable elongation of O2—H1Oa bond in molecule A (Table 1), yet no proton transfer occurs and all components remain neutral.

Besides the different engagement in the strongest interactions, the important difference between molecules A and B concerns their conformation. Thus the O1 carbonyl atom adopts trans and cis orientation relating to N1 atom in A and B. In addition, the O1—C1—C2—N1 torsion angle is 161.2 (2) and 1.4 (2)°, in molecules A and B respectively. It is worth mentioning that in a previously reported cocrystal (Mohamed et al., 2012) as well as in the crystal structures of 2-(1,3-dioxoisoindolin-2-yl)acetic acid containing one molecule in the asymmetric unit (Feeder & Jones, 1996), two independent molecules (Barooah et al., 2006) or the same molecule as monohydrate (Feeder & Jones, 1994), the value of the corresponding torsion angle O1—C1—C2—N1 is below 15.8° indicating the preferred conformation is similar to that of molecule B.

There are several crystal structures of hydrazone N'-[(E)-(4-methoxyphenyl)methylidene]pyridine-4-carbohydrazide describing this compound as monohydrate crystallizing in two forms, monoclinic (Jing et al., 2005; Shanmuga Sundara Raj et al., 1999; Wardell et al., 2007) and orthorhombic (Lin & Liu, 2007). The present form of the molecule shows no particular difference in bond lengths and angles in comparison to the previous ones.

The above described trimer with strongly intermolecular hydrogen-bonded components (Fig. 1), undergoes further arrangement via much weaker interamolecular interactions. Two such trimolecular units related by an inversion centre interact through a pair of N2—H1N2···O4b hydrogen bonds (Table 1) forming a 3 + 3 molecular aggregate.

Apart from this classical N—H···O hydrogen bond, the arrangement of the molecules in the cocrystal is further based on weak C— H···O (Table 1) and ππ interactions. Figure 2 displays the three-dimensional crystal packing as viewed down the a axis. The molecules of hydrazone are stacked in the ac plane with the perpendicular interplanar distances of 3.44 [for molecule at (-x, -y + 2, -z + 1)] and 3.46 Å [for molecule at (-x + 1, -y + 2, -z + 1)]. On the other hand, the acid molecules arrange along the c axis in an AABBAABB sequence, with the perpendicular distances between the rings ranging from 3.31 to 3.43 Å. Considering only the six membered aromatic rings one can observe only a modest overlap: Cg1···Cg2 (-x, -y + 2, -z + 1) = 3.8460 (10) Å, where Cg1 and Cg2 are the centroids of the N1—C5 and C8—C13 rings, respectively and Cg4···Cg4 (x + 1/2, -y + 1, -z) 3.8703 (13) Å where Cg4 is the centroid of the C4a—C9a ring.

For anti-tuberculosis drugs containing the isoniazid core structure, see: Bijev (2006); Imramovský et al. (2007); Maccari et al. (2005); Schultheiss & Newman (2009); Shindikar & Viswanathan (2005); Sinha et al. (2005). For crystal structures with N'-[(E)-(4-methoxyphenyl)methylidene]pyridine-4-carbohydrazide, see: Jing et al. (2005); Lin & Liu (2007); Shanmuga Sundara Raj et al. (1999); Wardell et al. (2007). For crystal structures with 2-(1,3-dioxoisoindolin-2-yl)acetic acid, see: Barooah et al. (2006); Feeder & Jones (1994, 1996). For a related co-crystal, see: Mohamed et al. (2012). For the synthesis of 2-(1,3-dioxoisoindolin-2-yl)acetic acid, see: Rajpurohit & Sah (2005).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 35% probability level. Intermolecular hydrogen interactions are shown as dashed bonds.
[Figure 2] Fig. 2. Crystal packing of the title compound, showing the stacking arrangement of the components within the unit cell.
2-(1,3-Dioxoisoindolin-2-yl)acetic acid–N'-[(E)-4- methoxybenzylidene]pyridine-4-carbohydrazide (2/1) top
Crystal data top
2C10H7NO4·C14H13N3O2Z = 2
Mr = 665.61F(000) = 692
Triclinic, P1Dx = 1.441 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 8.1238 (4) ÅCell parameters from 3871 reflections
b = 12.7963 (7) Åθ = 3.0–72.3°
c = 15.9191 (11) ŵ = 0.91 mm1
α = 105.590 (5)°T = 293 K
β = 101.160 (5)°Prismatic, yellow
γ = 97.535 (4)°0.16 × 0.10 × 0.08 mm
V = 1534.19 (17) Å3
Data collection top
Oxford Diffraction Xcalibur (Sapphire3, Gemini)
diffractometer
5912 independent reflections
Radiation source: Enhance (Cu) X-ray Source4836 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 16.3280 pixels mm-1θmax = 72.5°, θmin = 3.0°
ω scansh = 69
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1515
Tmin = 0.963, Tmax = 1.000l = 1919
10334 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.272P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
5912 reflectionsΔρmax = 0.28 e Å3
456 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0024 (3)
Crystal data top
2C10H7NO4·C14H13N3O2γ = 97.535 (4)°
Mr = 665.61V = 1534.19 (17) Å3
Triclinic, P1Z = 2
a = 8.1238 (4) ÅCu Kα radiation
b = 12.7963 (7) ŵ = 0.91 mm1
c = 15.9191 (11) ÅT = 293 K
α = 105.590 (5)°0.16 × 0.10 × 0.08 mm
β = 101.160 (5)°
Data collection top
Oxford Diffraction Xcalibur (Sapphire3, Gemini)
diffractometer
5912 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
4836 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 1.000Rint = 0.022
10334 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.28 e Å3
5912 reflectionsΔρmin = 0.21 e Å3
456 parameters
Special details top

Experimental. Absorption correction: Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. 'CrysAlisPro, (Oxford Diffraction, 2009)'

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2642 (2)0.95037 (14)0.17010 (12)0.0549 (4)
H10.30930.99400.13680.066*
C20.1425 (2)1.00139 (13)0.24952 (11)0.0493 (4)
H20.10691.07780.26890.059*
C30.07405 (18)0.93782 (11)0.30007 (9)0.0366 (3)
C40.1314 (2)0.82441 (12)0.26761 (11)0.0451 (4)
H40.08810.77860.29920.054*
C50.2535 (2)0.78039 (13)0.18774 (11)0.0508 (4)
H50.29150.70410.16670.061*
C60.05450 (18)0.99688 (11)0.38761 (9)0.0367 (3)
C70.33689 (19)0.92085 (12)0.54388 (10)0.0401 (3)
H70.31120.84490.51560.048*
C80.46634 (18)0.96649 (12)0.62817 (9)0.0384 (3)
C90.5239 (2)1.08025 (13)0.66447 (11)0.0495 (4)
H90.47851.12710.63460.059*
C100.6462 (2)1.12434 (13)0.74335 (12)0.0534 (4)
H100.68521.20050.76560.064*
C110.7124 (2)1.05611 (13)0.79041 (10)0.0440 (3)
C120.6576 (2)0.94290 (13)0.75570 (11)0.0479 (4)
H120.70140.89650.78650.057*
C130.5365 (2)0.89881 (13)0.67442 (11)0.0455 (4)
H130.50170.82250.65050.055*
C140.8949 (3)1.04657 (17)0.92371 (12)0.0657 (5)
H14A0.80231.01510.94430.099*
H14B0.98231.09340.97440.099*
H14C0.94150.98840.89010.099*
N10.31974 (17)0.84128 (11)0.13922 (9)0.0491 (3)
N20.13864 (16)0.93389 (10)0.42826 (8)0.0406 (3)
N30.25843 (15)0.98456 (10)0.50851 (8)0.0406 (3)
O10.07630 (14)1.09815 (8)0.41843 (7)0.0474 (3)
O20.83335 (17)1.11023 (10)0.86773 (8)0.0597 (3)
C1A0.5342 (2)0.78299 (14)0.07334 (12)0.0535 (4)
C2A0.6544 (2)0.71923 (15)0.16347 (11)0.0555 (4)
H2A10.68750.77110.19520.067*
H2A20.59400.67090.19890.067*
C3A0.8216 (2)0.54517 (13)0.15390 (10)0.0475 (4)
C4A0.9875 (2)0.51700 (15)0.13116 (11)0.0511 (4)
C5A1.0643 (3)0.42141 (17)0.11908 (12)0.0647 (5)
H5A1.01490.35900.12730.078*
C6A1.2187 (3)0.4222 (2)0.09410 (14)0.0840 (7)
H6A1.27400.35940.08480.101*
C7A1.2915 (3)0.5161 (3)0.08276 (16)0.0940 (9)
H7A1.39510.51460.06600.113*
C8A1.2142 (3)0.6116 (3)0.09567 (15)0.0828 (7)
H8A1.26380.67390.08820.099*
C9A1.0608 (2)0.61061 (17)0.11997 (11)0.0585 (5)
C10A0.9459 (2)0.69870 (15)0.13613 (11)0.0569 (4)
N1A0.80682 (17)0.65359 (11)0.15608 (9)0.0493 (3)
O1A0.4285 (3)0.85939 (17)0.06654 (12)0.1289 (9)
O2A0.55221 (17)0.74356 (11)0.00883 (8)0.0626 (4)
O3A0.71648 (17)0.48833 (10)0.16856 (10)0.0637 (3)
O4A0.9621 (2)0.79203 (12)0.13410 (10)0.0829 (5)
C1B0.40479 (19)1.30491 (12)0.57084 (10)0.0425 (3)
C2B0.5016 (2)1.37468 (13)0.66499 (10)0.0454 (4)
H2B10.43011.42220.69200.054*
H2B20.52861.32670.70150.054*
C3B0.67039 (19)1.55202 (12)0.66280 (10)0.0405 (3)
C4B0.83781 (19)1.58248 (12)0.64317 (10)0.0395 (3)
C5B0.9136 (2)1.67982 (13)0.63322 (11)0.0470 (4)
H5B0.86031.74060.63960.056*
C6B1.0719 (2)1.68341 (15)0.61333 (12)0.0538 (4)
H6B1.12611.74780.60590.065*
C7B1.1523 (2)1.59280 (16)0.60421 (11)0.0544 (4)
H7B1.25941.59790.59130.065*
C8B1.0751 (2)1.49488 (14)0.61414 (11)0.0492 (4)
H8B1.12851.43420.60820.059*
C9B0.91670 (19)1.49099 (12)0.63309 (9)0.0401 (3)
C10B0.7997 (2)1.39932 (12)0.64460 (10)0.0422 (3)
N1B0.65796 (16)1.44176 (10)0.66338 (9)0.0422 (3)
O1B0.45570 (17)1.30518 (12)0.50517 (8)0.0671 (4)
O2B0.26246 (15)1.24440 (9)0.57228 (8)0.0516 (3)
O3B0.56253 (15)1.60611 (10)0.67685 (9)0.0556 (3)
O4B0.81814 (16)1.30561 (9)0.63963 (8)0.0569 (3)
H1OA0.464 (3)0.784 (2)0.0486 (18)0.101 (8)*
H1OB0.210 (3)1.1927 (18)0.5169 (16)0.078 (7)*
H1N20.126 (2)0.8633 (16)0.4029 (13)0.056 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0628 (11)0.0486 (9)0.0472 (9)0.0083 (8)0.0060 (8)0.0194 (7)
C20.0578 (10)0.0374 (8)0.0453 (9)0.0048 (7)0.0030 (7)0.0135 (7)
C30.0358 (7)0.0373 (7)0.0347 (7)0.0062 (6)0.0053 (6)0.0102 (6)
C40.0475 (9)0.0371 (7)0.0457 (8)0.0063 (6)0.0004 (7)0.0135 (6)
C50.0539 (9)0.0381 (8)0.0491 (9)0.0017 (7)0.0016 (7)0.0077 (7)
C60.0367 (7)0.0350 (7)0.0358 (7)0.0037 (6)0.0059 (6)0.0098 (6)
C70.0418 (8)0.0365 (7)0.0397 (8)0.0067 (6)0.0058 (6)0.0110 (6)
C80.0379 (7)0.0409 (8)0.0365 (7)0.0083 (6)0.0067 (6)0.0129 (6)
C90.0550 (9)0.0395 (8)0.0492 (9)0.0098 (7)0.0045 (7)0.0169 (7)
C100.0605 (10)0.0387 (8)0.0508 (9)0.0060 (7)0.0050 (8)0.0112 (7)
C110.0446 (8)0.0473 (8)0.0365 (8)0.0084 (7)0.0030 (6)0.0117 (6)
C120.0550 (9)0.0477 (9)0.0421 (8)0.0130 (7)0.0021 (7)0.0207 (7)
C130.0522 (9)0.0382 (8)0.0437 (8)0.0076 (7)0.0047 (7)0.0138 (6)
C140.0744 (13)0.0714 (12)0.0439 (10)0.0109 (10)0.0080 (9)0.0223 (9)
N10.0493 (8)0.0489 (8)0.0396 (7)0.0038 (6)0.0030 (6)0.0103 (6)
N20.0432 (7)0.0340 (6)0.0364 (6)0.0068 (5)0.0026 (5)0.0063 (5)
N30.0396 (6)0.0400 (6)0.0358 (6)0.0054 (5)0.0006 (5)0.0088 (5)
O10.0505 (6)0.0348 (5)0.0468 (6)0.0030 (4)0.0050 (5)0.0100 (5)
O20.0673 (8)0.0539 (7)0.0438 (6)0.0057 (6)0.0126 (5)0.0126 (5)
C1A0.0593 (10)0.0482 (9)0.0460 (9)0.0015 (8)0.0067 (8)0.0126 (7)
C2A0.0667 (11)0.0522 (9)0.0428 (9)0.0047 (8)0.0062 (8)0.0147 (7)
C3A0.0489 (9)0.0448 (8)0.0397 (8)0.0092 (7)0.0003 (7)0.0055 (7)
C4A0.0451 (9)0.0580 (10)0.0373 (8)0.0054 (7)0.0017 (7)0.0034 (7)
C5A0.0617 (11)0.0676 (12)0.0490 (10)0.0037 (9)0.0045 (8)0.0058 (9)
C6A0.0640 (13)0.1115 (19)0.0524 (12)0.0225 (13)0.0051 (10)0.0102 (12)
C7A0.0479 (12)0.154 (3)0.0619 (14)0.0113 (15)0.0099 (10)0.0095 (15)
C8A0.0557 (12)0.121 (2)0.0680 (14)0.0321 (13)0.0120 (10)0.0173 (13)
C9A0.0498 (10)0.0750 (12)0.0404 (9)0.0219 (9)0.0015 (7)0.0044 (8)
C10A0.0659 (11)0.0573 (10)0.0384 (8)0.0239 (9)0.0017 (8)0.0038 (7)
N1A0.0500 (8)0.0448 (7)0.0424 (7)0.0095 (6)0.0027 (6)0.0053 (6)
O1A0.1529 (18)0.1220 (15)0.0688 (10)0.0829 (14)0.0089 (11)0.0354 (10)
O2A0.0641 (8)0.0649 (8)0.0428 (7)0.0146 (6)0.0080 (6)0.0175 (6)
O3A0.0600 (8)0.0566 (7)0.0794 (9)0.0226 (6)0.0205 (7)0.0204 (7)
O4A0.1137 (13)0.0643 (9)0.0734 (10)0.0459 (9)0.0155 (9)0.0164 (7)
C1B0.0432 (8)0.0369 (7)0.0429 (8)0.0079 (6)0.0024 (6)0.0103 (6)
C2B0.0483 (9)0.0400 (8)0.0426 (8)0.0018 (6)0.0056 (7)0.0108 (6)
C3B0.0431 (8)0.0367 (7)0.0374 (7)0.0087 (6)0.0009 (6)0.0096 (6)
C4B0.0410 (8)0.0365 (7)0.0358 (7)0.0082 (6)0.0000 (6)0.0085 (6)
C5B0.0493 (9)0.0408 (8)0.0484 (9)0.0073 (7)0.0037 (7)0.0155 (7)
C6B0.0514 (9)0.0533 (9)0.0506 (9)0.0018 (7)0.0043 (7)0.0170 (8)
C7B0.0390 (8)0.0720 (11)0.0448 (9)0.0057 (8)0.0031 (7)0.0130 (8)
C8B0.0434 (8)0.0551 (9)0.0424 (8)0.0167 (7)0.0002 (7)0.0076 (7)
C9B0.0411 (8)0.0378 (7)0.0333 (7)0.0088 (6)0.0035 (6)0.0057 (6)
C10B0.0465 (8)0.0359 (7)0.0356 (7)0.0095 (6)0.0036 (6)0.0056 (6)
N1B0.0421 (7)0.0339 (6)0.0445 (7)0.0049 (5)0.0015 (5)0.0092 (5)
O1B0.0629 (8)0.0824 (9)0.0427 (7)0.0045 (7)0.0081 (6)0.0092 (6)
O2B0.0517 (7)0.0436 (6)0.0470 (6)0.0037 (5)0.0027 (5)0.0058 (5)
O3B0.0522 (7)0.0508 (7)0.0704 (8)0.0220 (5)0.0183 (6)0.0208 (6)
O4B0.0673 (8)0.0347 (6)0.0633 (7)0.0158 (5)0.0027 (6)0.0124 (5)
Geometric parameters (Å, º) top
C1—N11.332 (2)C3A—N1A1.387 (2)
C1—C21.380 (2)C3A—C4A1.486 (2)
C1—H10.9300C4A—C5A1.377 (3)
C2—C31.384 (2)C4A—C9A1.391 (3)
C2—H20.9300C5A—C6A1.388 (3)
C3—C41.384 (2)C5A—H5A0.9300
C3—C61.5058 (19)C6A—C7A1.392 (4)
C4—C51.378 (2)C6A—H6A0.9300
C4—H40.9300C7A—C8A1.384 (4)
C5—N11.329 (2)C7A—H7A0.9300
C5—H50.9300C8A—C9A1.375 (3)
C6—O11.2312 (17)C8A—H8A0.9300
C6—N21.3376 (19)C9A—C10A1.477 (3)
C7—N31.2775 (19)C10A—O4A1.211 (2)
C7—C81.456 (2)C10A—N1A1.386 (2)
C7—H70.9300O2A—H1OA1.00 (3)
C8—C131.388 (2)C1B—O1B1.197 (2)
C8—C91.392 (2)C1B—O2B1.3123 (19)
C9—C101.368 (2)C1B—C2B1.517 (2)
C9—H90.9300C2B—N1B1.445 (2)
C10—C111.390 (2)C2B—H2B10.9700
C10—H100.9300C2B—H2B20.9700
C11—O21.3619 (18)C3B—O3B1.2036 (18)
C11—C121.381 (2)C3B—N1B1.4038 (18)
C12—C131.389 (2)C3B—C4B1.480 (2)
C12—H120.9300C4B—C5B1.378 (2)
C13—H130.9300C4B—C9B1.394 (2)
C14—O21.425 (2)C5B—C6B1.381 (2)
C14—H14A0.9600C5B—H5B0.9300
C14—H14B0.9600C6B—C7B1.391 (3)
C14—H14C0.9600C6B—H6B0.9300
N2—N31.3811 (16)C7B—C8B1.388 (2)
N2—H1N20.87 (2)C7B—H7B0.9300
C1A—O1A1.180 (2)C8B—C9B1.375 (2)
C1A—O2A1.284 (2)C8B—H8B0.9300
C1A—C2A1.516 (2)C9B—C10B1.484 (2)
C2A—N1A1.446 (2)C10B—O4B1.2114 (18)
C2A—H2A10.9700C10B—N1B1.386 (2)
C2A—H2A20.9700O2B—H1OB0.93 (2)
C3A—O3A1.2090 (19)
N1—C1—C2122.73 (15)C5A—C4A—C9A122.03 (18)
N1—C1—H1118.6C5A—C4A—C3A130.83 (17)
C2—C1—H1118.6C9A—C4A—C3A107.11 (16)
C1—C2—C3119.45 (15)C4A—C5A—C6A117.2 (2)
C1—C2—H2120.3C4A—C5A—H5A121.4
C3—C2—H2120.3C6A—C5A—H5A121.4
C4—C3—C2117.70 (14)C5A—C6A—C7A120.7 (2)
C4—C3—C6124.47 (13)C5A—C6A—H6A119.7
C2—C3—C6117.81 (13)C7A—C6A—H6A119.7
C5—C4—C3119.02 (14)C8A—C7A—C6A121.9 (2)
C5—C4—H4120.5C8A—C7A—H7A119.1
C3—C4—H4120.5C6A—C7A—H7A119.1
N1—C5—C4123.38 (15)C9A—C8A—C7A117.3 (2)
N1—C5—H5118.3C9A—C8A—H8A121.4
C4—C5—H5118.3C7A—C8A—H8A121.4
O1—C6—N2123.53 (13)C8A—C9A—C4A121.0 (2)
O1—C6—C3119.79 (13)C8A—C9A—C10A130.3 (2)
N2—C6—C3116.68 (12)C4A—C9A—C10A108.63 (16)
N3—C7—C8120.32 (13)O4A—C10A—N1A124.2 (2)
N3—C7—H7119.8O4A—C10A—C9A129.96 (19)
C8—C7—H7119.8N1A—C10A—C9A105.85 (15)
C13—C8—C9118.05 (14)C10A—N1A—C3A112.07 (15)
C13—C8—C7121.51 (14)C10A—N1A—C2A122.47 (15)
C9—C8—C7120.44 (13)C3A—N1A—C2A124.74 (14)
C10—C9—C8121.12 (14)C1A—O2A—H1OA112.8 (14)
C10—C9—H9119.4O1B—C1B—O2B125.65 (15)
C8—C9—H9119.4O1B—C1B—C2B123.35 (15)
C9—C10—C11120.42 (15)O2B—C1B—C2B110.99 (14)
C9—C10—H10119.8N1B—C2B—C1B111.00 (13)
C11—C10—H10119.8N1B—C2B—H2B1109.4
O2—C11—C12125.81 (14)C1B—C2B—H2B1109.4
O2—C11—C10114.62 (14)N1B—C2B—H2B2109.4
C12—C11—C10119.54 (14)C1B—C2B—H2B2109.4
C11—C12—C13119.55 (14)H2B1—C2B—H2B2108.0
C11—C12—H12120.2O3B—C3B—N1B124.21 (15)
C13—C12—H12120.2O3B—C3B—C4B130.12 (14)
C8—C13—C12121.27 (14)N1B—C3B—C4B105.68 (12)
C8—C13—H13119.4C5B—C4B—C9B121.58 (15)
C12—C13—H13119.4C5B—C4B—C3B130.30 (14)
O2—C14—H14A109.5C9B—C4B—C3B108.11 (13)
O2—C14—H14B109.5C4B—C5B—C6B117.23 (15)
H14A—C14—H14B109.5C4B—C5B—H5B121.4
O2—C14—H14C109.5C6B—C5B—H5B121.4
H14A—C14—H14C109.5C5B—C6B—C7B121.48 (16)
H14B—C14—H14C109.5C5B—C6B—H6B119.3
C5—N1—C1117.72 (14)C7B—C6B—H6B119.3
C6—N2—N3118.70 (12)C8B—C7B—C6B121.01 (16)
C6—N2—H1N2121.2 (13)C8B—C7B—H7B119.5
N3—N2—H1N2119.8 (12)C6B—C7B—H7B119.5
C7—N3—N2116.20 (12)C9B—C8B—C7B117.49 (15)
C11—O2—C14117.57 (14)C9B—C8B—H8B121.3
O1A—C1A—O2A124.36 (17)C7B—C8B—H8B121.3
O1A—C1A—C2A120.76 (17)C8B—C9B—C4B121.20 (15)
O2A—C1A—C2A114.78 (15)C8B—C9B—C10B130.71 (14)
N1A—C2A—C1A113.27 (14)C4B—C9B—C10B108.08 (13)
N1A—C2A—H2A1108.9O4B—C10B—N1B124.78 (15)
C1A—C2A—H2A1108.9O4B—C10B—C9B129.25 (15)
N1A—C2A—H2A2108.9N1B—C10B—C9B105.98 (12)
C1A—C2A—H2A2108.9C10B—N1B—C3B112.14 (13)
H2A1—C2A—H2A2107.7C10B—N1B—C2B123.63 (13)
O3A—C3A—N1A124.53 (16)C3B—N1B—C2B123.10 (13)
O3A—C3A—C4A129.13 (16)C1B—O2B—H1OB112.4 (14)
N1A—C3A—C4A106.33 (14)
N1—C1—C2—C30.0 (3)C3A—C4A—C9A—C10A0.63 (18)
C1—C2—C3—C40.4 (2)C8A—C9A—C10A—O4A2.3 (3)
C1—C2—C3—C6178.24 (15)C4A—C9A—C10A—O4A179.28 (18)
C2—C3—C4—C50.5 (2)C8A—C9A—C10A—N1A178.19 (19)
C6—C3—C4—C5178.00 (15)C4A—C9A—C10A—N1A0.28 (18)
C3—C4—C5—N10.3 (3)O4A—C10A—N1A—C3A179.81 (16)
C4—C3—C6—O1167.66 (15)C9A—C10A—N1A—C3A0.21 (18)
C2—C3—C6—O110.8 (2)O4A—C10A—N1A—C2A9.5 (3)
C4—C3—C6—N211.7 (2)C9A—C10A—N1A—C2A170.92 (14)
C2—C3—C6—N2169.80 (14)O3A—C3A—N1A—C10A179.69 (16)
N3—C7—C8—C13170.94 (14)C4A—C3A—N1A—C10A0.59 (17)
N3—C7—C8—C99.4 (2)O3A—C3A—N1A—C2A9.2 (3)
C13—C8—C9—C100.1 (3)C4A—C3A—N1A—C2A171.05 (14)
C7—C8—C9—C10179.63 (16)C1A—C2A—N1A—C10A80.2 (2)
C8—C9—C10—C111.8 (3)C1A—C2A—N1A—C3A89.3 (2)
C9—C10—C11—O2179.91 (16)O1B—C1B—C2B—N1B1.4 (2)
C9—C10—C11—C121.8 (3)O2B—C1B—C2B—N1B179.70 (12)
O2—C11—C12—C13178.07 (16)O3B—C3B—C4B—C5B2.0 (3)
C10—C11—C12—C130.2 (3)N1B—C3B—C4B—C5B178.67 (15)
C9—C8—C13—C121.5 (2)O3B—C3B—C4B—C9B179.29 (16)
C7—C8—C13—C12178.76 (15)N1B—C3B—C4B—C9B0.02 (16)
C11—C12—C13—C81.5 (3)C9B—C4B—C5B—C6B0.4 (2)
C4—C5—N1—C10.0 (3)C3B—C4B—C5B—C6B178.94 (15)
C2—C1—N1—C50.1 (3)C4B—C5B—C6B—C7B0.4 (2)
O1—C6—N2—N31.0 (2)C5B—C6B—C7B—C8B0.5 (3)
C3—C6—N2—N3179.68 (12)C6B—C7B—C8B—C9B0.1 (2)
C8—C7—N3—N2179.59 (13)C7B—C8B—C9B—C4B0.9 (2)
C6—N2—N3—C7179.03 (13)C7B—C8B—C9B—C10B177.81 (15)
C12—C11—O2—C148.0 (3)C5B—C4B—C9B—C8B1.0 (2)
C10—C11—O2—C14174.13 (16)C3B—C4B—C9B—C8B179.88 (13)
O1A—C1A—C2A—N1A161.2 (2)C5B—C4B—C9B—C10B177.90 (13)
O2A—C1A—C2A—N1A22.3 (2)C3B—C4B—C9B—C10B0.93 (16)
O3A—C3A—C4A—C5A1.4 (3)C8B—C9B—C10B—O4B0.1 (3)
N1A—C3A—C4A—C5A178.94 (17)C4B—C9B—C10B—O4B178.70 (15)
O3A—C3A—C4A—C9A179.55 (17)C8B—C9B—C10B—N1B179.68 (15)
N1A—C3A—C4A—C9A0.75 (17)C4B—C9B—C10B—N1B1.50 (16)
C9A—C4A—C5A—C6A0.7 (3)O4B—C10B—N1B—C3B178.65 (14)
C3A—C4A—C5A—C6A177.28 (17)C9B—C10B—N1B—C3B1.54 (16)
C4A—C5A—C6A—C7A0.5 (3)O4B—C10B—N1B—C2B10.5 (2)
C5A—C6A—C7A—C8A0.0 (3)C9B—C10B—N1B—C2B169.65 (13)
C6A—C7A—C8A—C9A0.3 (3)O3B—C3B—N1B—C10B179.65 (14)
C7A—C8A—C9A—C4A0.1 (3)C4B—C3B—N1B—C10B0.99 (16)
C7A—C8A—C9A—C10A178.19 (19)O3B—C3B—N1B—C2B11.5 (2)
C5A—C4A—C9A—C8A0.4 (3)C4B—C3B—N1B—C2B169.17 (13)
C3A—C4A—C9A—C8A178.01 (17)C1B—C2B—N1B—C10B71.42 (18)
C5A—C4A—C9A—C10A179.01 (15)C1B—C2B—N1B—C3B95.41 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A—H1OA···N11.00 (3)1.60 (3)2.5997 (19)177 (2)
O2B—H1OB···O10.93 (2)1.75 (2)2.6736 (16)170 (2)
N2—H1N2···O4Bi0.87 (2)2.22 (2)3.0549 (18)161 (2)
C2A—H2A2···O3Bii0.972.573.477 (2)156
C5B—H5B···O1iii0.932.513.158 (2)126
C7B—H7B···O3Biv0.932.553.275 (2)135
C5—H5···O3Av0.932.483.341 (2)154
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y1, z1; (iii) x+1, y+3, z+1; (iv) x+1, y, z; (v) x1, y+1, z.

Experimental details

Crystal data
Chemical formula2C10H7NO4·C14H13N3O2
Mr665.61
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.1238 (4), 12.7963 (7), 15.9191 (11)
α, β, γ (°)105.590 (5), 101.160 (5), 97.535 (4)
V3)1534.19 (17)
Z2
Radiation typeCu Kα
µ (mm1)0.91
Crystal size (mm)0.16 × 0.10 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur (Sapphire3, Gemini)
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.963, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10334, 5912, 4836
Rint0.022
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.116, 1.06
No. of reflections5912
No. of parameters456
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.21

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A—H1OA···N11.00 (3)1.60 (3)2.5997 (19)177 (2)
O2B—H1OB···O10.93 (2)1.75 (2)2.6736 (16)170 (2)
N2—H1N2···O4Bi0.87 (2)2.22 (2)3.0549 (18)161 (2)
C2A—H2A2···O3Bii0.972.573.477 (2)156
C5B—H5B···O1iii0.932.513.158 (2)126
C7B—H7B···O3Biv0.932.553.275 (2)135
C5—H5···O3Av0.932.483.341 (2)154
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y1, z1; (iii) x+1, y+3, z+1; (iv) x+1, y, z; (v) x1, y+1, z.
 

Acknowledgements

The authors are grateful to the Higher Education Authority of Iraq for sponsoring this project. Our gratitude is also extended to the Manchester Metropolitan University for facilitating and supporting this study. SBN and GAB thank the Ministry of Education, Science and Technological Development of the Republic of Serbia for the financial support (projects 172014 and 172035).

References

First citationBarooah, N., Sarma, R. J., Batsanov, A. S. & Baruah, J. B. (2006). J. Mol. Struct. 791, 122–130.  Web of Science CSD CrossRef CAS Google Scholar
First citationBijev, A. (2006). Lett. Drug. Des. Discov. 3, 506–512.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFeeder, N. & Jones, W. (1994). Acta Cryst. C50, 820–823.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFeeder, N. & Jones, W. (1996). Acta Cryst. C52, 913–919.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationImramovský, A., Polanc, S., Vinšnová, J., Kočevar, M., Jampílek, J., Rečková, Z. & Kaustová, J. (2007). Bioorg. Med. Chem. 15, 2551–2559.  Web of Science PubMed Google Scholar
First citationJing, Z.-L., Fan, Z., Yu, M., Chen, X. & Deng, Q.-L. (2005). Acta Cryst. E61, o3208–o3209.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, M. & Liu, S.-X. (2007). Acta Cryst. E63, o3974.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509–2513.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMohamed, S. K., Farrukh, M. A., Akkurt, M., Albayati, M. R. & Abdelhamid, A. A. (2012). Acta Cryst. E68, o2442.  CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRajpurohit, S. & Sah, P. (2005). Asian J. Chem. 17, 949–954.  CAS Google Scholar
First citationSchultheiss, N. & Newman, A. (2009). Cryst. Growth Des. 9, 2950–2967.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationShanmuga Sundara Raj, S., Fun, H.-K., Lu, Z.-L., Xiao, W., Tong, Y.-X. & Kang, B.-S. (1999). Acta Cryst. C55, 942–944.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShindikar, A. V. & Viswanathan, C. L. (2005). Bioorg. Med. Chem. Lett. 15, 1803–1806.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSinha, N., Jain, S., Tilekar, A., Upadhayaya, R. S., Kishore, N., Jana, G. H. & Arora, S. K. (2005). Bioorg. Med. Chem. Lett. 15, 1573–1576.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWardell, S. M. S. V., de Souza, M. V. N., Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. B63, 879–895.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds