metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(μ-2-phenyl­quinoline-4-carboxyl­ato-κ2O:O′)bis­­[(methanol-κO)copper(II)]

aSchool of Materials Science and Engineering, Wuhan Institute of Technology, 430073 Wuhan People's Republic of China
*Correspondence e-mail: junfangguo@yahoo.com.cn

(Received 7 September 2012; accepted 19 September 2012; online 26 September 2012)

The title complex, [Cu2(C16H10NO2)4(CH3OH)2], consists of centrosymmetric wheel-shaped dinuclear neutral mol­ecules in which each CuII atom is coordinated in a slightly distorted square-pyramidal geometry by four O atoms of carboxyl­ate groups from different ligands at the basal plane and an O atom of a methanol mol­ecule at the axial position. In the crystal, the dinuclear complex mol­ecules are linked into one-dimensional supra­molecular columns parallel to the b axis by O—H⋯N hydrogen bonds and ππ stacking inter­actions [centroid–centroid distance = 3.7259 (11) Å].

Related literature

For the background to isonicotinic acid derivatives as polyfunctional ligands, see: Evans & Lin (2002[Evans, O. & Lin, W. (2002). Acc. Chem. Res. 35, 511-522.]); Aakeröy et al. (1999[Aakeröy, C., Beatty, A. & Leinen, D. (1999). Angew. Chem. Int. Ed. 38, 1815-1819.]); Xiong et al. (2000[Xiong, R., Zuo, J., You, X., Fun, H. & Raj, S. (2000). Organometallics, 19, 4183-4186.]); Qin et al. (2002[Qin, Z., Jennings, M., Puddephatt, R. & Muir, K. (2002). Inorg. Chem. 41, 5174-5186.]); Shen et al. (2007[Shen, Y., Li, Z., Cheng, J., Qin, Y. & Yao, Y. (2007). Inorg. Chem. Commun. 10, 888-890.]). For the structures of related compounds, see: Bu et al. (2005[Bu, X., Tong, M., Xie, Y., Li, J., Chang, H., Kitagawa, S. & Ribas, J. (2005). Inorg. Chem. 44, 9837-9846.]); Wang et al. (2010[Wang, J., Chang, Z., Zhang, A., Hu, T. & Bu, X. (2010). Inorg. Chim. Acta, 363, 1377-1385.]); Ma & Lin (2008[Ma, L. & Lin, W. (2008). J. Am. Chem. Soc. 130, 13834-13835.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C16H10NO2)4(CH4O)2]

  • Mr = 1184.16

  • Triclinic, [P \overline 1]

  • a = 8.9671 (6) Å

  • b = 10.5859 (7) Å

  • c = 14.7767 (10) Å

  • α = 89.800 (1)°

  • β = 87.348 (1)°

  • γ = 77.300 (1)°

  • V = 1366.86 (16) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 293 K

  • 0.31 × 0.24 × 0.17 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison , Wisconsin , USA .]) Tmin = 0.780, Tmax = 0.870

  • 7266 measured reflections

  • 4984 independent reflections

  • 4583 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.088

  • S = 1.06

  • 4984 reflections

  • 370 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1⋯N1i 0.83 1.95 2.784 (2) 176
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison , Wisconsin , USA .]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison , Wisconsin , USA .]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Isonicotinic acid and its derivatives, such as 9-acridinecarboxylic acid and 4-quinolinecarboxylic acid, bearing both neutral and anionic donor groups, have been widely used as polyfunctional ligands (Evans & Lin, 2002; Aakeröy et al., 1999; Xiong et al., 2000; Bu et al., 2005). 2-Phenylquinoline-4-carboxylic acid (HL), an analogue of isonicotinic acid, exhibits flexible ligation modes in the construction of diverse coordination motifs with unusual properties (Qin et al., 2002; Shen et al., 2007; Wang et al., 2010). Herein, we report a new copper(II) complex derived from 2-phenylquinoline-4-carboxylic acid.

The title complex shows a dinuclear paddle-wheel unit [Cu2(L)4(CH3OH)2] (Fig. 1), which is composed of two copper(II) ions, four L ligands and two methanol molecules. Each metal is pentacoordinated by four O atoms of the carboxylate groups from different ligands [Cu—O mean length = 1.961 (3) Å] at the equatorial plane and one O atom of a CH3OH molecule at the axial position. One of the most common parameters used to define the coordination geometry of a pentacoordinated metal center, the τ index, is 0.0003, indicating an almost-ideal square-pyramidal coordination. The metal ion deviates from the mean equatorial plane of the square pyramid toward the apical O5 atom by 0.1942 (3) Å. The Cu···Cu distance is 2.6303 (5) Å, which is within the normal range observed for dinuclear paddle-wheel units in the structures of copper(II) carboxylate complexes (Bu et al., 2005; Wang et al., 2010; Ma & Lin, 2008). In the crystal (Fig. 2), the dinuclear complex molecules are linked into one-dimensional columns parallel to the b axis through intermolecular O—H···N hydrogen bonds (Table 1) and ππ stacking interactions involving adjacent quinoline rings, with centroid–centroid distances of 3.7259 (11) Å and perpendicular interplanar separations of 3.4838 (8) Å.

Related literature top

For background to isonicotinic acid derivatives as polyfunctional ligands, see Evans & Lin (2002); Aakeröy et al. (1999); Xiong et al. (2000); Qin et al. (2002); Shen et al. (2007). For the structures of related compounds, see Bu et al. (2005); Wang et al. (2010); Ma & Lin (2008).

Experimental top

2-Phenylquinoline-4-carboxylic acid (49.8 mg, 0.2 mmol) in CH3OH/CHCl3 solution (1:1 v/v, 25 ml) was added to a CH3OH solution (25 ml) of Cu(NO3)2.2.5H2O (46.5 mg, 0.2 mmol). The resulting solution was filtered and left to stand at room temperature. Green block-shaped single crystals suitable for X-ray analysis were obtained after several days (yield: 45%).

Refinement top

All H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H = 0.93–0.96 Å and O—H = 0.83 Å, and with Uiso(H) = 1.5Ueq(C,O) for methyl and hydroxy H atoms and 1.2Ueq(C) otherwise.

Structure description top

Isonicotinic acid and its derivatives, such as 9-acridinecarboxylic acid and 4-quinolinecarboxylic acid, bearing both neutral and anionic donor groups, have been widely used as polyfunctional ligands (Evans & Lin, 2002; Aakeröy et al., 1999; Xiong et al., 2000; Bu et al., 2005). 2-Phenylquinoline-4-carboxylic acid (HL), an analogue of isonicotinic acid, exhibits flexible ligation modes in the construction of diverse coordination motifs with unusual properties (Qin et al., 2002; Shen et al., 2007; Wang et al., 2010). Herein, we report a new copper(II) complex derived from 2-phenylquinoline-4-carboxylic acid.

The title complex shows a dinuclear paddle-wheel unit [Cu2(L)4(CH3OH)2] (Fig. 1), which is composed of two copper(II) ions, four L ligands and two methanol molecules. Each metal is pentacoordinated by four O atoms of the carboxylate groups from different ligands [Cu—O mean length = 1.961 (3) Å] at the equatorial plane and one O atom of a CH3OH molecule at the axial position. One of the most common parameters used to define the coordination geometry of a pentacoordinated metal center, the τ index, is 0.0003, indicating an almost-ideal square-pyramidal coordination. The metal ion deviates from the mean equatorial plane of the square pyramid toward the apical O5 atom by 0.1942 (3) Å. The Cu···Cu distance is 2.6303 (5) Å, which is within the normal range observed for dinuclear paddle-wheel units in the structures of copper(II) carboxylate complexes (Bu et al., 2005; Wang et al., 2010; Ma & Lin, 2008). In the crystal (Fig. 2), the dinuclear complex molecules are linked into one-dimensional columns parallel to the b axis through intermolecular O—H···N hydrogen bonds (Table 1) and ππ stacking interactions involving adjacent quinoline rings, with centroid–centroid distances of 3.7259 (11) Å and perpendicular interplanar separations of 3.4838 (8) Å.

For background to isonicotinic acid derivatives as polyfunctional ligands, see Evans & Lin (2002); Aakeröy et al. (1999); Xiong et al. (2000); Qin et al. (2002); Shen et al. (2007). For the structures of related compounds, see Bu et al. (2005); Wang et al. (2010); Ma & Lin (2008).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Unlabelled atoms are related to labelled atoms by the symmetry code (-x+1, -y, -z+1).
[Figure 2] Fig. 2. Partial crystal packing of the title compound, showing the formation of a columnar supramolecular structure through hydrogen bonds (dashed lines).
Tetrakis(µ-2-phenylquinoline-4-carboxylato- κ2O:O')bis[(methanol-κO)copper(II)] top
Crystal data top
[Cu2(C16H10NO2)4(CH4O)2]Z = 1
Mr = 1184.16F(000) = 610
Triclinic, P1Dx = 1.439 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.9671 (6) ÅCell parameters from 4273 reflections
b = 10.5859 (7) Åθ = 2.7–25.5°
c = 14.7767 (10) ŵ = 0.85 mm1
α = 89.800 (1)°T = 293 K
β = 87.348 (1)°Block, green
γ = 77.300 (1)°0.31 × 0.24 × 0.17 mm
V = 1366.86 (16) Å3
Data collection top
Bruker APEX CCD
diffractometer
4984 independent reflections
Radiation source: fine-focus sealed tube4583 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
φ and ω scansθmax = 25.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1010
Tmin = 0.780, Tmax = 0.870k = 1012
7266 measured reflectionsl = 1714
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.8119P]
where P = (Fo2 + 2Fc2)/3
4984 reflections(Δ/σ)max = 0.002
370 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Cu2(C16H10NO2)4(CH4O)2]γ = 77.300 (1)°
Mr = 1184.16V = 1366.86 (16) Å3
Triclinic, P1Z = 1
a = 8.9671 (6) ÅMo Kα radiation
b = 10.5859 (7) ŵ = 0.85 mm1
c = 14.7767 (10) ÅT = 293 K
α = 89.800 (1)°0.31 × 0.24 × 0.17 mm
β = 87.348 (1)°
Data collection top
Bruker APEX CCD
diffractometer
4984 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4583 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.870Rint = 0.014
7266 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.06Δρmax = 0.48 e Å3
4984 reflectionsΔρmin = 0.30 e Å3
370 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3269 (2)0.31756 (19)0.53165 (14)0.0228 (4)
C20.3333 (2)0.40391 (19)0.45686 (14)0.0232 (4)
C30.2708 (2)0.51467 (19)0.47299 (14)0.0232 (4)
C40.2167 (2)0.4635 (2)0.62569 (14)0.0245 (4)
C50.2661 (2)0.3457 (2)0.61337 (14)0.0252 (4)
H50.25690.28760.66140.030*
C60.3893 (2)0.3828 (2)0.36841 (14)0.0283 (5)
H60.43180.31130.35700.034*
C70.3817 (3)0.4665 (2)0.29958 (15)0.0343 (5)
H70.42110.45260.24200.041*
C80.3147 (3)0.5737 (2)0.31503 (16)0.0345 (5)
H80.30660.62810.26710.041*
C90.2618 (2)0.5980 (2)0.39974 (15)0.0290 (5)
H90.21950.66990.40950.035*
C100.1622 (2)0.5001 (2)0.71649 (14)0.0280 (5)
C110.2097 (3)0.6262 (2)0.74798 (16)0.0352 (5)
H110.27810.68720.71260.042*
C120.1557 (3)0.6609 (2)0.83149 (17)0.0424 (6)
H120.18830.74500.85240.051*
C130.0531 (3)0.5706 (3)0.88392 (17)0.0448 (6)
H130.01580.59430.93970.054*
C140.0061 (3)0.4456 (3)0.85373 (17)0.0437 (6)
H140.06310.38530.88910.052*
C150.0617 (3)0.4093 (2)0.77056 (16)0.0348 (5)
H150.03170.32420.75110.042*
C160.3837 (2)0.19459 (19)0.52106 (13)0.0224 (4)
C170.6511 (3)0.0701 (2)0.75173 (14)0.0278 (5)
C180.7991 (3)0.0616 (2)0.77910 (15)0.0302 (5)
C190.8346 (3)0.0995 (2)0.86945 (15)0.0319 (5)
C200.6033 (3)0.1580 (2)0.89854 (15)0.0312 (5)
C210.5550 (3)0.1164 (2)0.81085 (15)0.0299 (5)
H210.45780.12090.79380.036*
C220.9081 (3)0.0138 (3)0.72450 (17)0.0404 (6)
H220.88680.01090.66520.049*
C231.0445 (3)0.0034 (3)0.75807 (19)0.0499 (7)
H231.11480.02870.72160.060*
C241.0790 (3)0.0408 (3)0.84710 (19)0.0492 (7)
H241.17180.03280.86940.059*
C250.9774 (3)0.0891 (3)0.90132 (17)0.0419 (6)
H251.00260.11530.95990.050*
C260.5958 (2)0.0336 (2)0.65834 (14)0.0261 (4)
C270.5007 (3)0.2130 (2)0.96154 (16)0.0369 (5)
C280.4088 (4)0.2913 (3)0.9297 (2)0.0595 (8)
H280.41140.31030.86820.071*
C290.3129 (4)0.3413 (4)0.9894 (2)0.0801 (12)
H290.25330.39540.96810.096*
C300.3061 (4)0.3108 (4)1.0805 (2)0.0723 (11)
H300.23970.34241.12030.087*
C310.3971 (4)0.2339 (3)1.1124 (2)0.0565 (8)
H310.39280.21421.17390.068*
C320.4952 (3)0.1857 (3)1.05379 (17)0.0436 (6)
H320.55770.13471.07610.052*
C330.0245 (3)0.1999 (3)0.5450 (2)0.0491 (7)
H33A0.05140.27060.57060.074*
H33B0.00030.11940.56290.074*
H33C0.02680.20590.48010.074*
N10.21783 (19)0.54469 (16)0.55746 (12)0.0247 (4)
N20.7381 (2)0.14840 (18)0.92751 (12)0.0331 (4)
O10.29567 (17)0.09218 (14)0.55023 (10)0.0291 (3)
O20.51543 (16)0.20471 (13)0.48438 (10)0.0278 (3)
O30.46126 (18)0.03347 (15)0.65482 (10)0.0324 (4)
O40.68533 (17)0.07591 (14)0.59207 (10)0.0290 (3)
O50.17001 (16)0.20531 (13)0.57646 (10)0.0267 (3)
H10.18210.28120.57350.040*
Cu10.37041 (3)0.06756 (2)0.536332 (16)0.02076 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0185 (10)0.0188 (10)0.0312 (11)0.0041 (8)0.0020 (8)0.0042 (8)
C20.0184 (10)0.0210 (10)0.0294 (11)0.0027 (8)0.0018 (8)0.0023 (8)
C30.0211 (10)0.0192 (10)0.0289 (11)0.0039 (8)0.0009 (8)0.0037 (8)
C40.0215 (10)0.0228 (10)0.0294 (11)0.0054 (8)0.0007 (8)0.0041 (9)
C50.0249 (10)0.0215 (10)0.0300 (11)0.0072 (8)0.0002 (8)0.0004 (8)
C60.0291 (11)0.0263 (11)0.0306 (11)0.0087 (9)0.0003 (9)0.0064 (9)
C70.0412 (13)0.0353 (13)0.0270 (11)0.0105 (10)0.0009 (10)0.0058 (10)
C80.0444 (14)0.0293 (12)0.0307 (12)0.0092 (10)0.0045 (10)0.0011 (9)
C90.0319 (12)0.0217 (11)0.0346 (12)0.0084 (9)0.0024 (9)0.0014 (9)
C100.0296 (11)0.0281 (11)0.0295 (11)0.0138 (9)0.0000 (9)0.0024 (9)
C110.0423 (13)0.0311 (12)0.0334 (12)0.0110 (10)0.0007 (10)0.0048 (10)
C120.0583 (16)0.0334 (13)0.0397 (14)0.0194 (12)0.0022 (12)0.0114 (11)
C130.0576 (16)0.0556 (17)0.0287 (12)0.0297 (14)0.0042 (11)0.0051 (11)
C140.0470 (15)0.0501 (16)0.0350 (13)0.0152 (12)0.0101 (11)0.0041 (12)
C150.0375 (13)0.0330 (12)0.0343 (12)0.0090 (10)0.0020 (10)0.0009 (10)
C160.0232 (10)0.0210 (10)0.0238 (10)0.0066 (8)0.0026 (8)0.0043 (8)
C170.0334 (12)0.0252 (11)0.0253 (11)0.0071 (9)0.0021 (9)0.0008 (9)
C180.0335 (12)0.0291 (12)0.0292 (11)0.0094 (9)0.0018 (9)0.0017 (9)
C190.0353 (12)0.0314 (12)0.0297 (12)0.0085 (10)0.0021 (9)0.0012 (9)
C200.0343 (12)0.0312 (12)0.0275 (11)0.0062 (10)0.0012 (9)0.0023 (9)
C210.0323 (12)0.0311 (12)0.0277 (11)0.0094 (9)0.0027 (9)0.0010 (9)
C220.0442 (14)0.0494 (15)0.0327 (13)0.0213 (12)0.0010 (10)0.0026 (11)
C230.0461 (15)0.0695 (19)0.0427 (15)0.0320 (14)0.0009 (12)0.0010 (13)
C240.0397 (14)0.0660 (19)0.0484 (16)0.0247 (13)0.0077 (12)0.0021 (14)
C250.0427 (14)0.0529 (16)0.0327 (13)0.0145 (12)0.0095 (11)0.0011 (11)
C260.0336 (12)0.0224 (10)0.0256 (11)0.0129 (9)0.0026 (9)0.0018 (8)
C270.0363 (13)0.0426 (14)0.0313 (12)0.0074 (11)0.0031 (10)0.0125 (10)
C280.0622 (19)0.086 (2)0.0424 (16)0.0414 (17)0.0137 (14)0.0240 (15)
C290.070 (2)0.128 (3)0.065 (2)0.066 (2)0.0248 (17)0.046 (2)
C300.0505 (18)0.112 (3)0.061 (2)0.0313 (19)0.0030 (15)0.049 (2)
C310.0649 (19)0.0587 (18)0.0397 (15)0.0031 (15)0.0116 (14)0.0182 (13)
C320.0526 (16)0.0404 (14)0.0356 (13)0.0065 (12)0.0034 (11)0.0096 (11)
C330.0239 (12)0.0522 (16)0.0721 (19)0.0098 (11)0.0035 (12)0.0147 (14)
N10.0232 (9)0.0217 (9)0.0299 (9)0.0066 (7)0.0005 (7)0.0035 (7)
N20.0389 (11)0.0341 (11)0.0266 (10)0.0081 (9)0.0031 (8)0.0025 (8)
O10.0305 (8)0.0200 (7)0.0375 (9)0.0089 (6)0.0078 (6)0.0006 (6)
O20.0236 (7)0.0204 (7)0.0407 (9)0.0085 (6)0.0020 (6)0.0017 (6)
O30.0341 (9)0.0381 (9)0.0232 (8)0.0040 (7)0.0006 (6)0.0037 (7)
O40.0327 (8)0.0311 (8)0.0232 (7)0.0068 (7)0.0026 (6)0.0011 (6)
O50.0229 (7)0.0185 (7)0.0385 (8)0.0044 (6)0.0001 (6)0.0005 (6)
Cu10.02186 (14)0.01805 (14)0.02282 (14)0.00599 (10)0.00180 (9)0.00185 (9)
Geometric parameters (Å, º) top
C1—C51.361 (3)C20—N21.325 (3)
C1—C21.428 (3)C20—C211.423 (3)
C1—C161.504 (3)C20—C271.485 (3)
C2—C61.413 (3)C21—H210.9300
C2—C31.421 (3)C22—C231.367 (4)
C3—N11.376 (3)C22—H220.9300
C3—C91.415 (3)C23—C241.401 (4)
C4—N11.325 (3)C23—H230.9300
C4—C51.421 (3)C24—C251.367 (4)
C4—C101.486 (3)C24—H240.9300
C5—H50.9300C25—H250.9300
C6—C71.365 (3)C26—O41.256 (3)
C6—H60.9300C26—O31.261 (3)
C7—C81.409 (3)C27—C281.388 (4)
C7—H70.9300C27—C321.391 (3)
C8—C91.362 (3)C28—C291.387 (4)
C8—H80.9300C28—H280.9300
C9—H90.9300C29—C301.380 (5)
C10—C151.390 (3)C29—H290.9300
C10—C111.394 (3)C30—C311.372 (5)
C11—C121.383 (3)C30—H300.9300
C11—H110.9300C31—C321.381 (4)
C12—C131.383 (4)C31—H310.9300
C12—H120.9300C32—H320.9300
C13—C141.377 (4)C33—O51.418 (3)
C13—H130.9300C33—H33A0.9600
C14—C151.390 (3)C33—H33B0.9600
C14—H140.9300C33—H33C0.9600
C15—H150.9300O1—Cu11.9581 (14)
C16—O11.257 (2)O2—Cu1i1.9674 (13)
C16—O21.260 (2)O3—Cu11.9641 (15)
C17—C211.363 (3)O4—Cu1i1.9812 (14)
C17—C181.427 (3)O5—Cu12.1125 (14)
C17—C261.508 (3)O5—H10.8340
C18—C221.416 (3)Cu1—O2i1.9674 (14)
C18—C191.423 (3)Cu1—O4i1.9812 (14)
C19—N21.370 (3)Cu1—Cu1i2.6303 (5)
C19—C251.411 (3)
C5—C1—C2119.56 (18)C23—C22—C18120.7 (2)
C5—C1—C16119.45 (18)C23—C22—H22119.7
C2—C1—C16120.98 (17)C18—C22—H22119.7
C6—C2—C3118.79 (19)C22—C23—C24120.4 (2)
C6—C2—C1124.56 (18)C22—C23—H23119.8
C3—C2—C1116.57 (18)C24—C23—H23119.8
N1—C3—C9118.14 (18)C25—C24—C23120.5 (2)
N1—C3—C2122.63 (18)C25—C24—H24119.8
C9—C3—C2119.23 (19)C23—C24—H24119.8
N1—C4—C5121.68 (19)C24—C25—C19120.7 (2)
N1—C4—C10117.63 (18)C24—C25—H25119.6
C5—C4—C10120.69 (19)C19—C25—H25119.6
C1—C5—C4120.35 (19)O4—C26—O3126.5 (2)
C1—C5—H5119.8O4—C26—C17117.32 (19)
C4—C5—H5119.8O3—C26—C17116.17 (19)
C7—C6—C2120.5 (2)C28—C27—C32119.1 (2)
C7—C6—H6119.7C28—C27—C20120.9 (2)
C2—C6—H6119.7C32—C27—C20120.0 (2)
C6—C7—C8120.6 (2)C29—C28—C27120.2 (3)
C6—C7—H7119.7C29—C28—H28119.9
C8—C7—H7119.7C27—C28—H28119.9
C9—C8—C7120.4 (2)C30—C29—C28120.0 (3)
C9—C8—H8119.8C30—C29—H29120.0
C7—C8—H8119.8C28—C29—H29120.0
C8—C9—C3120.4 (2)C31—C30—C29120.0 (3)
C8—C9—H9119.8C31—C30—H30120.0
C3—C9—H9119.8C29—C30—H30120.0
C15—C10—C11119.2 (2)C30—C31—C32120.4 (3)
C15—C10—C4120.3 (2)C30—C31—H31119.8
C11—C10—C4120.4 (2)C32—C31—H31119.8
C12—C11—C10120.3 (2)C31—C32—C27120.2 (3)
C12—C11—H11119.8C31—C32—H32119.9
C10—C11—H11119.8C27—C32—H32119.9
C11—C12—C13120.0 (2)O5—C33—H33A109.5
C11—C12—H12120.0O5—C33—H33B109.5
C13—C12—H12120.0H33A—C33—H33B109.5
C14—C13—C12120.2 (2)O5—C33—H33C109.5
C14—C13—H13119.9H33A—C33—H33C109.5
C12—C13—H13119.9H33B—C33—H33C109.5
C13—C14—C15120.2 (2)C4—N1—C3118.90 (17)
C13—C14—H14119.9C20—N2—C19118.18 (19)
C15—C14—H14119.9C16—O1—Cu1116.67 (13)
C14—C15—C10120.0 (2)C16—O2—Cu1i128.06 (13)
C14—C15—H15120.0C26—O3—Cu1119.04 (14)
C10—C15—H15120.0C26—O4—Cu1i125.28 (14)
O1—C16—O2126.46 (18)C33—O5—Cu1122.05 (15)
O1—C16—C1116.89 (17)C33—O5—H1109.7
O2—C16—C1116.64 (17)Cu1—O5—H1112.6
C21—C17—C18119.5 (2)O1—Cu1—O388.25 (7)
C21—C17—C26117.53 (19)O1—Cu1—O2i168.60 (6)
C18—C17—C26122.98 (19)O3—Cu1—O2i89.51 (6)
C22—C18—C19118.7 (2)O1—Cu1—O4i89.50 (6)
C22—C18—C17124.8 (2)O3—Cu1—O4i168.63 (6)
C19—C18—C17116.4 (2)O2i—Cu1—O4i90.51 (6)
N2—C19—C25117.6 (2)O1—Cu1—O5100.09 (6)
N2—C19—C18123.4 (2)O3—Cu1—O599.20 (6)
C25—C19—C18119.0 (2)O2i—Cu1—O591.30 (6)
N2—C20—C21122.3 (2)O4i—Cu1—O592.17 (6)
N2—C20—C27117.7 (2)O1—Cu1—Cu1i89.46 (4)
C21—C20—C27120.0 (2)O3—Cu1—Cu1i87.46 (5)
C17—C21—C20120.1 (2)O2i—Cu1—Cu1i79.27 (4)
C17—C21—H21119.9O4i—Cu1—Cu1i81.37 (5)
C20—C21—H21119.9O5—Cu1—Cu1i168.47 (4)
C5—C1—C2—C6178.0 (2)C23—C24—C25—C191.4 (4)
C16—C1—C2—C60.9 (3)N2—C19—C25—C24179.8 (2)
C5—C1—C2—C31.4 (3)C18—C19—C25—C241.3 (4)
C16—C1—C2—C3177.41 (17)C21—C17—C26—O4131.5 (2)
C6—C2—C3—N1178.03 (19)C18—C17—C26—O446.7 (3)
C1—C2—C3—N15.2 (3)C21—C17—C26—O346.2 (3)
C6—C2—C3—C92.1 (3)C18—C17—C26—O3135.6 (2)
C1—C2—C3—C9174.67 (18)N2—C20—C27—C28143.6 (3)
C2—C1—C5—C43.3 (3)C21—C20—C27—C2837.0 (4)
C16—C1—C5—C4177.83 (18)N2—C20—C27—C3236.8 (3)
N1—C4—C5—C14.8 (3)C21—C20—C27—C32142.6 (2)
C10—C4—C5—C1174.91 (19)C32—C27—C28—C290.0 (5)
C3—C2—C6—C70.8 (3)C20—C27—C28—C29179.6 (3)
C1—C2—C6—C7175.6 (2)C27—C28—C29—C301.5 (6)
C2—C6—C7—C81.4 (3)C28—C29—C30—C311.8 (6)
C6—C7—C8—C92.5 (4)C29—C30—C31—C320.5 (5)
C7—C8—C9—C31.2 (3)C30—C31—C32—C271.0 (4)
N1—C3—C9—C8179.0 (2)C28—C27—C32—C311.2 (4)
C2—C3—C9—C81.1 (3)C20—C27—C32—C31178.4 (2)
N1—C4—C10—C15135.3 (2)C5—C4—N1—C31.1 (3)
C5—C4—C10—C1545.0 (3)C10—C4—N1—C3178.63 (18)
N1—C4—C10—C1144.0 (3)C9—C3—N1—C4175.89 (19)
C5—C4—C10—C11135.8 (2)C2—C3—N1—C44.0 (3)
C15—C10—C11—C121.0 (3)C21—C20—N2—C191.6 (3)
C4—C10—C11—C12178.3 (2)C27—C20—N2—C19179.0 (2)
C10—C11—C12—C130.5 (4)C25—C19—N2—C20179.6 (2)
C11—C12—C13—C140.8 (4)C18—C19—N2—C201.6 (3)
C12—C13—C14—C150.2 (4)O2—C16—O1—Cu10.5 (3)
C13—C14—C15—C101.6 (4)C1—C16—O1—Cu1179.94 (13)
C11—C10—C15—C142.0 (3)O1—C16—O2—Cu1i2.0 (3)
C4—C10—C15—C14177.2 (2)C1—C16—O2—Cu1i177.45 (13)
C5—C1—C16—O148.6 (3)O4—C26—O3—Cu15.0 (3)
C2—C1—C16—O1130.2 (2)C17—C26—O3—Cu1172.51 (13)
C5—C1—C16—O2130.9 (2)O3—C26—O4—Cu1i8.3 (3)
C2—C1—C16—O250.3 (3)C17—C26—O4—Cu1i169.13 (13)
C21—C17—C18—C22179.1 (2)C16—O1—Cu1—O389.21 (15)
C26—C17—C18—C222.7 (4)C16—O1—Cu1—O2i10.4 (4)
C21—C17—C18—C191.8 (3)C16—O1—Cu1—O4i79.64 (15)
C26—C17—C18—C19179.97 (19)C16—O1—Cu1—O5171.75 (15)
C22—C18—C19—N2179.2 (2)C16—O1—Cu1—Cu1i1.74 (15)
C17—C18—C19—N23.3 (3)C26—O3—Cu1—O189.18 (16)
C22—C18—C19—C250.4 (3)C26—O3—Cu1—O2i79.64 (16)
C17—C18—C19—C25177.9 (2)C26—O3—Cu1—O4i10.5 (4)
C18—C17—C21—C201.1 (3)C26—O3—Cu1—O5170.88 (15)
C26—C17—C21—C20177.21 (19)C26—O3—Cu1—Cu1i0.36 (15)
N2—C20—C21—C173.0 (3)C33—O5—Cu1—O145.20 (18)
C27—C20—C21—C17177.7 (2)C33—O5—Cu1—O3135.05 (17)
C19—C18—C22—C230.4 (4)C33—O5—Cu1—O2i135.23 (17)
C17—C18—C22—C23176.8 (2)C33—O5—Cu1—O4i44.68 (17)
C18—C22—C23—C240.4 (4)C33—O5—Cu1—Cu1i100.3 (2)
C22—C23—C24—C250.5 (5)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···N1ii0.831.952.784 (2)176
Symmetry code: (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu2(C16H10NO2)4(CH4O)2]
Mr1184.16
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.9671 (6), 10.5859 (7), 14.7767 (10)
α, β, γ (°)89.800 (1), 87.348 (1), 77.300 (1)
V3)1366.86 (16)
Z1
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.31 × 0.24 × 0.17
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.780, 0.870
No. of measured, independent and
observed [I > 2σ(I)] reflections
7266, 4984, 4583
Rint0.014
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.088, 1.06
No. of reflections4984
No. of parameters370
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.30

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···N1i0.831.952.784 (2)176
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The work described in this paper was supported by grants from the National Natural Science Foundation of China (NSFC 21001085), the Hubei Province Natural Science Foundation (2010CDB11104), and the Doctoral Program Foundation of Wuhan Institute of Technology (11105032).

References

First citationAakeröy, C., Beatty, A. & Leinen, D. (1999). Angew. Chem. Int. Ed. 38, 1815–1819.  Google Scholar
First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison , Wisconsin , USA .  Google Scholar
First citationBu, X., Tong, M., Xie, Y., Li, J., Chang, H., Kitagawa, S. & Ribas, J. (2005). Inorg. Chem. 44, 9837–9846.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEvans, O. & Lin, W. (2002). Acc. Chem. Res. 35, 511–522.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMa, L. & Lin, W. (2008). J. Am. Chem. Soc. 130, 13834–13835.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationQin, Z., Jennings, M., Puddephatt, R. & Muir, K. (2002). Inorg. Chem. 41, 5174–5186.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, Y., Li, Z., Cheng, J., Qin, Y. & Yao, Y. (2007). Inorg. Chem. Commun. 10, 888–890.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, J., Chang, Z., Zhang, A., Hu, T. & Bu, X. (2010). Inorg. Chim. Acta, 363, 1377–1385.  Web of Science CSD CrossRef CAS Google Scholar
First citationXiong, R., Zuo, J., You, X., Fun, H. & Raj, S. (2000). Organometallics, 19, 4183–4186.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds