organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(2E)-2-(2-Hy­dr­oxy­benzyl­­idene)hydrazin-1-yl]benzo­nitrile

aManchester Metropolitan University, Chemistry and Environmental Division, Manchester M1 5GD, England, b'Vinča' Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, University of Belgrade, PO Box 522, 11001 Belgrade, Serbia, and cSchool of Research, Enterprise & Innovation, Manchester Metropolitan University, Manchester M1 5GD, England
*Correspondence e-mail: s.mohamed@mmu.ac.uk

(Received 28 August 2012; accepted 3 September 2012; online 8 September 2012)

The asymmetric unit of the title Schiff base, C14H11N3O, contains two independent mol­ecules which have similar conformations. The dihedral angles between the benzene rings are 4.19 (9) and 14.18 (9)° in the two mol­ecules. An intra­molecular O—H⋯N hydrogen bond stabilizes the mol­ecular conformation of each mol­ecules. The crystal packing is dominated by pairs of equivalent N—H⋯N and C—H⋯O hydrogen bonds which arrange the mol­ecules into layers parallel to (-111).

Related literature

For azomethines, see: Archibald et al. (1994[Archibald, S. J., Blake, A. J., Schroder, M. & Winpenny, R. E. P. (1994). Chem. Commun. pp. 1669-1670.]); Harada et al. (1999[Harada, J., Uekusa, H. & Ohashi, Y. (1999). J. Am. Chem. Soc. 121, 5809-5810.]); Ogawa et al. (1998[Ogawa, K., Kasahara, Y., Ohtani, Y. & Harada, J. (1998). J. Am. Chem. Soc. 120, 7107-7108.]). For the biological properties of Schiff bases, see: Lozier et al. (1975[Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955-962.]); Dao et al. (2000[Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805-813.]). For their coordination chemistry, see: Kargar et al. (2009[Kargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403-m404.]); Yeap et al. (2009[Yeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570-m571.]). For the structure of related Schiff bases reported by our group, see: Mohamed, Abdelhamid et al. (2012[Mohamed, S. K., Abdelhamid, A. A., Akkurt, M., Fanwick, P. E. & Maharramov, A. M. (2012). Acta Cryst. E68, o1618.]); Mohamed, Akkurt et al. (2012[Mohamed, S. K., Akkurt, M., Tahir, M. N. & Abdelhamid, A. A. (2012). Acta Cryst. E68, o1905.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11N3O

  • Mr = 237.26

  • Triclinic, [P \overline 1]

  • a = 8.1917 (7) Å

  • b = 11.6406 (7) Å

  • c = 13.4445 (8) Å

  • α = 103.006 (5)°

  • β = 104.387 (6)°

  • γ = 96.426 (6)°

  • V = 1190.67 (14) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.70 mm−1

  • T = 293 K

  • 0.26 × 0.15 × 0.14 mm

Data collection
  • Oxford Diffraction Xcalibur (Sapphire3, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.827, Tmax = 1.000

  • 7913 measured reflections

  • 4592 independent reflections

  • 3696 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.121

  • S = 1.05

  • 4592 reflections

  • 341 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1OA⋯N1A 0.98 (2) 1.77 (2) 2.654 (2) 149 (2)
O1B—H1OB⋯N1B 0.90 (2) 1.86 (2) 2.653 (2) 147 (2)
N2A—H1NA⋯N3Bi 0.91 (2) 2.17 (2) 3.065 (2) 166 (2)
N2B—H1NB⋯N3Aii 0.89 (2) 2.25 (2) 3.098 (2) 158 (2)
C7A—H7A⋯O1Biii 0.93 2.55 3.427 (2) 156
C7B—H7B⋯O1Aiv 0.93 2.49 3.413 (2) 172
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y, -z+1; (iv) -x+2, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.])'; software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Schiff bases have received much attention in recent years (Ogawa et al., 1998; Archibald et al., 1994; Harada et al., 1999) due to their various biological activities and metal chelating properties. In many cases, they were shown to have antibacterial, anticancer, anti- inflammatory and antitoxic properties (Lozier et al., 1975; Dao et al., 2000) and have also been used as versatile ligands in coordination chemistry (Kargar et al., 2009; Yeap et al., 2009). Recently, we reported on the crystal structures of two new Schiff bases (Mohamed, Abdelhamid et al., 2012; Mohamed, Akkurt et al., 2012). As a further investigation of the structures of Schiff base compounds, herin we report the synthesis and crystal structure of the title compound (I) which was obtained unintentionally from the component reaction of cyclohexan-1,3-dione, salicylaldehyde and 4- hydrazinylbenzonitrile in ethanol.

The title compound crystallizes with two independent molecules (A and B) in the asymmetric unit, Fig. 1. The molecules A and B have similar conformation and approximately planar form. In molecules A and B the dihedral angle between the corresponding aromatic rings is 4.19 (9) and 14.18 (9)°, respectively. The torsion angles C8—N2—N1—C1 and N2—N1—C1—C2, within the fragment which connects the rings, are 179.44 (14)/-179.93 (13) and 175.41 (13)/177.44 (12)°, in molecules A and B respectively. All these parameters suggest a somewhat higher planarity of molecule A in comparison to molecule B. The molecules of each type are stabilized by the cyclic intramolecular O1—H1o···N1 hydrogen bond (Table 1). In the crystal packing the A and B molecules mutually interact by the pairs of the strongest N2—H1n···N3 hydrogen bonds (Table 1) which engage the hydrazine donor and the nitirile acceptor from each type of molecule. The chains consisting of A and B molecules further interact by another pair of equivalent C7—H7···O1 interactions to give two dimensional lyres (Fig 2). The interaction between the parallel lyres towards the three-dimensional crystal packing is mostly based on weak van der Waals interactions.

Related literature top

For azomethines, see: Archibald et al. (1994); Harada et al. (1999); Ogawa et al. (1998). For the biological properties of Schiff bases, see: Lozier et al. (1975); Dao et al. (2000). For their coordination chemistry, see: Kargar et al. (2009); Yeap et al. (2009). For the structure of related Schiff bases reported by our group, see: Mohamed, Abdelhamid et al. (2012); Mohamed, Akkurt et al. (2012).

Experimental top

The title compound was prepared unintentionally as a major product from reaction of 112 mg (1 mmol) cyclohexane-1,3-dione, 133 mg (1 mmol) 4-hydrazinylbenzonitrile and 122 mg (1 mmol) salicylaldehyde in 50 ml ethanol. The reaction mixture was refluxed for 5 h. The excess solvent was evaporated under vacuum and the residual resins was triturated with cold acetone. The obtained solid was collected by filtration, dried and washed with acetone. Single crystals suitable for X-ray diffraction were grown from acetone solution of (I) using the slow evaporation method. M. p. 469 K.

Refinement top

H atoms bonded to C atoms were placed at calculated positions, with C—H distances fixed at 0.93 Å and isotropic displacement parameters set equal to 1.2Ueq of the parent C(sp2) atoms. H atoms attached to N and O were located in difference Fourier map and refined isotropically.

Structure description top

Schiff bases have received much attention in recent years (Ogawa et al., 1998; Archibald et al., 1994; Harada et al., 1999) due to their various biological activities and metal chelating properties. In many cases, they were shown to have antibacterial, anticancer, anti- inflammatory and antitoxic properties (Lozier et al., 1975; Dao et al., 2000) and have also been used as versatile ligands in coordination chemistry (Kargar et al., 2009; Yeap et al., 2009). Recently, we reported on the crystal structures of two new Schiff bases (Mohamed, Abdelhamid et al., 2012; Mohamed, Akkurt et al., 2012). As a further investigation of the structures of Schiff base compounds, herin we report the synthesis and crystal structure of the title compound (I) which was obtained unintentionally from the component reaction of cyclohexan-1,3-dione, salicylaldehyde and 4- hydrazinylbenzonitrile in ethanol.

The title compound crystallizes with two independent molecules (A and B) in the asymmetric unit, Fig. 1. The molecules A and B have similar conformation and approximately planar form. In molecules A and B the dihedral angle between the corresponding aromatic rings is 4.19 (9) and 14.18 (9)°, respectively. The torsion angles C8—N2—N1—C1 and N2—N1—C1—C2, within the fragment which connects the rings, are 179.44 (14)/-179.93 (13) and 175.41 (13)/177.44 (12)°, in molecules A and B respectively. All these parameters suggest a somewhat higher planarity of molecule A in comparison to molecule B. The molecules of each type are stabilized by the cyclic intramolecular O1—H1o···N1 hydrogen bond (Table 1). In the crystal packing the A and B molecules mutually interact by the pairs of the strongest N2—H1n···N3 hydrogen bonds (Table 1) which engage the hydrazine donor and the nitirile acceptor from each type of molecule. The chains consisting of A and B molecules further interact by another pair of equivalent C7—H7···O1 interactions to give two dimensional lyres (Fig 2). The interaction between the parallel lyres towards the three-dimensional crystal packing is mostly based on weak van der Waals interactions.

For azomethines, see: Archibald et al. (1994); Harada et al. (1999); Ogawa et al. (1998). For the biological properties of Schiff bases, see: Lozier et al. (1975); Dao et al. (2000). For their coordination chemistry, see: Kargar et al. (2009); Yeap et al. (2009). For the structure of related Schiff bases reported by our group, see: Mohamed, Abdelhamid et al. (2012); Mohamed, Akkurt et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006)'; software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom numbering scheme. Displacement ellipsoids are drawn at the 35% probability level.
[Figure 2] Fig. 2. Two dimensional arrangement of A and B molecules via N—H···N and C—H···O hydrogen bonds.
4-[(2E)-2-(2-Hydroxybenzylidene)hydrazin-1-yl]benzonitrile top
Crystal data top
C14H11N3OZ = 4
Mr = 237.26F(000) = 496
Triclinic, P1Dx = 1.324 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.5418 Å
a = 8.1917 (7) ÅCell parameters from 3110 reflections
b = 11.6406 (7) Åθ = 3.5–72.5°
c = 13.4445 (8) ŵ = 0.70 mm1
α = 103.006 (5)°T = 293 K
β = 104.387 (6)°Prismatic, colorless
γ = 96.426 (6)°0.26 × 0.15 × 0.14 mm
V = 1190.67 (14) Å3
Data collection top
Oxford Diffraction Xcalibur (Sapphire3, Gemini)
diffractometer
4592 independent reflections
Radiation source: Enhance (Cu) X-ray Source3696 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 16.3280 pixels mm-1θmax = 72.6°, θmin = 3.5°
ω scansh = 910
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1413
Tmin = 0.827, Tmax = 1.000l = 1614
7913 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0591P)2 + 0.1257P]
where P = (Fo2 + 2Fc2)/3
4592 reflections(Δ/σ)max < 0.001
341 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C14H11N3Oγ = 96.426 (6)°
Mr = 237.26V = 1190.67 (14) Å3
Triclinic, P1Z = 4
a = 8.1917 (7) ÅCu Kα radiation
b = 11.6406 (7) ŵ = 0.70 mm1
c = 13.4445 (8) ÅT = 293 K
α = 103.006 (5)°0.26 × 0.15 × 0.14 mm
β = 104.387 (6)°
Data collection top
Oxford Diffraction Xcalibur (Sapphire3, Gemini)
diffractometer
4592 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3696 reflections with I > 2σ(I)
Tmin = 0.827, Tmax = 1.000Rint = 0.020
7913 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.16 e Å3
4592 reflectionsΔρmin = 0.14 e Å3
341 parameters
Special details top

Experimental. Absorption correction: Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. 'CrysAlisPro (Oxford Diffraction, 2009)'

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.48536 (17)0.59328 (11)0.66183 (10)0.0784 (4)
O1B0.91964 (17)0.08146 (11)0.25880 (10)0.0774 (4)
N1A0.22126 (15)0.44483 (11)0.51588 (9)0.0526 (3)
N1B0.93383 (15)0.06285 (11)0.13286 (9)0.0522 (3)
N2A0.09712 (17)0.40478 (12)0.42146 (10)0.0596 (3)
N2B0.87286 (17)0.10497 (12)0.04621 (10)0.0602 (3)
N3A0.0385 (2)0.69952 (14)0.03913 (11)0.0808 (5)
N3B0.20536 (19)0.19989 (13)0.37048 (11)0.0718 (4)
C1A0.22866 (18)0.37735 (12)0.58006 (11)0.0515 (3)
H1A0.15060.30600.55930.062*
C1B1.06978 (18)0.12410 (12)0.20323 (11)0.0497 (3)
H1B1.12420.19240.19170.060*
C2A0.35367 (18)0.40831 (12)0.68322 (11)0.0480 (3)
C2B1.14175 (17)0.09042 (12)0.30040 (11)0.0475 (3)
C3A0.47572 (19)0.51421 (13)0.72128 (12)0.0536 (3)
C3B1.0654 (2)0.00961 (13)0.32475 (12)0.0549 (3)
C4A0.5895 (2)0.54087 (15)0.82180 (13)0.0662 (4)
H4A0.67070.61090.84640.079*
C4B1.1394 (2)0.03657 (15)0.41970 (13)0.0676 (4)
H4B1.08830.10250.43620.081*
C5A0.5828 (2)0.46422 (17)0.88535 (13)0.0706 (5)
H5A0.65910.48320.95310.085*
C5B1.2868 (2)0.03347 (17)0.48887 (13)0.0735 (5)
H5B1.33550.01420.55190.088*
C6A0.4644 (2)0.35943 (17)0.84996 (13)0.0703 (4)
H6A0.46050.30790.89340.084*
C6B1.3643 (2)0.13218 (16)0.46669 (13)0.0695 (4)
H6B1.46460.17930.51420.083*
C7A0.3520 (2)0.33197 (14)0.74959 (12)0.0600 (4)
H7A0.27300.26080.72540.072*
C7B1.29124 (19)0.16031 (14)0.37294 (12)0.0574 (4)
H7B1.34290.22720.35800.069*
C8A0.07493 (18)0.46900 (12)0.34649 (11)0.0511 (3)
C8B0.73501 (18)0.04005 (13)0.03593 (11)0.0507 (3)
C9A0.1698 (2)0.58289 (14)0.36363 (12)0.0589 (4)
H9A0.25300.61840.42790.071*
C9B0.66057 (19)0.07671 (13)0.04234 (12)0.0549 (3)
H9B0.70390.11340.01080.066*
C10A0.1391 (2)0.64216 (14)0.28470 (12)0.0622 (4)
H10A0.20150.71820.29650.075*
C10B0.5233 (2)0.13687 (13)0.12740 (12)0.0571 (4)
H10B0.47500.21460.13140.068*
C11A0.0169 (2)0.59024 (13)0.18796 (12)0.0558 (4)
C11B0.45513 (19)0.08366 (13)0.20774 (11)0.0539 (3)
C12A0.0775 (2)0.47666 (14)0.17121 (12)0.0587 (4)
H12A0.16040.44120.10680.070*
C12B0.5284 (2)0.03318 (14)0.20013 (12)0.0595 (4)
H12B0.48340.07040.25260.071*
C13A0.0485 (2)0.41730 (13)0.24934 (11)0.0575 (4)
H13A0.11180.34160.23740.069*
C13B0.6654 (2)0.09324 (13)0.11637 (12)0.0582 (4)
H13B0.71340.17090.11270.070*
C14A0.0144 (2)0.65174 (15)0.10526 (13)0.0638 (4)
C14B0.3157 (2)0.14810 (14)0.29808 (13)0.0587 (4)
H1NA0.021 (2)0.3362 (16)0.4094 (14)0.077 (5)*
H1NB0.934 (2)0.1706 (16)0.0406 (13)0.072 (5)*
H1OA0.397 (3)0.559 (2)0.5941 (17)0.103 (7)*
H1OB0.886 (3)0.0526 (18)0.2020 (16)0.090 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0813 (8)0.0629 (7)0.0783 (8)0.0142 (6)0.0038 (7)0.0360 (6)
O1B0.0827 (8)0.0657 (7)0.0713 (7)0.0186 (6)0.0021 (6)0.0304 (6)
N1A0.0542 (7)0.0505 (6)0.0489 (6)0.0056 (5)0.0068 (5)0.0149 (5)
N1B0.0551 (7)0.0543 (7)0.0490 (6)0.0068 (5)0.0130 (5)0.0201 (5)
N2A0.0620 (8)0.0531 (7)0.0537 (7)0.0011 (6)0.0009 (6)0.0186 (6)
N2B0.0639 (8)0.0588 (7)0.0542 (7)0.0017 (6)0.0061 (6)0.0255 (6)
N3A0.0952 (11)0.0772 (10)0.0642 (8)0.0075 (8)0.0078 (8)0.0344 (8)
N3B0.0674 (9)0.0678 (9)0.0666 (8)0.0049 (7)0.0042 (7)0.0149 (7)
C1A0.0532 (8)0.0452 (7)0.0546 (8)0.0044 (6)0.0127 (6)0.0150 (6)
C1B0.0511 (7)0.0469 (7)0.0535 (7)0.0052 (6)0.0171 (6)0.0170 (6)
C2A0.0508 (7)0.0456 (7)0.0499 (7)0.0109 (6)0.0147 (6)0.0154 (6)
C2B0.0489 (7)0.0467 (7)0.0487 (7)0.0097 (6)0.0160 (6)0.0131 (6)
C3A0.0546 (8)0.0493 (7)0.0563 (8)0.0079 (6)0.0107 (6)0.0190 (6)
C3B0.0598 (8)0.0494 (8)0.0547 (8)0.0055 (6)0.0142 (7)0.0165 (6)
C4A0.0608 (9)0.0606 (9)0.0655 (10)0.0049 (7)0.0017 (7)0.0142 (8)
C4B0.0817 (11)0.0636 (10)0.0624 (9)0.0119 (8)0.0186 (8)0.0291 (8)
C5A0.0726 (11)0.0796 (11)0.0534 (9)0.0201 (9)0.0019 (8)0.0198 (8)
C5B0.0836 (12)0.0823 (12)0.0557 (9)0.0239 (10)0.0102 (8)0.0265 (9)
C6A0.0845 (12)0.0761 (11)0.0603 (9)0.0232 (9)0.0188 (8)0.0351 (8)
C6B0.0619 (9)0.0756 (11)0.0581 (9)0.0098 (8)0.0015 (7)0.0103 (8)
C7A0.0683 (9)0.0538 (8)0.0617 (9)0.0086 (7)0.0180 (7)0.0242 (7)
C7B0.0532 (8)0.0548 (8)0.0602 (8)0.0051 (6)0.0139 (7)0.0116 (7)
C8A0.0539 (8)0.0500 (7)0.0495 (7)0.0119 (6)0.0120 (6)0.0150 (6)
C8B0.0521 (8)0.0523 (8)0.0488 (7)0.0081 (6)0.0152 (6)0.0151 (6)
C9A0.0634 (9)0.0555 (8)0.0499 (8)0.0006 (7)0.0058 (7)0.0140 (6)
C9B0.0594 (8)0.0542 (8)0.0547 (8)0.0100 (6)0.0156 (7)0.0226 (6)
C10A0.0691 (10)0.0536 (8)0.0599 (9)0.0006 (7)0.0134 (7)0.0180 (7)
C10B0.0604 (9)0.0495 (8)0.0625 (9)0.0053 (6)0.0192 (7)0.0173 (7)
C11A0.0605 (9)0.0572 (8)0.0527 (8)0.0104 (7)0.0152 (7)0.0211 (7)
C11B0.0520 (8)0.0563 (8)0.0518 (8)0.0065 (6)0.0147 (6)0.0128 (6)
C12A0.0597 (9)0.0593 (9)0.0510 (8)0.0072 (7)0.0049 (7)0.0160 (7)
C12B0.0637 (9)0.0586 (9)0.0551 (8)0.0080 (7)0.0093 (7)0.0226 (7)
C13A0.0608 (9)0.0486 (8)0.0558 (8)0.0032 (6)0.0058 (7)0.0140 (6)
C13B0.0629 (9)0.0515 (8)0.0578 (8)0.0025 (7)0.0094 (7)0.0218 (7)
C14A0.0679 (10)0.0624 (9)0.0581 (9)0.0013 (7)0.0112 (7)0.0219 (7)
C14B0.0591 (9)0.0559 (8)0.0608 (9)0.0058 (7)0.0169 (7)0.0171 (7)
Geometric parameters (Å, º) top
O1A—C3A1.3559 (17)C5B—C6B1.377 (3)
O1A—H1OA0.98 (2)C5B—H5B0.9300
O1B—C3B1.3520 (18)C6A—C7A1.376 (2)
O1B—H1OB0.90 (2)C6A—H6A0.9300
N1A—C1A1.2865 (17)C6B—C7B1.382 (2)
N1A—N2A1.3597 (16)C6B—H6B0.9300
N1B—C1B1.2801 (18)C7A—H7A0.9300
N1B—N2B1.3674 (16)C7B—H7B0.9300
N2A—C8A1.3734 (18)C8A—C13A1.3943 (19)
N2A—H1NA0.914 (18)C8A—C9A1.399 (2)
N2B—C8B1.3709 (18)C8B—C13B1.397 (2)
N2B—H1NB0.894 (18)C8B—C9B1.4008 (19)
N3A—C14A1.140 (2)C9A—C10A1.379 (2)
N3B—C14B1.142 (2)C9A—H9A0.9300
C1A—C2A1.4453 (19)C9B—C10B1.374 (2)
C1A—H1A0.9300C9B—H9B0.9300
C1B—C2B1.4517 (19)C10A—C11A1.387 (2)
C1B—H1B0.9300C10A—H10A0.9300
C2A—C7A1.3951 (19)C10B—C11B1.393 (2)
C2A—C3A1.402 (2)C10B—H10B0.9300
C2B—C7B1.3925 (19)C11A—C12A1.395 (2)
C2B—C3B1.4017 (19)C11A—C14A1.439 (2)
C3A—C4A1.383 (2)C11B—C12B1.394 (2)
C3B—C4B1.391 (2)C11B—C14B1.432 (2)
C4A—C5A1.373 (2)C12A—C13A1.370 (2)
C4A—H4A0.9300C12A—H12A0.9300
C4B—C5B1.367 (3)C12B—C13B1.363 (2)
C4B—H4B0.9300C12B—H12B0.9300
C5A—C6A1.378 (3)C13A—H13A0.9300
C5A—H5A0.9300C13B—H13B0.9300
C3A—O1A—H1OA106.5 (13)C7B—C6B—H6B120.4
C3B—O1B—H1OB108.4 (13)C6A—C7A—C2A121.60 (15)
C1A—N1A—N2A116.26 (12)C6A—C7A—H7A119.2
C1B—N1B—N2B117.48 (12)C2A—C7A—H7A119.2
N1A—N2A—C8A121.92 (12)C6B—C7B—C2B121.27 (15)
N1A—N2A—H1NA119.3 (11)C6B—C7B—H7B119.4
C8A—N2A—H1NA118.6 (11)C2B—C7B—H7B119.4
N1B—N2B—C8B120.79 (12)N2A—C8A—C13A117.82 (13)
N1B—N2B—H1NB117.9 (11)N2A—C8A—C9A123.00 (13)
C8B—N2B—H1NB120.8 (11)C13A—C8A—C9A119.18 (13)
N1A—C1A—C2A122.47 (13)N2B—C8B—C13B118.37 (13)
N1A—C1A—H1A118.8N2B—C8B—C9B122.92 (13)
C2A—C1A—H1A118.8C13B—C8B—C9B118.71 (13)
N1B—C1B—C2B122.14 (12)C10A—C9A—C8A119.59 (14)
N1B—C1B—H1B118.9C10A—C9A—H9A120.2
C2B—C1B—H1B118.9C8A—C9A—H9A120.2
C7A—C2A—C3A117.93 (13)C10B—C9B—C8B119.81 (13)
C7A—C2A—C1A119.35 (13)C10B—C9B—H9B120.1
C3A—C2A—C1A122.70 (13)C8B—C9B—H9B120.1
C7B—C2B—C3B118.45 (13)C9A—C10A—C11A121.09 (14)
C7B—C2B—C1B119.12 (13)C9A—C10A—H10A119.5
C3B—C2B—C1B122.43 (13)C11A—C10A—H10A119.5
O1A—C3A—C4A118.18 (14)C9B—C10B—C11B121.24 (13)
O1A—C3A—C2A121.55 (13)C9B—C10B—H10B119.4
C4A—C3A—C2A120.27 (14)C11B—C10B—H10B119.4
O1B—C3B—C4B118.20 (14)C10A—C11A—C12A119.13 (13)
O1B—C3B—C2B122.02 (13)C10A—C11A—C14A121.12 (14)
C4B—C3B—C2B119.78 (15)C12A—C11A—C14A119.75 (14)
C5A—C4A—C3A120.18 (16)C10B—C11B—C12B118.66 (14)
C5A—C4A—H4A119.9C10B—C11B—C14B121.05 (14)
C3A—C4A—H4A119.9C12B—C11B—C14B120.26 (14)
C5B—C4B—C3B120.29 (16)C13A—C12A—C11A120.19 (14)
C5B—C4B—H4B119.9C13A—C12A—H12A119.9
C3B—C4B—H4B119.9C11A—C12A—H12A119.9
C4A—C5A—C6A120.81 (15)C13B—C12B—C11B120.49 (14)
C4A—C5A—H5A119.6C13B—C12B—H12B119.8
C6A—C5A—H5A119.6C11B—C12B—H12B119.8
C4B—C5B—C6B121.02 (15)C12A—C13A—C8A120.82 (14)
C4B—C5B—H5B119.5C12A—C13A—H13A119.6
C6B—C5B—H5B119.5C8A—C13A—H13A119.6
C7A—C6A—C5A119.21 (15)C12B—C13B—C8B121.09 (14)
C7A—C6A—H6A120.4C12B—C13B—H13B119.5
C5A—C6A—H6A120.4C8B—C13B—H13B119.5
C5B—C6B—C7B119.19 (16)N3A—C14A—C11A179.3 (2)
C5B—C6B—H6B120.4N3B—C14B—C11B179.48 (19)
C13A—C8A—N2A—N1A175.98 (13)C13B—C8B—N2B—N1B172.55 (13)
C8A—N2A—N1A—C1A179.44 (14)C8B—N2B—N1B—C1B175.41 (13)
N2A—N1A—C1A—C2A179.93 (13)N2B—N1B—C1B—C2B177.44 (12)
N1A—C1A—C2A—C3A0.2 (2)N1B—C1B—C2B—C3B1.4 (2)
C1A—C2A—C3A—O1A1.3 (2)C1B—C2B—C3B—O1B0.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1OA···N1A0.98 (2)1.77 (2)2.654 (2)149 (2)
O1B—H1OB···N1B0.90 (2)1.86 (2)2.653 (2)147 (2)
N2A—H1NA···N3Bi0.91 (2)2.17 (2)3.065 (2)166 (2)
N2B—H1NB···N3Aii0.89 (2)2.25 (2)3.098 (2)158 (2)
C7A—H7A···O1Biii0.932.553.427 (2)156
C7B—H7B···O1Aiv0.932.493.413 (2)172
Symmetry codes: (i) x, y, z; (ii) x+1, y+1, z; (iii) x+1, y, z+1; (iv) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H11N3O
Mr237.26
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.1917 (7), 11.6406 (7), 13.4445 (8)
α, β, γ (°)103.006 (5), 104.387 (6), 96.426 (6)
V3)1190.67 (14)
Z4
Radiation typeCu Kα
µ (mm1)0.70
Crystal size (mm)0.26 × 0.15 × 0.14
Data collection
DiffractometerOxford Diffraction Xcalibur (Sapphire3, Gemini)
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.827, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7913, 4592, 3696
Rint0.020
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.121, 1.05
No. of reflections4592
No. of parameters341
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.14

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006)', WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1OA···N1A0.98 (2)1.77 (2)2.654 (2)149 (2)
O1B—H1OB···N1B0.90 (2)1.86 (2)2.653 (2)147 (2)
N2A—H1NA···N3Bi0.91 (2)2.17 (2)3.065 (2)166 (2)
N2B—H1NB···N3Aii0.89 (2)2.25 (2)3.098 (2)158 (2)
C7A—H7A···O1Biii0.932.553.427 (2)156
C7B—H7B···O1Aiv0.932.493.413 (2)172
Symmetry codes: (i) x, y, z; (ii) x+1, y+1, z; (iii) x+1, y, z+1; (iv) x+2, y+1, z+1.
 

Acknowledgements

We thank Manchester Metropolitan University for providing X-ray analysis and data refinement facilities. SBN and GAB thank the Ministry of Education, Science and Technological Development of the Republic of Serbia for financial support (projects 172014 and 172035).

References

First citationArchibald, S. J., Blake, A. J., Schroder, M. & Winpenny, R. E. P. (1994). Chem. Commun. pp. 1669–1670.  CrossRef Google Scholar
First citationDao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805–813.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarada, J., Uekusa, H. & Ohashi, Y. (1999). J. Am. Chem. Soc. 121, 5809–5810.  Web of Science CSD CrossRef CAS Google Scholar
First citationKargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403–m404.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohamed, S. K., Abdelhamid, A. A., Akkurt, M., Fanwick, P. E. & Maharramov, A. M. (2012). Acta Cryst. E68, o1618.  CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, S. K., Akkurt, M., Tahir, M. N. & Abdelhamid, A. A. (2012). Acta Cryst. E68, o1905.  CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOgawa, K., Kasahara, Y., Ohtani, Y. & Harada, J. (1998). J. Am. Chem. Soc. 120, 7107–7108.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570–m571.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds