organic compounds
4-[(2E)-2-(2-Hydroxybenzylidene)hydrazin-1-yl]benzonitrile
aManchester Metropolitan University, Chemistry and Environmental Division, Manchester M1 5GD, England, b'Vinča' Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, University of Belgrade, PO Box 522, 11001 Belgrade, Serbia, and cSchool of Research, Enterprise & Innovation, Manchester Metropolitan University, Manchester M1 5GD, England
*Correspondence e-mail: s.mohamed@mmu.ac.uk
The 14H11N3O, contains two independent molecules which have similar conformations. The dihedral angles between the benzene rings are 4.19 (9) and 14.18 (9)° in the two molecules. An intramolecular O—H⋯N hydrogen bond stabilizes the molecular conformation of each molecules. The crystal packing is dominated by pairs of equivalent N—H⋯N and C—H⋯O hydrogen bonds which arrange the molecules into layers parallel to (-111).
of the title Schiff base, CRelated literature
For et al. (1994); Harada et al. (1999); Ogawa et al. (1998). For the biological properties of see: Lozier et al. (1975); Dao et al. (2000). For their coordination chemistry, see: Kargar et al. (2009); Yeap et al. (2009). For the structure of related reported by our group, see: Mohamed, Abdelhamid et al. (2012); Mohamed, Akkurt et al. (2012).
see: ArchibaldExperimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006)'; software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).
Supporting information
https://doi.org/10.1107/S1600536812037841/rz2800sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812037841/rz2800Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812037841/rz2800Isup3.cml
The title compound was prepared unintentionally as a major product from reaction of 112 mg (1 mmol) cyclohexane-1,3-dione, 133 mg (1 mmol) 4-hydrazinylbenzonitrile and 122 mg (1 mmol) salicylaldehyde in 50 ml ethanol. The reaction mixture was refluxed for 5 h. The excess solvent was evaporated under vacuum and the residual resins was triturated with cold acetone. The obtained solid was collected by filtration, dried and washed with acetone. Single crystals suitable for X-ray diffraction were grown from acetone solution of (I) using the slow evaporation method. M. p. 469 K.
H atoms bonded to C atoms were placed at calculated positions, with C—H distances fixed at 0.93 Å and isotropic displacement parameters set equal to 1.2Ueq of the parent C(sp2) atoms. H atoms attached to N and O were located in difference Fourier map and refined isotropically.
Schiff bases have received much attention in recent years (Ogawa et al., 1998; Archibald et al., 1994; Harada et al., 1999) due to their various biological activities and metal chelating properties. In many cases, they were shown to have antibacterial, anticancer, anti- inflammatory and antitoxic properties (Lozier et al., 1975; Dao et al., 2000) and have also been used as versatile ligands in coordination chemistry (Kargar et al., 2009; Yeap et al., 2009). Recently, we reported on the crystal structures of two new
(Mohamed, Abdelhamid et al., 2012; Mohamed, Akkurt et al., 2012). As a further investigation of the structures of Schiff base compounds, herin we report the synthesis and of the title compound (I) which was obtained unintentionally from the component reaction of cyclohexan-1,3-dione, salicylaldehyde and 4- hydrazinylbenzonitrile in ethanol.The title compound crystallizes with two independent molecules (A and B) in the
Fig. 1. The molecules A and B have similar conformation and approximately planar form. In molecules A and B the dihedral angle between the corresponding aromatic rings is 4.19 (9) and 14.18 (9)°, respectively. The torsion angles C8—N2—N1—C1 and N2—N1—C1—C2, within the fragment which connects the rings, are 179.44 (14)/-179.93 (13) and 175.41 (13)/177.44 (12)°, in molecules A and B respectively. All these parameters suggest a somewhat higher planarity of molecule A in comparison to molecule B. The molecules of each type are stabilized by the cyclic intramolecular O1—H1o···N1 hydrogen bond (Table 1). In the crystal packing the A and B molecules mutually interact by the pairs of the strongest N2—H1n···N3 hydrogen bonds (Table 1) which engage the hydrazine donor and the nitirile acceptor from each type of molecule. The chains consisting of A and B molecules further interact by another pair of equivalent C7—H7···O1 interactions to give two dimensional lyres (Fig 2). The interaction between the parallel lyres towards the three-dimensional crystal packing is mostly based on weak van der Waals interactions.For
see: Archibald et al. (1994); Harada et al. (1999); Ogawa et al. (1998). For the biological properties of see: Lozier et al. (1975); Dao et al. (2000). For their coordination chemistry, see: Kargar et al. (2009); Yeap et al. (2009). For the structure of related reported by our group, see: Mohamed, Abdelhamid et al. (2012); Mohamed, Akkurt et al. (2012).Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006)'; software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).Fig. 1. The molecular structure of (I) with atom numbering scheme. Displacement ellipsoids are drawn at the 35% probability level. | |
Fig. 2. Two dimensional arrangement of A and B molecules via N—H···N and C—H···O hydrogen bonds. |
C14H11N3O | Z = 4 |
Mr = 237.26 | F(000) = 496 |
Triclinic, P1 | Dx = 1.324 Mg m−3 |
Hall symbol: -P 1 | Cu Kα radiation, λ = 1.5418 Å |
a = 8.1917 (7) Å | Cell parameters from 3110 reflections |
b = 11.6406 (7) Å | θ = 3.5–72.5° |
c = 13.4445 (8) Å | µ = 0.70 mm−1 |
α = 103.006 (5)° | T = 293 K |
β = 104.387 (6)° | Prismatic, colorless |
γ = 96.426 (6)° | 0.26 × 0.15 × 0.14 mm |
V = 1190.67 (14) Å3 |
Oxford Diffraction Xcalibur (Sapphire3, Gemini) diffractometer | 4592 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 3696 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
Detector resolution: 16.3280 pixels mm-1 | θmax = 72.6°, θmin = 3.5° |
ω scans | h = −9→10 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | k = −14→13 |
Tmin = 0.827, Tmax = 1.000 | l = −16→14 |
7913 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.121 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0591P)2 + 0.1257P] where P = (Fo2 + 2Fc2)/3 |
4592 reflections | (Δ/σ)max < 0.001 |
341 parameters | Δρmax = 0.16 e Å−3 |
0 restraints | Δρmin = −0.14 e Å−3 |
C14H11N3O | γ = 96.426 (6)° |
Mr = 237.26 | V = 1190.67 (14) Å3 |
Triclinic, P1 | Z = 4 |
a = 8.1917 (7) Å | Cu Kα radiation |
b = 11.6406 (7) Å | µ = 0.70 mm−1 |
c = 13.4445 (8) Å | T = 293 K |
α = 103.006 (5)° | 0.26 × 0.15 × 0.14 mm |
β = 104.387 (6)° |
Oxford Diffraction Xcalibur (Sapphire3, Gemini) diffractometer | 4592 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 3696 reflections with I > 2σ(I) |
Tmin = 0.827, Tmax = 1.000 | Rint = 0.020 |
7913 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.121 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.16 e Å−3 |
4592 reflections | Δρmin = −0.14 e Å−3 |
341 parameters |
Experimental. Absorption correction: Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. 'CrysAlisPro (Oxford Diffraction, 2009)' |
x | y | z | Uiso*/Ueq | ||
O1A | 0.48536 (17) | 0.59328 (11) | 0.66183 (10) | 0.0784 (4) | |
O1B | 0.91964 (17) | −0.08146 (11) | 0.25880 (10) | 0.0774 (4) | |
N1A | 0.22126 (15) | 0.44483 (11) | 0.51588 (9) | 0.0526 (3) | |
N1B | 0.93383 (15) | 0.06285 (11) | 0.13286 (9) | 0.0522 (3) | |
N2A | 0.09712 (17) | 0.40478 (12) | 0.42146 (10) | 0.0596 (3) | |
N2B | 0.87286 (17) | 0.10497 (12) | 0.04621 (10) | 0.0602 (3) | |
N3A | −0.0385 (2) | 0.69952 (14) | 0.03913 (11) | 0.0808 (5) | |
N3B | 0.20536 (19) | −0.19989 (13) | −0.37048 (11) | 0.0718 (4) | |
C1A | 0.22866 (18) | 0.37735 (12) | 0.58006 (11) | 0.0515 (3) | |
H1A | 0.1506 | 0.3060 | 0.5593 | 0.062* | |
C1B | 1.06978 (18) | 0.12410 (12) | 0.20323 (11) | 0.0497 (3) | |
H1B | 1.1242 | 0.1924 | 0.1917 | 0.060* | |
C2A | 0.35367 (18) | 0.40831 (12) | 0.68322 (11) | 0.0480 (3) | |
C2B | 1.14175 (17) | 0.09042 (12) | 0.30040 (11) | 0.0475 (3) | |
C3A | 0.47572 (19) | 0.51421 (13) | 0.72128 (12) | 0.0536 (3) | |
C3B | 1.0654 (2) | −0.00961 (13) | 0.32475 (12) | 0.0549 (3) | |
C4A | 0.5895 (2) | 0.54087 (15) | 0.82180 (13) | 0.0662 (4) | |
H4A | 0.6707 | 0.6109 | 0.8464 | 0.079* | |
C4B | 1.1394 (2) | −0.03657 (15) | 0.41970 (13) | 0.0676 (4) | |
H4B | 1.0883 | −0.1025 | 0.4362 | 0.081* | |
C5A | 0.5828 (2) | 0.46422 (17) | 0.88535 (13) | 0.0706 (5) | |
H5A | 0.6591 | 0.4832 | 0.9531 | 0.085* | |
C5B | 1.2868 (2) | 0.03347 (17) | 0.48887 (13) | 0.0735 (5) | |
H5B | 1.3355 | 0.0142 | 0.5519 | 0.088* | |
C6A | 0.4644 (2) | 0.35943 (17) | 0.84996 (13) | 0.0703 (4) | |
H6A | 0.4605 | 0.3079 | 0.8934 | 0.084* | |
C6B | 1.3643 (2) | 0.13218 (16) | 0.46669 (13) | 0.0695 (4) | |
H6B | 1.4646 | 0.1793 | 0.5142 | 0.083* | |
C7A | 0.3520 (2) | 0.33197 (14) | 0.74959 (12) | 0.0600 (4) | |
H7A | 0.2730 | 0.2608 | 0.7254 | 0.072* | |
C7B | 1.29124 (19) | 0.16031 (14) | 0.37294 (12) | 0.0574 (4) | |
H7B | 1.3429 | 0.2272 | 0.3580 | 0.069* | |
C8A | 0.07493 (18) | 0.46900 (12) | 0.34649 (11) | 0.0511 (3) | |
C8B | 0.73501 (18) | 0.04005 (13) | −0.03593 (11) | 0.0507 (3) | |
C9A | 0.1698 (2) | 0.58289 (14) | 0.36363 (12) | 0.0589 (4) | |
H9A | 0.2530 | 0.6184 | 0.4279 | 0.071* | |
C9B | 0.66057 (19) | −0.07671 (13) | −0.04234 (12) | 0.0549 (3) | |
H9B | 0.7039 | −0.1134 | 0.0108 | 0.066* | |
C10A | 0.1391 (2) | 0.64216 (14) | 0.28470 (12) | 0.0622 (4) | |
H10A | 0.2015 | 0.7182 | 0.2965 | 0.075* | |
C10B | 0.5233 (2) | −0.13687 (13) | −0.12740 (12) | 0.0571 (4) | |
H10B | 0.4750 | −0.2146 | −0.1314 | 0.068* | |
C11A | 0.0169 (2) | 0.59024 (13) | 0.18796 (12) | 0.0558 (4) | |
C11B | 0.45513 (19) | −0.08366 (13) | −0.20774 (11) | 0.0539 (3) | |
C12A | −0.0775 (2) | 0.47666 (14) | 0.17121 (12) | 0.0587 (4) | |
H12A | −0.1604 | 0.4412 | 0.1068 | 0.070* | |
C12B | 0.5284 (2) | 0.03318 (14) | −0.20013 (12) | 0.0595 (4) | |
H12B | 0.4834 | 0.0704 | −0.2526 | 0.071* | |
C13A | −0.0485 (2) | 0.41730 (13) | 0.24934 (11) | 0.0575 (4) | |
H13A | −0.1118 | 0.3416 | 0.2374 | 0.069* | |
C13B | 0.6654 (2) | 0.09324 (13) | −0.11637 (12) | 0.0582 (4) | |
H13B | 0.7134 | 0.1709 | −0.1127 | 0.070* | |
C14A | −0.0144 (2) | 0.65174 (15) | 0.10526 (13) | 0.0638 (4) | |
C14B | 0.3157 (2) | −0.14810 (14) | −0.29808 (13) | 0.0587 (4) | |
H1NA | 0.021 (2) | 0.3362 (16) | 0.4094 (14) | 0.077 (5)* | |
H1NB | 0.934 (2) | 0.1706 (16) | 0.0406 (13) | 0.072 (5)* | |
H1OA | 0.397 (3) | 0.559 (2) | 0.5941 (17) | 0.103 (7)* | |
H1OB | 0.886 (3) | −0.0526 (18) | 0.2020 (16) | 0.090 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1A | 0.0813 (8) | 0.0629 (7) | 0.0783 (8) | −0.0142 (6) | −0.0038 (7) | 0.0360 (6) |
O1B | 0.0827 (8) | 0.0657 (7) | 0.0713 (7) | −0.0186 (6) | 0.0021 (6) | 0.0304 (6) |
N1A | 0.0542 (7) | 0.0505 (6) | 0.0489 (6) | 0.0056 (5) | 0.0068 (5) | 0.0149 (5) |
N1B | 0.0551 (7) | 0.0543 (7) | 0.0490 (6) | 0.0068 (5) | 0.0130 (5) | 0.0201 (5) |
N2A | 0.0620 (8) | 0.0531 (7) | 0.0537 (7) | −0.0011 (6) | −0.0009 (6) | 0.0186 (6) |
N2B | 0.0639 (8) | 0.0588 (7) | 0.0542 (7) | −0.0017 (6) | 0.0061 (6) | 0.0255 (6) |
N3A | 0.0952 (11) | 0.0772 (10) | 0.0642 (8) | −0.0075 (8) | 0.0078 (8) | 0.0344 (8) |
N3B | 0.0674 (9) | 0.0678 (9) | 0.0666 (8) | −0.0049 (7) | 0.0042 (7) | 0.0149 (7) |
C1A | 0.0532 (8) | 0.0452 (7) | 0.0546 (8) | 0.0044 (6) | 0.0127 (6) | 0.0150 (6) |
C1B | 0.0511 (7) | 0.0469 (7) | 0.0535 (7) | 0.0052 (6) | 0.0171 (6) | 0.0170 (6) |
C2A | 0.0508 (7) | 0.0456 (7) | 0.0499 (7) | 0.0109 (6) | 0.0147 (6) | 0.0154 (6) |
C2B | 0.0489 (7) | 0.0467 (7) | 0.0487 (7) | 0.0097 (6) | 0.0160 (6) | 0.0131 (6) |
C3A | 0.0546 (8) | 0.0493 (7) | 0.0563 (8) | 0.0079 (6) | 0.0107 (6) | 0.0190 (6) |
C3B | 0.0598 (8) | 0.0494 (8) | 0.0547 (8) | 0.0055 (6) | 0.0142 (7) | 0.0165 (6) |
C4A | 0.0608 (9) | 0.0606 (9) | 0.0655 (10) | 0.0049 (7) | 0.0017 (7) | 0.0142 (8) |
C4B | 0.0817 (11) | 0.0636 (10) | 0.0624 (9) | 0.0119 (8) | 0.0186 (8) | 0.0291 (8) |
C5A | 0.0726 (11) | 0.0796 (11) | 0.0534 (9) | 0.0201 (9) | 0.0019 (8) | 0.0198 (8) |
C5B | 0.0836 (12) | 0.0823 (12) | 0.0557 (9) | 0.0239 (10) | 0.0102 (8) | 0.0265 (9) |
C6A | 0.0845 (12) | 0.0761 (11) | 0.0603 (9) | 0.0232 (9) | 0.0188 (8) | 0.0351 (8) |
C6B | 0.0619 (9) | 0.0756 (11) | 0.0581 (9) | 0.0098 (8) | 0.0015 (7) | 0.0103 (8) |
C7A | 0.0683 (9) | 0.0538 (8) | 0.0617 (9) | 0.0086 (7) | 0.0180 (7) | 0.0242 (7) |
C7B | 0.0532 (8) | 0.0548 (8) | 0.0602 (8) | 0.0051 (6) | 0.0139 (7) | 0.0116 (7) |
C8A | 0.0539 (8) | 0.0500 (7) | 0.0495 (7) | 0.0119 (6) | 0.0120 (6) | 0.0150 (6) |
C8B | 0.0521 (8) | 0.0523 (8) | 0.0488 (7) | 0.0081 (6) | 0.0152 (6) | 0.0151 (6) |
C9A | 0.0634 (9) | 0.0555 (8) | 0.0499 (8) | 0.0006 (7) | 0.0058 (7) | 0.0140 (6) |
C9B | 0.0594 (8) | 0.0542 (8) | 0.0547 (8) | 0.0100 (6) | 0.0156 (7) | 0.0226 (6) |
C10A | 0.0691 (10) | 0.0536 (8) | 0.0599 (9) | −0.0006 (7) | 0.0134 (7) | 0.0180 (7) |
C10B | 0.0604 (9) | 0.0495 (8) | 0.0625 (9) | 0.0053 (6) | 0.0192 (7) | 0.0173 (7) |
C11A | 0.0605 (9) | 0.0572 (8) | 0.0527 (8) | 0.0104 (7) | 0.0152 (7) | 0.0211 (7) |
C11B | 0.0520 (8) | 0.0563 (8) | 0.0518 (8) | 0.0065 (6) | 0.0147 (6) | 0.0128 (6) |
C12A | 0.0597 (9) | 0.0593 (9) | 0.0510 (8) | 0.0072 (7) | 0.0049 (7) | 0.0160 (7) |
C12B | 0.0637 (9) | 0.0586 (9) | 0.0551 (8) | 0.0080 (7) | 0.0093 (7) | 0.0226 (7) |
C13A | 0.0608 (9) | 0.0486 (8) | 0.0558 (8) | 0.0032 (6) | 0.0058 (7) | 0.0140 (6) |
C13B | 0.0629 (9) | 0.0515 (8) | 0.0578 (8) | 0.0025 (7) | 0.0094 (7) | 0.0218 (7) |
C14A | 0.0679 (10) | 0.0624 (9) | 0.0581 (9) | 0.0013 (7) | 0.0112 (7) | 0.0219 (7) |
C14B | 0.0591 (9) | 0.0559 (8) | 0.0608 (9) | 0.0058 (7) | 0.0169 (7) | 0.0171 (7) |
O1A—C3A | 1.3559 (17) | C5B—C6B | 1.377 (3) |
O1A—H1OA | 0.98 (2) | C5B—H5B | 0.9300 |
O1B—C3B | 1.3520 (18) | C6A—C7A | 1.376 (2) |
O1B—H1OB | 0.90 (2) | C6A—H6A | 0.9300 |
N1A—C1A | 1.2865 (17) | C6B—C7B | 1.382 (2) |
N1A—N2A | 1.3597 (16) | C6B—H6B | 0.9300 |
N1B—C1B | 1.2801 (18) | C7A—H7A | 0.9300 |
N1B—N2B | 1.3674 (16) | C7B—H7B | 0.9300 |
N2A—C8A | 1.3734 (18) | C8A—C13A | 1.3943 (19) |
N2A—H1NA | 0.914 (18) | C8A—C9A | 1.399 (2) |
N2B—C8B | 1.3709 (18) | C8B—C13B | 1.397 (2) |
N2B—H1NB | 0.894 (18) | C8B—C9B | 1.4008 (19) |
N3A—C14A | 1.140 (2) | C9A—C10A | 1.379 (2) |
N3B—C14B | 1.142 (2) | C9A—H9A | 0.9300 |
C1A—C2A | 1.4453 (19) | C9B—C10B | 1.374 (2) |
C1A—H1A | 0.9300 | C9B—H9B | 0.9300 |
C1B—C2B | 1.4517 (19) | C10A—C11A | 1.387 (2) |
C1B—H1B | 0.9300 | C10A—H10A | 0.9300 |
C2A—C7A | 1.3951 (19) | C10B—C11B | 1.393 (2) |
C2A—C3A | 1.402 (2) | C10B—H10B | 0.9300 |
C2B—C7B | 1.3925 (19) | C11A—C12A | 1.395 (2) |
C2B—C3B | 1.4017 (19) | C11A—C14A | 1.439 (2) |
C3A—C4A | 1.383 (2) | C11B—C12B | 1.394 (2) |
C3B—C4B | 1.391 (2) | C11B—C14B | 1.432 (2) |
C4A—C5A | 1.373 (2) | C12A—C13A | 1.370 (2) |
C4A—H4A | 0.9300 | C12A—H12A | 0.9300 |
C4B—C5B | 1.367 (3) | C12B—C13B | 1.363 (2) |
C4B—H4B | 0.9300 | C12B—H12B | 0.9300 |
C5A—C6A | 1.378 (3) | C13A—H13A | 0.9300 |
C5A—H5A | 0.9300 | C13B—H13B | 0.9300 |
C3A—O1A—H1OA | 106.5 (13) | C7B—C6B—H6B | 120.4 |
C3B—O1B—H1OB | 108.4 (13) | C6A—C7A—C2A | 121.60 (15) |
C1A—N1A—N2A | 116.26 (12) | C6A—C7A—H7A | 119.2 |
C1B—N1B—N2B | 117.48 (12) | C2A—C7A—H7A | 119.2 |
N1A—N2A—C8A | 121.92 (12) | C6B—C7B—C2B | 121.27 (15) |
N1A—N2A—H1NA | 119.3 (11) | C6B—C7B—H7B | 119.4 |
C8A—N2A—H1NA | 118.6 (11) | C2B—C7B—H7B | 119.4 |
N1B—N2B—C8B | 120.79 (12) | N2A—C8A—C13A | 117.82 (13) |
N1B—N2B—H1NB | 117.9 (11) | N2A—C8A—C9A | 123.00 (13) |
C8B—N2B—H1NB | 120.8 (11) | C13A—C8A—C9A | 119.18 (13) |
N1A—C1A—C2A | 122.47 (13) | N2B—C8B—C13B | 118.37 (13) |
N1A—C1A—H1A | 118.8 | N2B—C8B—C9B | 122.92 (13) |
C2A—C1A—H1A | 118.8 | C13B—C8B—C9B | 118.71 (13) |
N1B—C1B—C2B | 122.14 (12) | C10A—C9A—C8A | 119.59 (14) |
N1B—C1B—H1B | 118.9 | C10A—C9A—H9A | 120.2 |
C2B—C1B—H1B | 118.9 | C8A—C9A—H9A | 120.2 |
C7A—C2A—C3A | 117.93 (13) | C10B—C9B—C8B | 119.81 (13) |
C7A—C2A—C1A | 119.35 (13) | C10B—C9B—H9B | 120.1 |
C3A—C2A—C1A | 122.70 (13) | C8B—C9B—H9B | 120.1 |
C7B—C2B—C3B | 118.45 (13) | C9A—C10A—C11A | 121.09 (14) |
C7B—C2B—C1B | 119.12 (13) | C9A—C10A—H10A | 119.5 |
C3B—C2B—C1B | 122.43 (13) | C11A—C10A—H10A | 119.5 |
O1A—C3A—C4A | 118.18 (14) | C9B—C10B—C11B | 121.24 (13) |
O1A—C3A—C2A | 121.55 (13) | C9B—C10B—H10B | 119.4 |
C4A—C3A—C2A | 120.27 (14) | C11B—C10B—H10B | 119.4 |
O1B—C3B—C4B | 118.20 (14) | C10A—C11A—C12A | 119.13 (13) |
O1B—C3B—C2B | 122.02 (13) | C10A—C11A—C14A | 121.12 (14) |
C4B—C3B—C2B | 119.78 (15) | C12A—C11A—C14A | 119.75 (14) |
C5A—C4A—C3A | 120.18 (16) | C10B—C11B—C12B | 118.66 (14) |
C5A—C4A—H4A | 119.9 | C10B—C11B—C14B | 121.05 (14) |
C3A—C4A—H4A | 119.9 | C12B—C11B—C14B | 120.26 (14) |
C5B—C4B—C3B | 120.29 (16) | C13A—C12A—C11A | 120.19 (14) |
C5B—C4B—H4B | 119.9 | C13A—C12A—H12A | 119.9 |
C3B—C4B—H4B | 119.9 | C11A—C12A—H12A | 119.9 |
C4A—C5A—C6A | 120.81 (15) | C13B—C12B—C11B | 120.49 (14) |
C4A—C5A—H5A | 119.6 | C13B—C12B—H12B | 119.8 |
C6A—C5A—H5A | 119.6 | C11B—C12B—H12B | 119.8 |
C4B—C5B—C6B | 121.02 (15) | C12A—C13A—C8A | 120.82 (14) |
C4B—C5B—H5B | 119.5 | C12A—C13A—H13A | 119.6 |
C6B—C5B—H5B | 119.5 | C8A—C13A—H13A | 119.6 |
C7A—C6A—C5A | 119.21 (15) | C12B—C13B—C8B | 121.09 (14) |
C7A—C6A—H6A | 120.4 | C12B—C13B—H13B | 119.5 |
C5A—C6A—H6A | 120.4 | C8B—C13B—H13B | 119.5 |
C5B—C6B—C7B | 119.19 (16) | N3A—C14A—C11A | 179.3 (2) |
C5B—C6B—H6B | 120.4 | N3B—C14B—C11B | 179.48 (19) |
C13A—C8A—N2A—N1A | 175.98 (13) | C13B—C8B—N2B—N1B | 172.55 (13) |
C8A—N2A—N1A—C1A | 179.44 (14) | C8B—N2B—N1B—C1B | 175.41 (13) |
N2A—N1A—C1A—C2A | −179.93 (13) | N2B—N1B—C1B—C2B | 177.44 (12) |
N1A—C1A—C2A—C3A | 0.2 (2) | N1B—C1B—C2B—C3B | −1.4 (2) |
C1A—C2A—C3A—O1A | −1.3 (2) | C1B—C2B—C3B—O1B | 0.2 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1A—H1OA···N1A | 0.98 (2) | 1.77 (2) | 2.654 (2) | 149 (2) |
O1B—H1OB···N1B | 0.90 (2) | 1.86 (2) | 2.653 (2) | 147 (2) |
N2A—H1NA···N3Bi | 0.91 (2) | 2.17 (2) | 3.065 (2) | 166 (2) |
N2B—H1NB···N3Aii | 0.89 (2) | 2.25 (2) | 3.098 (2) | 158 (2) |
C7A—H7A···O1Biii | 0.93 | 2.55 | 3.427 (2) | 156 |
C7B—H7B···O1Aiv | 0.93 | 2.49 | 3.413 (2) | 172 |
Symmetry codes: (i) −x, −y, −z; (ii) −x+1, −y+1, −z; (iii) −x+1, −y, −z+1; (iv) −x+2, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C14H11N3O |
Mr | 237.26 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 8.1917 (7), 11.6406 (7), 13.4445 (8) |
α, β, γ (°) | 103.006 (5), 104.387 (6), 96.426 (6) |
V (Å3) | 1190.67 (14) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.70 |
Crystal size (mm) | 0.26 × 0.15 × 0.14 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur (Sapphire3, Gemini) |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.827, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7913, 4592, 3696 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.619 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.121, 1.05 |
No. of reflections | 4592 |
No. of parameters | 341 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.16, −0.14 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006)', WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).
D—H···A | D—H | H···A | D···A | D—H···A |
O1A—H1OA···N1A | 0.98 (2) | 1.77 (2) | 2.654 (2) | 149 (2) |
O1B—H1OB···N1B | 0.90 (2) | 1.86 (2) | 2.653 (2) | 147 (2) |
N2A—H1NA···N3Bi | 0.91 (2) | 2.17 (2) | 3.065 (2) | 166 (2) |
N2B—H1NB···N3Aii | 0.89 (2) | 2.25 (2) | 3.098 (2) | 158 (2) |
C7A—H7A···O1Biii | 0.93 | 2.55 | 3.427 (2) | 156 |
C7B—H7B···O1Aiv | 0.93 | 2.49 | 3.413 (2) | 172 |
Symmetry codes: (i) −x, −y, −z; (ii) −x+1, −y+1, −z; (iii) −x+1, −y, −z+1; (iv) −x+2, −y+1, −z+1. |
Acknowledgements
We thank Manchester Metropolitan University for providing X-ray analysis and data
facilities. SBN and GAB thank the Ministry of Education, Science and Technological Development of the Republic of Serbia for financial support (projects 172014 and 172035).References
Archibald, S. J., Blake, A. J., Schroder, M. & Winpenny, R. E. P. (1994). Chem. Commun. pp. 1669–1670. CrossRef Google Scholar
Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805–813. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Harada, J., Uekusa, H. & Ohashi, Y. (1999). J. Am. Chem. Soc. 121, 5809–5810. Web of Science CSD CrossRef CAS Google Scholar
Kargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403–m404. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962. CrossRef PubMed CAS Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mohamed, S. K., Abdelhamid, A. A., Akkurt, M., Fanwick, P. E. & Maharramov, A. M. (2012). Acta Cryst. E68, o1618. CSD CrossRef IUCr Journals Google Scholar
Mohamed, S. K., Akkurt, M., Tahir, M. N. & Abdelhamid, A. A. (2012). Acta Cryst. E68, o1905. CSD CrossRef IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Ogawa, K., Kasahara, Y., Ohtani, Y. & Harada, J. (1998). J. Am. Chem. Soc. 120, 7107–7108. Web of Science CSD CrossRef CAS Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570–m571. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff bases have received much attention in recent years (Ogawa et al., 1998; Archibald et al., 1994; Harada et al., 1999) due to their various biological activities and metal chelating properties. In many cases, they were shown to have antibacterial, anticancer, anti- inflammatory and antitoxic properties (Lozier et al., 1975; Dao et al., 2000) and have also been used as versatile ligands in coordination chemistry (Kargar et al., 2009; Yeap et al., 2009). Recently, we reported on the crystal structures of two new Schiff bases (Mohamed, Abdelhamid et al., 2012; Mohamed, Akkurt et al., 2012). As a further investigation of the structures of Schiff base compounds, herin we report the synthesis and crystal structure of the title compound (I) which was obtained unintentionally from the component reaction of cyclohexan-1,3-dione, salicylaldehyde and 4- hydrazinylbenzonitrile in ethanol.
The title compound crystallizes with two independent molecules (A and B) in the asymmetric unit, Fig. 1. The molecules A and B have similar conformation and approximately planar form. In molecules A and B the dihedral angle between the corresponding aromatic rings is 4.19 (9) and 14.18 (9)°, respectively. The torsion angles C8—N2—N1—C1 and N2—N1—C1—C2, within the fragment which connects the rings, are 179.44 (14)/-179.93 (13) and 175.41 (13)/177.44 (12)°, in molecules A and B respectively. All these parameters suggest a somewhat higher planarity of molecule A in comparison to molecule B. The molecules of each type are stabilized by the cyclic intramolecular O1—H1o···N1 hydrogen bond (Table 1). In the crystal packing the A and B molecules mutually interact by the pairs of the strongest N2—H1n···N3 hydrogen bonds (Table 1) which engage the hydrazine donor and the nitirile acceptor from each type of molecule. The chains consisting of A and B molecules further interact by another pair of equivalent C7—H7···O1 interactions to give two dimensional lyres (Fig 2). The interaction between the parallel lyres towards the three-dimensional crystal packing is mostly based on weak van der Waals interactions.