organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(5-Chloro-1,3-benzo­thia­zol-2-yl)-4-meth­­oxy­phenol

aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 30 August 2012; accepted 3 September 2012; online 8 September 2012)

In the mol­ecule of the title compound, C14H10ClNO2S, the dihedral angle between the almost planar benzothia­zole ring system [maximum deviation = 0.005 (2) Å] and the benzene ring is 1.23 (9)°. The conformation of the mol­ecule is stabilized by an intra­molecular O—H⋯N hydrogen bond, forming an S(6) ring motif. In the crystal, mol­ecules are linked into layers parallel to the ac plane by C—H⋯O hydrogen bonds and ππ stacking inter­actions [centroid–centroid distance = 3.7365 (12) Å].

Related literature

For the biological activity of benzothia­zole compounds see: Sreenivasa et al. (2009[Sreenivasa, M., Jaychand, E., Shivakumar, B., Jayrajkumar, K. & Vijaykumar, J. (2009). Arch. Pharm. Sci. Res. 1, 150-157.]); Maharan et al. (2007[Maharan, M. A., William, S., Ramzy, F. & Sembel, A. M. (2007). Molecules 12, 622-633.]); Pattan et al. (2005[Pattan, S. R., Suresh, C., Pujar, V. D., Reddy, V. V. K., Rasal, V. P. & Koti, B. C. (2005). Indian J. Chem. Sect. B, 44, 2404-2408.]); Chohan et al. (2003[Chohan, Z. H., Pervez, H., Scozzafava, A. & Supuran, C. T. (2003). J. Chem. Soc. Pak. 25, 308-313.]); Bénéteau et al. (1999[Bénéteau, V., Besson, T., Guillard, J., Léonce, S. & Pfeiffer, B. (1999). Eur. J. Med. Chem. 34, 1053-1060.]). For the crystal structures of benzothia­zole derivatives, see: Lakshmanan et al. (2011[Lakshmanan, D., Raj, R. M., Selvakumar, R., Bakthadoss, M. & Murugavel, S. (2011). Acta Cryst. E67, o2259.]); Zhang et al. (2008[Zhang, Y., Su, Z.-H., Wang, Q.-Z. & Teng, L. (2008). Acta Cryst. E64, o2065.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10ClNO2S

  • Mr = 291.74

  • Orthorhombic, P n a 21

  • a = 7.4877 (4) Å

  • b = 27.2166 (15) Å

  • c = 6.1902 (3) Å

  • V = 1261.50 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 273 K

  • 0.38 × 0.25 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.844, Tmax = 0.947

  • 7114 measured reflections

  • 2226 independent reflections

  • 2134 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.069

  • S = 1.07

  • 2226 reflections

  • 177 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 935 Friedel pairs

  • Flack parameter: 0.07 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.80 (3) 1.87 (3) 2.612 (2) 154 (3)
C5—H5A⋯O2i 0.93 2.57 3.454 (3) 159
Symmetry code: (i) x-1, y, z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The heterocyclic compounds containing the benzothiazole moeity as basic skeleton are well known to have a broad range of biological properties (Sreenivasa et al., 2009; Maharan et al., 2007; Pattan et al., 2005; Chohan et al., 2003; Bénéteau et al., 1999). The title compound is a benzothiazole derivative synthesized in order to study the different biological activities of these compounds. In the title compound (Fig. 1) the chloro susbtitued benzothiazole (S1/N1/C1–C7) and methoxy substituted phenol rings (C8–C13) are each planar with maximum devaiation of -0.005 (2) Å for atom C1. The dihedral angle between them is 1.23 (9)°. All bond lengths are in agreement with those found in related benzothiazole structures (Lakshmanan et al., 2011; Zhang et al., 2008). The C5—H5A···O2 hydrogen bonds play an important role in stabilizing the crystal structure by forming a two-dimensional network (symmetry codes as in Table 1, Fig. 2) which is further strengthened by significant π..π interactions between phenyl rings (Cg1···Cg2i = 3.7365 (12) Å;Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively; symmetry code: (i) -1+x, y, z).

Related literature top

For the biological activity of benzothiazole compounds see: Sreenivasa et al. (2009); Maharan et al. (2007); Pattan et al. (2005); Chohan et al. (2003); Bénéteau et al. (1999). For the crystal structures of benzothiazole derivatives, see: Lakshmanan et al. (2011); Zhang et al. (2008).

Experimental top

In a 50 ml round-bottomed flask 2-amino-4-cholorobenzenethiol (0.159 g, 1 mmol), 2-hydroxy-5-methoxybenzaldehyde (0.152 g, 1 mmol), N,N-dimethylformamide (10 ml) and sodium metabisulfite (0.2 g) were added with continuous stirring. The reaction mixture was refluxed for 2 h and the progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was allowed to cool at room temperature and addition of cold water produced a solid precipitate. Crystallization from ethanol afforded crystal of 2-(5-chloro-1,3-benzothiazol-2-yl)-4-methoxyphenol (0.235 g, 80.8% yield) which were found suitable for single crystal X-ray diffraction studies.

Refinement top

H atoms of methyl and phenyl carbon atoms were positioned geometrically with 0.96 and 0.93 Å, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(CH2) or 1.5Ueq(CH3). A rotating group model was applied to the methyl group.

Structure description top

The heterocyclic compounds containing the benzothiazole moeity as basic skeleton are well known to have a broad range of biological properties (Sreenivasa et al., 2009; Maharan et al., 2007; Pattan et al., 2005; Chohan et al., 2003; Bénéteau et al., 1999). The title compound is a benzothiazole derivative synthesized in order to study the different biological activities of these compounds. In the title compound (Fig. 1) the chloro susbtitued benzothiazole (S1/N1/C1–C7) and methoxy substituted phenol rings (C8–C13) are each planar with maximum devaiation of -0.005 (2) Å for atom C1. The dihedral angle between them is 1.23 (9)°. All bond lengths are in agreement with those found in related benzothiazole structures (Lakshmanan et al., 2011; Zhang et al., 2008). The C5—H5A···O2 hydrogen bonds play an important role in stabilizing the crystal structure by forming a two-dimensional network (symmetry codes as in Table 1, Fig. 2) which is further strengthened by significant π..π interactions between phenyl rings (Cg1···Cg2i = 3.7365 (12) Å;Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively; symmetry code: (i) -1+x, y, z).

For the biological activity of benzothiazole compounds see: Sreenivasa et al. (2009); Maharan et al. (2007); Pattan et al. (2005); Chohan et al. (2003); Bénéteau et al. (1999). For the crystal structures of benzothiazole derivatives, see: Lakshmanan et al. (2011); Zhang et al. (2008).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with displacement ellipsoids drawn at 30% probability level. The intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound. Hydrogen atoms not involved in intermolecular hydrogen bonds (dashed lines) are omitted.
2-(5-Chloro-1,3-benzothiazol-2-yl)-4-methoxyphenol top
Crystal data top
C14H10ClNO2SF(000) = 600
Mr = 291.74Dx = 1.536 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3878 reflections
a = 7.4877 (4) Åθ = 3.0–27.6°
b = 27.2166 (15) ŵ = 0.46 mm1
c = 6.1902 (3) ÅT = 273 K
V = 1261.50 (11) Å3Block, colorles
Z = 40.38 × 0.25 × 0.12 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2226 independent reflections
Radiation source: fine-focus sealed tube2134 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scanθmax = 25.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 99
Tmin = 0.844, Tmax = 0.947k = 3132
7114 measured reflectionsl = 77
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.1635P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2226 reflectionsΔρmax = 0.16 e Å3
177 parametersΔρmin = 0.17 e Å3
1 restraintAbsolute structure: Flack (1983), 935 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (6)
Crystal data top
C14H10ClNO2SV = 1261.50 (11) Å3
Mr = 291.74Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 7.4877 (4) ŵ = 0.46 mm1
b = 27.2166 (15) ÅT = 273 K
c = 6.1902 (3) Å0.38 × 0.25 × 0.12 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2226 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2134 reflections with I > 2σ(I)
Tmin = 0.844, Tmax = 0.947Rint = 0.018
7114 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069Δρmax = 0.16 e Å3
S = 1.07Δρmin = 0.17 e Å3
2226 reflectionsAbsolute structure: Flack (1983), 935 Friedel pairs
177 parametersAbsolute structure parameter: 0.07 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.76761 (6)0.412840 (19)0.76293 (9)0.04557 (14)
Cl10.10003 (7)0.45023 (2)1.33138 (13)0.06375 (18)
O10.9266 (2)0.31641 (6)1.3478 (3)0.0566 (4)
H1A0.842 (4)0.3333 (10)1.319 (5)0.070 (9)*
O21.3785 (2)0.32630 (6)0.6457 (3)0.0618 (4)
N10.7107 (2)0.37543 (6)1.1415 (3)0.0409 (4)
C10.5714 (2)0.42859 (7)0.8955 (3)0.0414 (5)
C20.4317 (2)0.45863 (7)0.8272 (4)0.0474 (5)
H2A0.43530.47420.69350.057*
C30.2873 (3)0.46464 (8)0.9648 (4)0.0494 (5)
H3A0.19170.48430.92330.059*
C40.2850 (3)0.44153 (7)1.1632 (4)0.0454 (5)
C50.4197 (2)0.41145 (7)1.2349 (4)0.0433 (5)
H5A0.41420.39601.36880.052*
C60.5656 (3)0.40510 (7)1.0969 (3)0.0384 (4)
C70.8262 (3)0.37562 (7)0.9832 (3)0.0373 (4)
C80.9925 (2)0.34762 (6)0.9893 (3)0.0374 (4)
C91.0346 (3)0.31950 (7)1.1723 (3)0.0422 (5)
C101.1925 (3)0.29284 (8)1.1754 (4)0.0485 (5)
H10A1.22050.27401.29590.058*
C111.3085 (3)0.29387 (8)1.0030 (4)0.0477 (5)
H11A1.41340.27561.00770.057*
C121.2696 (2)0.32199 (7)0.8226 (4)0.0437 (5)
C131.1118 (3)0.34856 (7)0.8157 (4)0.0425 (5)
H13A1.08500.36720.69420.051*
C141.5246 (3)0.29354 (9)0.6280 (5)0.0654 (7)
H14A1.58760.29980.49580.098*
H14B1.48150.26030.62790.098*
H14C1.60380.29820.74820.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0447 (3)0.0502 (3)0.0418 (3)0.0065 (2)0.0063 (2)0.0087 (3)
Cl10.0472 (3)0.0645 (3)0.0795 (4)0.0118 (2)0.0193 (3)0.0029 (3)
O10.0520 (9)0.0678 (10)0.0500 (9)0.0074 (8)0.0089 (8)0.0207 (9)
O20.0586 (9)0.0679 (11)0.0590 (10)0.0190 (8)0.0183 (8)0.0014 (9)
N10.0387 (8)0.0426 (9)0.0414 (9)0.0025 (7)0.0023 (8)0.0032 (8)
C10.0405 (10)0.0387 (10)0.0450 (12)0.0017 (8)0.0034 (9)0.0009 (9)
C20.0443 (10)0.0467 (11)0.0513 (12)0.0031 (9)0.0012 (10)0.0070 (11)
C30.0425 (11)0.0429 (12)0.0628 (14)0.0075 (9)0.0046 (10)0.0014 (11)
C40.0360 (10)0.0419 (11)0.0582 (13)0.0014 (8)0.0063 (9)0.0064 (10)
C50.0417 (10)0.0422 (11)0.0460 (12)0.0003 (8)0.0064 (10)0.0005 (9)
C60.0372 (9)0.0356 (9)0.0425 (11)0.0008 (8)0.0009 (8)0.0019 (9)
C70.0382 (9)0.0368 (10)0.0370 (10)0.0017 (8)0.0007 (8)0.0016 (8)
C80.0377 (9)0.0341 (9)0.0405 (10)0.0001 (8)0.0012 (8)0.0028 (8)
C90.0397 (10)0.0424 (11)0.0445 (11)0.0049 (8)0.0005 (9)0.0014 (9)
C100.0433 (11)0.0476 (12)0.0547 (13)0.0013 (9)0.0056 (10)0.0131 (10)
C110.0377 (10)0.0436 (13)0.0618 (14)0.0065 (9)0.0022 (10)0.0007 (10)
C120.0421 (10)0.0409 (10)0.0482 (13)0.0013 (8)0.0067 (9)0.0051 (9)
C130.0457 (10)0.0423 (10)0.0395 (12)0.0042 (8)0.0006 (8)0.0003 (9)
C140.0486 (13)0.0615 (14)0.0862 (19)0.0091 (11)0.0176 (14)0.0097 (14)
Geometric parameters (Å, º) top
S1—C11.7364 (19)C5—C61.397 (3)
S1—C71.755 (2)C5—H5A0.9300
Cl1—C41.749 (2)C7—C81.460 (3)
O1—C91.357 (3)C8—C131.397 (3)
O1—H1A0.80 (3)C8—C91.403 (3)
O2—C121.370 (3)C9—C101.387 (3)
O2—C141.416 (3)C10—C111.376 (3)
N1—C71.307 (3)C10—H10A0.9300
N1—C61.382 (2)C11—C121.385 (3)
C1—C21.393 (3)C11—H11A0.9300
C1—C61.401 (3)C12—C131.386 (3)
C2—C31.386 (3)C13—H13A0.9300
C2—H2A0.9300C14—H14A0.9600
C3—C41.380 (3)C14—H14B0.9600
C3—H3A0.9300C14—H14C0.9600
C4—C51.373 (3)
C1—S1—C789.24 (10)C13—C8—C9119.16 (17)
C9—O1—H1A105 (2)C13—C8—C7121.04 (18)
C12—O2—C14117.9 (2)C9—C8—C7119.80 (17)
C7—N1—C6111.61 (17)O1—C9—C10117.69 (19)
C2—C1—C6120.9 (2)O1—C9—C8123.10 (18)
C2—C1—S1129.54 (18)C10—C9—C8119.20 (19)
C6—C1—S1109.53 (15)C11—C10—C9121.1 (2)
C3—C2—C1117.9 (2)C11—C10—H10A119.4
C3—C2—H2A121.0C9—C10—H10A119.4
C1—C2—H2A121.0C10—C11—C12120.25 (18)
C4—C3—C2120.19 (19)C10—C11—H11A119.9
C4—C3—H3A119.9C12—C11—H11A119.9
C2—C3—H3A119.9O2—C12—C11124.51 (18)
C5—C4—C3123.4 (2)O2—C12—C13116.0 (2)
C5—C4—Cl1118.03 (19)C11—C12—C13119.5 (2)
C3—C4—Cl1118.56 (17)C12—C13—C8120.8 (2)
C4—C5—C6116.8 (2)C12—C13—H13A119.6
C4—C5—H5A121.6C8—C13—H13A119.6
C6—C5—H5A121.6O2—C14—H14A109.5
N1—C6—C5124.37 (19)O2—C14—H14B109.5
N1—C6—C1114.83 (18)H14A—C14—H14B109.5
C5—C6—C1120.79 (18)O2—C14—H14C109.5
N1—C7—C8122.89 (18)H14A—C14—H14C109.5
N1—C7—S1114.79 (15)H14B—C14—H14C109.5
C8—C7—S1122.31 (15)
C7—S1—C1—C2178.3 (2)C1—S1—C7—C8179.84 (17)
C7—S1—C1—C60.67 (15)N1—C7—C8—C13179.49 (19)
C6—C1—C2—C30.2 (3)S1—C7—C8—C131.3 (3)
S1—C1—C2—C3179.04 (17)N1—C7—C8—C90.9 (3)
C1—C2—C3—C40.4 (3)S1—C7—C8—C9178.30 (15)
C2—C3—C4—C50.9 (3)C13—C8—C9—O1179.88 (19)
C2—C3—C4—Cl1179.96 (17)C7—C8—C9—O10.5 (3)
C3—C4—C5—C60.7 (3)C13—C8—C9—C100.8 (3)
Cl1—C4—C5—C6179.85 (15)C7—C8—C9—C10179.61 (19)
C7—N1—C6—C5178.95 (19)O1—C9—C10—C11179.6 (2)
C7—N1—C6—C10.3 (2)C8—C9—C10—C110.5 (3)
C4—C5—C6—N1178.67 (19)C9—C10—C11—C120.3 (3)
C4—C5—C6—C10.1 (3)C14—O2—C12—C1111.7 (3)
C2—C1—C6—N1178.37 (18)C14—O2—C12—C13169.1 (2)
S1—C1—C6—N10.7 (2)C10—C11—C12—O2178.3 (2)
C2—C1—C6—C50.4 (3)C10—C11—C12—C130.8 (3)
S1—C1—C6—C5179.42 (15)O2—C12—C13—C8178.71 (18)
C6—N1—C7—C8179.54 (18)C11—C12—C13—C80.5 (3)
C6—N1—C7—S10.3 (2)C9—C8—C13—C120.3 (3)
C1—S1—C7—N10.57 (17)C7—C8—C13—C12179.88 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.80 (3)1.87 (3)2.612 (2)154 (3)
C5—H5A···O2i0.932.573.454 (3)159
Symmetry code: (i) x1, y, z+1.

Experimental details

Crystal data
Chemical formulaC14H10ClNO2S
Mr291.74
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)273
a, b, c (Å)7.4877 (4), 27.2166 (15), 6.1902 (3)
V3)1261.50 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.38 × 0.25 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.844, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
7114, 2226, 2134
Rint0.018
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.069, 1.07
No. of reflections2226
No. of parameters177
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.17
Absolute structureFlack (1983), 935 Friedel pairs
Absolute structure parameter0.07 (6)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.80 (3)1.87 (3)2.612 (2)154 (3)
C5—H5A···O2i0.93002.57003.454 (3)159.00
Symmetry code: (i) x1, y, z+1.
 

Acknowledgements

The authors are thankful to the OPCW, The Netherlands, and the Higher Education Commission (HEC) Pakistan (project No. 1910) for financial support.

References

First citationBénéteau, V., Besson, T., Guillard, J., Léonce, S. & Pfeiffer, B. (1999). Eur. J. Med. Chem. 34, 1053–1060.  Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChohan, Z. H., Pervez, H., Scozzafava, A. & Supuran, C. T. (2003). J. Chem. Soc. Pak. 25, 308–313.  CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLakshmanan, D., Raj, R. M., Selvakumar, R., Bakthadoss, M. & Murugavel, S. (2011). Acta Cryst. E67, o2259.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaharan, M. A., William, S., Ramzy, F. & Sembel, A. M. (2007). Molecules 12, 622–633.  Web of Science PubMed Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationPattan, S. R., Suresh, C., Pujar, V. D., Reddy, V. V. K., Rasal, V. P. & Koti, B. C. (2005). Indian J. Chem. Sect. B, 44, 2404–2408.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreenivasa, M., Jaychand, E., Shivakumar, B., Jayrajkumar, K. & Vijaykumar, J. (2009). Arch. Pharm. Sci. Res. 1, 150–157.  CAS Google Scholar
First citationZhang, Y., Su, Z.-H., Wang, Q.-Z. & Teng, L. (2008). Acta Cryst. E64, o2065.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds