organic compounds
2-(5-Chloro-1,3-benzothiazol-2-yl)-4-methoxyphenol
aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com
In the molecule of the title compound, C14H10ClNO2S, the dihedral angle between the almost planar benzothiazole ring system [maximum deviation = 0.005 (2) Å] and the benzene ring is 1.23 (9)°. The conformation of the molecule is stabilized by an intramolecular O—H⋯N hydrogen bond, forming an S(6) ring motif. In the crystal, molecules are linked into layers parallel to the ac plane by C—H⋯O hydrogen bonds and π–π stacking interactions [centroid–centroid distance = 3.7365 (12) Å].
Related literature
For the biological activity of benzothiazole compounds see: Sreenivasa et al. (2009); Maharan et al. (2007); Pattan et al. (2005); Chohan et al. (2003); Bénéteau et al. (1999). For the crystal structures of benzothiazole derivatives, see: Lakshmanan et al. (2011); Zhang et al. (2008).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536812037804/rz5002sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812037804/rz5002Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812037804/rz5002Isup3.cml
In a 50 ml round-bottomed flask 2-amino-4-cholorobenzenethiol (0.159 g, 1 mmol), 2-hydroxy-5-methoxybenzaldehyde (0.152 g, 1 mmol), N,N-dimethylformamide (10 ml) and sodium metabisulfite (0.2 g) were added with continuous stirring. The reaction mixture was refluxed for 2 h and the progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was allowed to cool at room temperature and addition of cold water produced a solid precipitate. Crystallization from ethanol afforded crystal of 2-(5-chloro-1,3-benzothiazol-2-yl)-4-methoxyphenol (0.235 g, 80.8% yield) which were found suitable for single crystal X-ray diffraction studies.
H atoms of methyl and phenyl carbon atoms were positioned geometrically with 0.96 and 0.93 Å, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(CH2) or 1.5Ueq(CH3). A rotating group model was applied to the methyl group.
The π..π interactions between phenyl rings (Cg1···Cg2i = 3.7365 (12) Å;Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively; symmetry code: (i) -1+x, y, z).
containing the benzothiazole moeity as basic skeleton are well known to have a broad range of biological properties (Sreenivasa et al., 2009; Maharan et al., 2007; Pattan et al., 2005; Chohan et al., 2003; Bénéteau et al., 1999). The title compound is a benzothiazole derivative synthesized in order to study the different biological activities of these compounds. In the title compound (Fig. 1) the chloro susbtitued benzothiazole (S1/N1/C1–C7) and methoxy substituted phenol rings (C8–C13) are each planar with maximum devaiation of -0.005 (2) Å for atom C1. The dihedral angle between them is 1.23 (9)°. All bond lengths are in agreement with those found in related benzothiazole structures (Lakshmanan et al., 2011; Zhang et al., 2008). The C5—H5A···O2 hydrogen bonds play an important role in stabilizing the by forming a two-dimensional network (symmetry codes as in Table 1, Fig. 2) which is further strengthened by significantFor the biological activity of benzothiazole compounds see: Sreenivasa et al. (2009); Maharan et al. (2007); Pattan et al. (2005); Chohan et al. (2003); Bénéteau et al. (1999). For the crystal structures of benzothiazole derivatives, see: Lakshmanan et al. (2011); Zhang et al. (2008).
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).C14H10ClNO2S | F(000) = 600 |
Mr = 291.74 | Dx = 1.536 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 3878 reflections |
a = 7.4877 (4) Å | θ = 3.0–27.6° |
b = 27.2166 (15) Å | µ = 0.46 mm−1 |
c = 6.1902 (3) Å | T = 273 K |
V = 1261.50 (11) Å3 | Block, colorles |
Z = 4 | 0.38 × 0.25 × 0.12 mm |
Bruker SMART APEX CCD area-detector diffractometer | 2226 independent reflections |
Radiation source: fine-focus sealed tube | 2134 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
ω scan | θmax = 25.5°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −9→9 |
Tmin = 0.844, Tmax = 0.947 | k = −31→32 |
7114 measured reflections | l = −7→7 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.026 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.069 | w = 1/[σ2(Fo2) + (0.0397P)2 + 0.1635P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
2226 reflections | Δρmax = 0.16 e Å−3 |
177 parameters | Δρmin = −0.17 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 935 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.07 (6) |
C14H10ClNO2S | V = 1261.50 (11) Å3 |
Mr = 291.74 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 7.4877 (4) Å | µ = 0.46 mm−1 |
b = 27.2166 (15) Å | T = 273 K |
c = 6.1902 (3) Å | 0.38 × 0.25 × 0.12 mm |
Bruker SMART APEX CCD area-detector diffractometer | 2226 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 2134 reflections with I > 2σ(I) |
Tmin = 0.844, Tmax = 0.947 | Rint = 0.018 |
7114 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.069 | Δρmax = 0.16 e Å−3 |
S = 1.07 | Δρmin = −0.17 e Å−3 |
2226 reflections | Absolute structure: Flack (1983), 935 Friedel pairs |
177 parameters | Absolute structure parameter: 0.07 (6) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.76761 (6) | 0.412840 (19) | 0.76293 (9) | 0.04557 (14) | |
Cl1 | 0.10003 (7) | 0.45023 (2) | 1.33138 (13) | 0.06375 (18) | |
O1 | 0.9266 (2) | 0.31641 (6) | 1.3478 (3) | 0.0566 (4) | |
H1A | 0.842 (4) | 0.3333 (10) | 1.319 (5) | 0.070 (9)* | |
O2 | 1.3785 (2) | 0.32630 (6) | 0.6457 (3) | 0.0618 (4) | |
N1 | 0.7107 (2) | 0.37543 (6) | 1.1415 (3) | 0.0409 (4) | |
C1 | 0.5714 (2) | 0.42859 (7) | 0.8955 (3) | 0.0414 (5) | |
C2 | 0.4317 (2) | 0.45863 (7) | 0.8272 (4) | 0.0474 (5) | |
H2A | 0.4353 | 0.4742 | 0.6935 | 0.057* | |
C3 | 0.2873 (3) | 0.46464 (8) | 0.9648 (4) | 0.0494 (5) | |
H3A | 0.1917 | 0.4843 | 0.9233 | 0.059* | |
C4 | 0.2850 (3) | 0.44153 (7) | 1.1632 (4) | 0.0454 (5) | |
C5 | 0.4197 (2) | 0.41145 (7) | 1.2349 (4) | 0.0433 (5) | |
H5A | 0.4142 | 0.3960 | 1.3688 | 0.052* | |
C6 | 0.5656 (3) | 0.40510 (7) | 1.0969 (3) | 0.0384 (4) | |
C7 | 0.8262 (3) | 0.37562 (7) | 0.9832 (3) | 0.0373 (4) | |
C8 | 0.9925 (2) | 0.34762 (6) | 0.9893 (3) | 0.0374 (4) | |
C9 | 1.0346 (3) | 0.31950 (7) | 1.1723 (3) | 0.0422 (5) | |
C10 | 1.1925 (3) | 0.29284 (8) | 1.1754 (4) | 0.0485 (5) | |
H10A | 1.2205 | 0.2740 | 1.2959 | 0.058* | |
C11 | 1.3085 (3) | 0.29387 (8) | 1.0030 (4) | 0.0477 (5) | |
H11A | 1.4134 | 0.2756 | 1.0077 | 0.057* | |
C12 | 1.2696 (2) | 0.32199 (7) | 0.8226 (4) | 0.0437 (5) | |
C13 | 1.1118 (3) | 0.34856 (7) | 0.8157 (4) | 0.0425 (5) | |
H13A | 1.0850 | 0.3672 | 0.6942 | 0.051* | |
C14 | 1.5246 (3) | 0.29354 (9) | 0.6280 (5) | 0.0654 (7) | |
H14A | 1.5876 | 0.2998 | 0.4958 | 0.098* | |
H14B | 1.4815 | 0.2603 | 0.6279 | 0.098* | |
H14C | 1.6038 | 0.2982 | 0.7482 | 0.098* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0447 (3) | 0.0502 (3) | 0.0418 (3) | 0.0065 (2) | 0.0063 (2) | 0.0087 (3) |
Cl1 | 0.0472 (3) | 0.0645 (3) | 0.0795 (4) | 0.0118 (2) | 0.0193 (3) | −0.0029 (3) |
O1 | 0.0520 (9) | 0.0678 (10) | 0.0500 (9) | 0.0074 (8) | 0.0089 (8) | 0.0207 (9) |
O2 | 0.0586 (9) | 0.0679 (11) | 0.0590 (10) | 0.0190 (8) | 0.0183 (8) | 0.0014 (9) |
N1 | 0.0387 (8) | 0.0426 (9) | 0.0414 (9) | 0.0025 (7) | 0.0023 (8) | 0.0032 (8) |
C1 | 0.0405 (10) | 0.0387 (10) | 0.0450 (12) | −0.0017 (8) | 0.0034 (9) | −0.0009 (9) |
C2 | 0.0443 (10) | 0.0467 (11) | 0.0513 (12) | 0.0031 (9) | −0.0012 (10) | 0.0070 (11) |
C3 | 0.0425 (11) | 0.0429 (12) | 0.0628 (14) | 0.0075 (9) | −0.0046 (10) | 0.0014 (11) |
C4 | 0.0360 (10) | 0.0419 (11) | 0.0582 (13) | 0.0014 (8) | 0.0063 (9) | −0.0064 (10) |
C5 | 0.0417 (10) | 0.0422 (11) | 0.0460 (12) | 0.0003 (8) | 0.0064 (10) | −0.0005 (9) |
C6 | 0.0372 (9) | 0.0356 (9) | 0.0425 (11) | −0.0008 (8) | −0.0009 (8) | −0.0019 (9) |
C7 | 0.0382 (9) | 0.0368 (10) | 0.0370 (10) | −0.0017 (8) | −0.0007 (8) | 0.0016 (8) |
C8 | 0.0377 (9) | 0.0341 (9) | 0.0405 (10) | −0.0001 (8) | −0.0012 (8) | −0.0028 (8) |
C9 | 0.0397 (10) | 0.0424 (11) | 0.0445 (11) | −0.0049 (8) | 0.0005 (9) | 0.0014 (9) |
C10 | 0.0433 (11) | 0.0476 (12) | 0.0547 (13) | 0.0013 (9) | −0.0056 (10) | 0.0131 (10) |
C11 | 0.0377 (10) | 0.0436 (13) | 0.0618 (14) | 0.0065 (9) | −0.0022 (10) | −0.0007 (10) |
C12 | 0.0421 (10) | 0.0409 (10) | 0.0482 (13) | 0.0013 (8) | 0.0067 (9) | −0.0051 (9) |
C13 | 0.0457 (10) | 0.0423 (10) | 0.0395 (12) | 0.0042 (8) | 0.0006 (8) | 0.0003 (9) |
C14 | 0.0486 (13) | 0.0615 (14) | 0.0862 (19) | 0.0091 (11) | 0.0176 (14) | −0.0097 (14) |
S1—C1 | 1.7364 (19) | C5—C6 | 1.397 (3) |
S1—C7 | 1.755 (2) | C5—H5A | 0.9300 |
Cl1—C4 | 1.749 (2) | C7—C8 | 1.460 (3) |
O1—C9 | 1.357 (3) | C8—C13 | 1.397 (3) |
O1—H1A | 0.80 (3) | C8—C9 | 1.403 (3) |
O2—C12 | 1.370 (3) | C9—C10 | 1.387 (3) |
O2—C14 | 1.416 (3) | C10—C11 | 1.376 (3) |
N1—C7 | 1.307 (3) | C10—H10A | 0.9300 |
N1—C6 | 1.382 (2) | C11—C12 | 1.385 (3) |
C1—C2 | 1.393 (3) | C11—H11A | 0.9300 |
C1—C6 | 1.401 (3) | C12—C13 | 1.386 (3) |
C2—C3 | 1.386 (3) | C13—H13A | 0.9300 |
C2—H2A | 0.9300 | C14—H14A | 0.9600 |
C3—C4 | 1.380 (3) | C14—H14B | 0.9600 |
C3—H3A | 0.9300 | C14—H14C | 0.9600 |
C4—C5 | 1.373 (3) | ||
C1—S1—C7 | 89.24 (10) | C13—C8—C9 | 119.16 (17) |
C9—O1—H1A | 105 (2) | C13—C8—C7 | 121.04 (18) |
C12—O2—C14 | 117.9 (2) | C9—C8—C7 | 119.80 (17) |
C7—N1—C6 | 111.61 (17) | O1—C9—C10 | 117.69 (19) |
C2—C1—C6 | 120.9 (2) | O1—C9—C8 | 123.10 (18) |
C2—C1—S1 | 129.54 (18) | C10—C9—C8 | 119.20 (19) |
C6—C1—S1 | 109.53 (15) | C11—C10—C9 | 121.1 (2) |
C3—C2—C1 | 117.9 (2) | C11—C10—H10A | 119.4 |
C3—C2—H2A | 121.0 | C9—C10—H10A | 119.4 |
C1—C2—H2A | 121.0 | C10—C11—C12 | 120.25 (18) |
C4—C3—C2 | 120.19 (19) | C10—C11—H11A | 119.9 |
C4—C3—H3A | 119.9 | C12—C11—H11A | 119.9 |
C2—C3—H3A | 119.9 | O2—C12—C11 | 124.51 (18) |
C5—C4—C3 | 123.4 (2) | O2—C12—C13 | 116.0 (2) |
C5—C4—Cl1 | 118.03 (19) | C11—C12—C13 | 119.5 (2) |
C3—C4—Cl1 | 118.56 (17) | C12—C13—C8 | 120.8 (2) |
C4—C5—C6 | 116.8 (2) | C12—C13—H13A | 119.6 |
C4—C5—H5A | 121.6 | C8—C13—H13A | 119.6 |
C6—C5—H5A | 121.6 | O2—C14—H14A | 109.5 |
N1—C6—C5 | 124.37 (19) | O2—C14—H14B | 109.5 |
N1—C6—C1 | 114.83 (18) | H14A—C14—H14B | 109.5 |
C5—C6—C1 | 120.79 (18) | O2—C14—H14C | 109.5 |
N1—C7—C8 | 122.89 (18) | H14A—C14—H14C | 109.5 |
N1—C7—S1 | 114.79 (15) | H14B—C14—H14C | 109.5 |
C8—C7—S1 | 122.31 (15) | ||
C7—S1—C1—C2 | −178.3 (2) | C1—S1—C7—C8 | −179.84 (17) |
C7—S1—C1—C6 | 0.67 (15) | N1—C7—C8—C13 | 179.49 (19) |
C6—C1—C2—C3 | 0.2 (3) | S1—C7—C8—C13 | −1.3 (3) |
S1—C1—C2—C3 | 179.04 (17) | N1—C7—C8—C9 | −0.9 (3) |
C1—C2—C3—C4 | 0.4 (3) | S1—C7—C8—C9 | 178.30 (15) |
C2—C3—C4—C5 | −0.9 (3) | C13—C8—C9—O1 | −179.88 (19) |
C2—C3—C4—Cl1 | 179.96 (17) | C7—C8—C9—O1 | 0.5 (3) |
C3—C4—C5—C6 | 0.7 (3) | C13—C8—C9—C10 | −0.8 (3) |
Cl1—C4—C5—C6 | 179.85 (15) | C7—C8—C9—C10 | 179.61 (19) |
C7—N1—C6—C5 | 178.95 (19) | O1—C9—C10—C11 | 179.6 (2) |
C7—N1—C6—C1 | 0.3 (2) | C8—C9—C10—C11 | 0.5 (3) |
C4—C5—C6—N1 | −178.67 (19) | C9—C10—C11—C12 | 0.3 (3) |
C4—C5—C6—C1 | −0.1 (3) | C14—O2—C12—C11 | 11.7 (3) |
C2—C1—C6—N1 | 178.37 (18) | C14—O2—C12—C13 | −169.1 (2) |
S1—C1—C6—N1 | −0.7 (2) | C10—C11—C12—O2 | 178.3 (2) |
C2—C1—C6—C5 | −0.4 (3) | C10—C11—C12—C13 | −0.8 (3) |
S1—C1—C6—C5 | −179.42 (15) | O2—C12—C13—C8 | −178.71 (18) |
C6—N1—C7—C8 | 179.54 (18) | C11—C12—C13—C8 | 0.5 (3) |
C6—N1—C7—S1 | 0.3 (2) | C9—C8—C13—C12 | 0.3 (3) |
C1—S1—C7—N1 | −0.57 (17) | C7—C8—C13—C12 | 179.88 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···N1 | 0.80 (3) | 1.87 (3) | 2.612 (2) | 154 (3) |
C5—H5A···O2i | 0.93 | 2.57 | 3.454 (3) | 159 |
Symmetry code: (i) x−1, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | C14H10ClNO2S |
Mr | 291.74 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 273 |
a, b, c (Å) | 7.4877 (4), 27.2166 (15), 6.1902 (3) |
V (Å3) | 1261.50 (11) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.46 |
Crystal size (mm) | 0.38 × 0.25 × 0.12 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.844, 0.947 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7114, 2226, 2134 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.069, 1.07 |
No. of reflections | 2226 |
No. of parameters | 177 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.16, −0.17 |
Absolute structure | Flack (1983), 935 Friedel pairs |
Absolute structure parameter | 0.07 (6) |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···N1 | 0.80 (3) | 1.87 (3) | 2.612 (2) | 154 (3) |
C5—H5A···O2i | 0.9300 | 2.5700 | 3.454 (3) | 159.00 |
Symmetry code: (i) x−1, y, z+1. |
Acknowledgements
The authors are thankful to the OPCW, The Netherlands, and the Higher Education Commission (HEC) Pakistan (project No. 1910) for financial support.
References
Bénéteau, V., Besson, T., Guillard, J., Léonce, S. & Pfeiffer, B. (1999). Eur. J. Med. Chem. 34, 1053–1060. Google Scholar
Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chohan, Z. H., Pervez, H., Scozzafava, A. & Supuran, C. T. (2003). J. Chem. Soc. Pak. 25, 308–313. CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Lakshmanan, D., Raj, R. M., Selvakumar, R., Bakthadoss, M. & Murugavel, S. (2011). Acta Cryst. E67, o2259. Web of Science CSD CrossRef IUCr Journals Google Scholar
Maharan, M. A., William, S., Ramzy, F. & Sembel, A. M. (2007). Molecules 12, 622–633. Web of Science PubMed Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Pattan, S. R., Suresh, C., Pujar, V. D., Reddy, V. V. K., Rasal, V. P. & Koti, B. C. (2005). Indian J. Chem. Sect. B, 44, 2404–2408. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sreenivasa, M., Jaychand, E., Shivakumar, B., Jayrajkumar, K. & Vijaykumar, J. (2009). Arch. Pharm. Sci. Res. 1, 150–157. CAS Google Scholar
Zhang, Y., Su, Z.-H., Wang, Q.-Z. & Teng, L. (2008). Acta Cryst. E64, o2065. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The heterocyclic compounds containing the benzothiazole moeity as basic skeleton are well known to have a broad range of biological properties (Sreenivasa et al., 2009; Maharan et al., 2007; Pattan et al., 2005; Chohan et al., 2003; Bénéteau et al., 1999). The title compound is a benzothiazole derivative synthesized in order to study the different biological activities of these compounds. In the title compound (Fig. 1) the chloro susbtitued benzothiazole (S1/N1/C1–C7) and methoxy substituted phenol rings (C8–C13) are each planar with maximum devaiation of -0.005 (2) Å for atom C1. The dihedral angle between them is 1.23 (9)°. All bond lengths are in agreement with those found in related benzothiazole structures (Lakshmanan et al., 2011; Zhang et al., 2008). The C5—H5A···O2 hydrogen bonds play an important role in stabilizing the crystal structure by forming a two-dimensional network (symmetry codes as in Table 1, Fig. 2) which is further strengthened by significant π..π interactions between phenyl rings (Cg1···Cg2i = 3.7365 (12) Å;Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively; symmetry code: (i) -1+x, y, z).