organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-2-(3,4,5-trimeth­­oxy­phen­yl)-1,3-benzo­thia­zole

aHEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 12 September 2012; accepted 15 September 2012; online 29 September 2012)

In the title compound, C16H14ClNO3S, the dihedral angle between the almost-planar benzothia­zole ring system [maximum deviation = 0.012 (3) Å] and the aromatic ring of the trimeth­oxy­phenyl group is 15.56 (6)°. In the crystal, the mol­ecules are arranged into layers parallel to the bc plane, held together only by weak van der Waals forces.

Related literature

For the biological activites of benzothia­zole compounds, see: Chohan et al. (2003[Chohan, Z. H., Pervez, H., Scozzafava, A. & Supuran, C. T. (2003). J. Chem. Soc. Pak. 25, 308-313.]); Hutchinson et al. (2002[Hutchinson, I., Jennings, S. A., Vishnuvajjala, B. R., Wetsell, A. D. & Stevens, M. F. G. (2002). J. Med. Chem. 45, 744-747.]); Chua et al. (1999[Chua, M. S., Shi, D. F., Wrigley, S., Bradshaw, T. D., Hutchinson, I., Nicholas, P., Barret, D. A., Stanley, L. A. & Stevens, M. F. G. (1999). J. Med. Chem. 42, 381-392.]); Burger & Sawhney (1968[Burger, A. & Sawhney, S. N. (1968). J. Med. Chem. 11, 270-273.]); Palmer et al. (1971[Palmer, P. J., Trigg, R. B. & Warrington, J. V. (1971). J. Med. Chem. 14, 248-251.]). For the crystal structures of related benzothia­zole derivatives, see: Yousuf et al. (2012a[Yousuf, S., Shah, S., Ambreen, N., Khan, K. M. & Ahmad, S. (2012a). Acta Cryst. E68, o2877.],b[Yousuf, S., Shah, S., Ambreen, N., Khan, K. M. & Ahmed, S. (2012b). Acta Cryst. E68, o2799.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14ClNO3S

  • Mr = 335.79

  • Triclinic, P 1

  • a = 4.0656 (6) Å

  • b = 7.7855 (11) Å

  • c = 12.2420 (17) Å

  • α = 96.263 (3)°

  • β = 91.380 (3)°

  • γ = 97.228 (3)°

  • V = 381.84 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 273 K

  • 0.52 × 0.15 × 0.09 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.820, Tmax = 0.965

  • 4277 measured reflections

  • 2816 independent reflections

  • 2621 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.080

  • S = 1.07

  • 2816 reflections

  • 202 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1402 Friedel pairs

  • Flack parameter: 0.12 (6)

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzothiazole is a well known class of sulfur- and nitrogen-containing heterocyclic aromatic molecules with a broad range of biological activities, such as antimicrobial, antitumoral, antimalarial and antitubercular (Chohan et al., 2003; Hutchinson et al., 2002; Chua et al., 1999; Burger & Sawhney, 1968; Palmer et al., 1971). The title compound is a benzothiazole derivative synthesized as a part of our ongoing project on bioactive hetereocyclic compounds.

The molecular structure of the title compound (Fig. 1) is similar to that reported for the recently published compounds 5-chloro-2-phenyl-1,3-benzothiazole (Yousuf et al., 2012a) and 2-(5-chloro-1,3-benzothiazol-2-yl)-4-methoxyphenol (Yousuf et al., 2012b) with the difference that the phenyl or p-methoxyphenol group is replaced by a trimethoxyphenyl group. The dihedral angle between the almost planar benzothiazole ring system (S1/N1/C1–C7) and the benzene ring of the trimethoxyphenyl group (C8–C13) is 15.56 (6)°. Bond lengths and angles are unexceptional. In the crystal structure the molecules are arranged into layers parallel to the bc plane (Fig. 2) held together only by weak van der Waals forces.

Related literature top

For the biological activites of benzothiazole compounds, see: Chohan et al. (2003); Hutchinson et al. (2002); Chua et al. (1999); Burger & Sawhney (1968); Palmer et al. (1971). For the crystal structures of related benzothiazole derivatives, see: Yousuf et al. (2012a,b).

Experimental top

A mixture of 2-amino-4-cholorobenzenethiol (0.159 g, 1 mmol), 3,4,5-trimethoxybenz-aldehyde (0.196 g, 1 mmol), sodium metabisulfite (0.2 g) and N,N-dimethylformamide (10 ml) was refluxed for 2 h in a round-bottomed flask. The completion of reaction was monitored by TLC. After cooling the mixture to room temperature, cold water was added to obtain a white precipitate. Crystallization from ethanol afforded crystals of the title compound (0.298 g, 88.9% yield) found suitable for X-ray diffraction studies.

Refinement top

H atoms were positioned geometrically with C—H = 0.96 or 0.93 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating group model was applied to methyl groups.

Structure description top

Benzothiazole is a well known class of sulfur- and nitrogen-containing heterocyclic aromatic molecules with a broad range of biological activities, such as antimicrobial, antitumoral, antimalarial and antitubercular (Chohan et al., 2003; Hutchinson et al., 2002; Chua et al., 1999; Burger & Sawhney, 1968; Palmer et al., 1971). The title compound is a benzothiazole derivative synthesized as a part of our ongoing project on bioactive hetereocyclic compounds.

The molecular structure of the title compound (Fig. 1) is similar to that reported for the recently published compounds 5-chloro-2-phenyl-1,3-benzothiazole (Yousuf et al., 2012a) and 2-(5-chloro-1,3-benzothiazol-2-yl)-4-methoxyphenol (Yousuf et al., 2012b) with the difference that the phenyl or p-methoxyphenol group is replaced by a trimethoxyphenyl group. The dihedral angle between the almost planar benzothiazole ring system (S1/N1/C1–C7) and the benzene ring of the trimethoxyphenyl group (C8–C13) is 15.56 (6)°. Bond lengths and angles are unexceptional. In the crystal structure the molecules are arranged into layers parallel to the bc plane (Fig. 2) held together only by weak van der Waals forces.

For the biological activites of benzothiazole compounds, see: Chohan et al. (2003); Hutchinson et al. (2002); Chua et al. (1999); Burger & Sawhney (1968); Palmer et al. (1971). For the crystal structures of related benzothiazole derivatives, see: Yousuf et al. (2012a,b).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound. Hydrogen atoms are omitted for clarity.
5-Chloro-2-(3,4,5-trimethoxyphenyl)-1,3-benzothiazole top
Crystal data top
C16H14ClNO3SZ = 1
Mr = 335.79F(000) = 174
Triclinic, P1Dx = 1.460 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.0656 (6) ÅCell parameters from 2110 reflections
b = 7.7855 (11) Åθ = 1.7–25.5°
c = 12.2420 (17) ŵ = 0.40 mm1
α = 96.263 (3)°T = 273 K
β = 91.380 (3)°Plate, colourless
γ = 97.228 (3)°0.52 × 0.15 × 0.09 mm
V = 381.84 (9) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
2816 independent reflections
Radiation source: fine-focus sealed tube2621 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ω scansθmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 44
Tmin = 0.820, Tmax = 0.965k = 99
4277 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.0343P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2816 reflectionsΔρmax = 0.14 e Å3
202 parametersΔρmin = 0.16 e Å3
3 restraintsAbsolute structure: Flack (1983), with 1402 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.12 (6)
Crystal data top
C16H14ClNO3Sγ = 97.228 (3)°
Mr = 335.79V = 381.84 (9) Å3
Triclinic, P1Z = 1
a = 4.0656 (6) ÅMo Kα radiation
b = 7.7855 (11) ŵ = 0.40 mm1
c = 12.2420 (17) ÅT = 273 K
α = 96.263 (3)°0.52 × 0.15 × 0.09 mm
β = 91.380 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2816 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2621 reflections with I > 2σ(I)
Tmin = 0.820, Tmax = 0.965Rint = 0.014
4277 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.080Δρmax = 0.14 e Å3
S = 1.07Δρmin = 0.16 e Å3
2816 reflectionsAbsolute structure: Flack (1983), with 1402 Friedel pairs
202 parametersAbsolute structure parameter: 0.12 (6)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.46803 (14)0.91830 (7)0.20220 (5)0.05768 (18)
Cl10.9092 (2)0.29518 (10)0.41340 (7)0.0924 (3)
O10.0441 (5)1.1670 (2)0.14201 (16)0.0662 (5)
O20.0285 (5)0.9542 (3)0.32262 (15)0.0703 (6)
O30.2731 (5)0.6534 (2)0.31396 (14)0.0670 (5)
N10.4815 (5)0.6095 (3)0.10078 (16)0.0510 (5)
C10.5921 (6)0.6053 (3)0.2087 (2)0.0483 (6)
C20.6876 (8)0.4599 (4)0.2507 (2)0.0603 (7)
H2A0.68040.35390.20700.072*
C30.7927 (7)0.4782 (4)0.3588 (2)0.0616 (7)
C40.8097 (7)0.6314 (4)0.4269 (2)0.0651 (8)
H4A0.88420.63780.49990.078*
C50.7142 (8)0.7758 (4)0.3852 (2)0.0651 (8)
H5A0.72380.88130.42960.078*
C60.6036 (6)0.7615 (3)0.2761 (2)0.0499 (6)
C70.4065 (5)0.7623 (3)0.08620 (18)0.0443 (5)
C80.2955 (5)0.8118 (3)0.01945 (19)0.0436 (5)
C90.1638 (6)0.9681 (3)0.0251 (2)0.0479 (5)
H9A0.13281.03950.03880.057*
C100.0797 (6)1.0154 (3)0.1272 (2)0.0495 (6)
C110.1223 (6)0.9078 (3)0.2224 (2)0.0523 (6)
C120.2466 (6)0.7500 (3)0.21641 (19)0.0498 (6)
C130.3346 (6)0.7029 (3)0.11455 (19)0.0496 (5)
H13A0.41980.59840.11000.060*
C140.1064 (8)1.2779 (4)0.0479 (3)0.0675 (7)
H14A0.21011.37350.06990.101*
H14B0.09921.32180.00850.101*
H14C0.25081.21400.00140.101*
C150.2896 (9)1.0281 (4)0.3824 (2)0.0788 (9)
H15A0.20081.08050.44210.118*
H15B0.41770.93900.41090.118*
H15C0.42911.11540.33490.118*
C160.4033 (8)0.4926 (4)0.3130 (2)0.0722 (8)
H16A0.40460.43680.38690.108*
H16B0.26770.41850.26950.108*
H16C0.62580.51380.28200.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0794 (4)0.0528 (4)0.0413 (3)0.0137 (3)0.0038 (3)0.0030 (3)
Cl10.1234 (7)0.0817 (5)0.0763 (6)0.0143 (5)0.0310 (5)0.0349 (4)
O10.0760 (13)0.0611 (11)0.0673 (12)0.0246 (10)0.0039 (9)0.0170 (9)
O20.0682 (13)0.0986 (15)0.0487 (11)0.0164 (11)0.0162 (9)0.0271 (10)
O30.0937 (14)0.0661 (12)0.0416 (10)0.0188 (10)0.0110 (9)0.0008 (8)
N10.0684 (13)0.0473 (11)0.0368 (10)0.0066 (9)0.0086 (9)0.0065 (8)
C10.0522 (14)0.0512 (14)0.0404 (14)0.0003 (11)0.0047 (10)0.0100 (11)
C20.0778 (18)0.0532 (15)0.0498 (15)0.0072 (13)0.0096 (13)0.0102 (12)
C30.0693 (18)0.0652 (18)0.0525 (17)0.0033 (14)0.0078 (13)0.0252 (14)
C40.0791 (19)0.079 (2)0.0365 (14)0.0035 (16)0.0100 (13)0.0120 (13)
C50.091 (2)0.0690 (18)0.0334 (13)0.0088 (16)0.0050 (13)0.0003 (12)
C60.0539 (14)0.0541 (15)0.0407 (13)0.0045 (11)0.0001 (11)0.0041 (11)
C70.0453 (13)0.0460 (13)0.0406 (13)0.0009 (10)0.0003 (10)0.0056 (10)
C80.0436 (13)0.0464 (13)0.0405 (12)0.0005 (10)0.0017 (9)0.0106 (10)
C90.0500 (13)0.0459 (13)0.0467 (13)0.0018 (10)0.0002 (10)0.0058 (10)
C100.0435 (13)0.0495 (13)0.0579 (15)0.0050 (10)0.0029 (11)0.0189 (11)
C110.0505 (13)0.0602 (15)0.0467 (14)0.0046 (11)0.0084 (10)0.0139 (11)
C120.0533 (14)0.0553 (14)0.0403 (13)0.0045 (11)0.0052 (10)0.0076 (10)
C130.0573 (14)0.0473 (13)0.0446 (13)0.0069 (11)0.0048 (10)0.0084 (10)
C140.0626 (16)0.0536 (15)0.088 (2)0.0140 (12)0.0002 (14)0.0110 (13)
C150.099 (2)0.087 (2)0.0558 (17)0.0127 (18)0.0040 (16)0.0311 (15)
C160.093 (2)0.0726 (19)0.0516 (16)0.0205 (16)0.0017 (15)0.0021 (14)
Geometric parameters (Å, º) top
S1—C61.731 (3)C5—H5A0.9300
S1—C71.756 (2)C7—C81.466 (3)
Cl1—C31.750 (3)C8—C131.388 (3)
O1—C101.368 (3)C8—C91.397 (3)
O1—C141.410 (4)C9—C101.388 (3)
O2—C111.375 (3)C9—H9A0.9300
O2—C151.403 (3)C10—C111.387 (4)
O3—C121.354 (3)C11—C121.395 (3)
O3—C161.420 (3)C12—C131.389 (3)
N1—C71.294 (3)C13—H13A0.9300
N1—C11.391 (3)C14—H14A0.9600
C1—C21.387 (4)C14—H14B0.9600
C1—C61.388 (3)C14—H14C0.9600
C2—C31.368 (4)C15—H15A0.9600
C2—H2A0.9300C15—H15B0.9600
C3—C41.372 (4)C15—H15C0.9600
C4—C51.378 (4)C16—H16A0.9600
C4—H4A0.9300C16—H16B0.9600
C5—C61.387 (4)C16—H16C0.9600
C6—S1—C788.87 (11)C8—C9—H9A120.4
C10—O1—C14118.2 (2)O1—C10—C11115.7 (2)
C11—O2—C15114.8 (2)O1—C10—C9124.0 (2)
C12—O3—C16118.1 (2)C11—C10—C9120.4 (2)
C7—N1—C1110.9 (2)O2—C11—C10119.6 (2)
C2—C1—C6120.0 (2)O2—C11—C12120.0 (2)
C2—C1—N1124.9 (2)C10—C11—C12120.3 (2)
C6—C1—N1115.1 (2)O3—C12—C13124.8 (2)
C3—C2—C1117.5 (3)O3—C12—C11115.6 (2)
C3—C2—H2A121.2C13—C12—C11119.5 (2)
C1—C2—H2A121.2C8—C13—C12120.0 (2)
C2—C3—C4123.7 (3)C8—C13—H13A120.0
C2—C3—Cl1118.0 (2)C12—C13—H13A120.0
C4—C3—Cl1118.3 (2)O1—C14—H14A109.5
C3—C4—C5118.8 (3)O1—C14—H14B109.5
C3—C4—H4A120.6H14A—C14—H14B109.5
C5—C4—H4A120.6O1—C14—H14C109.5
C4—C5—C6119.1 (3)H14A—C14—H14C109.5
C4—C5—H5A120.5H14B—C14—H14C109.5
C6—C5—H5A120.5O2—C15—H15A109.5
C5—C6—C1120.9 (2)O2—C15—H15B109.5
C5—C6—S1129.3 (2)H15A—C15—H15B109.5
C1—C6—S1109.74 (19)O2—C15—H15C109.5
N1—C7—C8124.4 (2)H15A—C15—H15C109.5
N1—C7—S1115.40 (17)H15B—C15—H15C109.5
C8—C7—S1120.09 (17)O3—C16—H16A109.5
C13—C8—C9120.5 (2)O3—C16—H16B109.5
C13—C8—C7118.58 (19)H16A—C16—H16B109.5
C9—C8—C7120.9 (2)O3—C16—H16C109.5
C10—C9—C8119.2 (2)H16A—C16—H16C109.5
C10—C9—H9A120.4H16B—C16—H16C109.5
C7—N1—C1—C2179.2 (2)S1—C7—C8—C915.0 (3)
C7—N1—C1—C60.9 (3)C13—C8—C9—C101.5 (3)
C6—C1—C2—C30.4 (4)C7—C8—C9—C10176.2 (2)
N1—C1—C2—C3179.5 (3)C14—O1—C10—C11177.3 (2)
C1—C2—C3—C40.3 (4)C14—O1—C10—C93.4 (3)
C1—C2—C3—Cl1179.2 (2)C8—C9—C10—O1178.5 (2)
C2—C3—C4—C50.4 (5)C8—C9—C10—C110.7 (3)
Cl1—C3—C4—C5179.1 (2)C15—O2—C11—C10100.9 (3)
C3—C4—C5—C60.1 (5)C15—O2—C11—C1281.8 (3)
C4—C5—C6—C10.8 (4)O1—C10—C11—O22.6 (3)
C4—C5—C6—S1179.7 (2)C9—C10—C11—O2178.1 (2)
C2—C1—C6—C50.9 (4)O1—C10—C11—C12179.9 (2)
N1—C1—C6—C5179.0 (2)C9—C10—C11—C120.7 (3)
C2—C1—C6—S1179.5 (2)C16—O3—C12—C130.7 (4)
N1—C1—C6—S10.6 (3)C16—O3—C12—C11179.0 (2)
C7—S1—C6—C5179.4 (3)O2—C11—C12—O31.6 (3)
C7—S1—C6—C10.09 (18)C10—C11—C12—O3178.9 (2)
C1—N1—C7—C8177.3 (2)O2—C11—C12—C13178.8 (2)
C1—N1—C7—S10.8 (3)C10—C11—C12—C131.5 (3)
C6—S1—C7—N10.43 (19)C9—C8—C13—C120.8 (3)
C6—S1—C7—C8177.11 (19)C7—C8—C13—C12177.0 (2)
N1—C7—C8—C1313.6 (3)O3—C12—C13—C8179.7 (2)
S1—C7—C8—C13162.74 (17)C11—C12—C13—C80.7 (3)
N1—C7—C8—C9168.6 (2)

Experimental details

Crystal data
Chemical formulaC16H14ClNO3S
Mr335.79
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)4.0656 (6), 7.7855 (11), 12.2420 (17)
α, β, γ (°)96.263 (3), 91.380 (3), 97.228 (3)
V3)381.84 (9)
Z1
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.52 × 0.15 × 0.09
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.820, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
4277, 2816, 2621
Rint0.014
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.080, 1.07
No. of reflections2816
No. of parameters202
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.16
Absolute structureFlack (1983), with 1402 Friedel pairs
Absolute structure parameter0.12 (6)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

 

Acknowledgements

The authors are grateful to OPCW, The Netherlands, and the Higher Education Commission (HEC), Pakistan (project No. 1910), for their financial support.

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurger, A. & Sawhney, S. N. (1968). J. Med. Chem. 11, 270–273.  CrossRef PubMed Web of Science Google Scholar
First citationChohan, Z. H., Pervez, H., Scozzafava, A. & Supuran, C. T. (2003). J. Chem. Soc. Pak. 25, 308–313.  CAS Google Scholar
First citationChua, M. S., Shi, D. F., Wrigley, S., Bradshaw, T. D., Hutchinson, I., Nicholas, P., Barret, D. A., Stanley, L. A. & Stevens, M. F. G. (1999). J. Med. Chem. 42, 381–392.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHutchinson, I., Jennings, S. A., Vishnuvajjala, B. R., Wetsell, A. D. & Stevens, M. F. G. (2002). J. Med. Chem. 45, 744–747.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationPalmer, P. J., Trigg, R. B. & Warrington, J. V. (1971). J. Med. Chem. 14, 248–251.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYousuf, S., Shah, S., Ambreen, N., Khan, K. M. & Ahmad, S. (2012a). Acta Cryst. E68, o2877.  CSD CrossRef IUCr Journals Google Scholar
First citationYousuf, S., Shah, S., Ambreen, N., Khan, K. M. & Ahmed, S. (2012b). Acta Cryst. E68, o2799.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds