organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-2-{[3-Methyl-5-(2-naphth­yl­oxy)-1-phenyl-1H-pyrazol-4-yl]methyl­­idene}hydrazinecarbo­thio­amide monohydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 14 September 2012; accepted 19 September 2012; online 29 September 2012)

In the title compound, C22H19N5OS·H2O, the naphthalene ring system and the benzene ring [dihedral angle = 85.19 (8)°] make dihedral angles of 87.02 (9) and 14.41 (10)°, respectively, with the pyrazole ring. The mean plane through the 2-methyl­enehydrazinecarbothio­amide group [C—N—N—C(=S)—N; maximum deviation = 0.022 (1) Å] is slightly twisted from the pyrazole ring [dihedral angle = 5.60 (11)°]. In the crystal, mol­ecules are linked by N—H⋯S, N—H⋯O, O—H⋯S, O—H⋯N and C—H⋯S hydrogen bonds into sheets parallel to the ab plane. ππ inter­actions are also observed [centroid-to-centroid distances = 3.7778 (12) and 3.7010 (12) Å].

Related literature

For the biological activities of pyrazoles and their derivatives, see: Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]); Hall et al. (2008[Hall, A., Billinton, A., Brown, S. H., Clayton, N. M., Chowdhury, A., Giblin, G. M. P., Goldsmith, P., Hayhow, T. G., Hurst, D. N., Kilford, I. R., Naylor, A., Passingham, B. & Winyard, L. (2008). Bioorg. Med. Chem. Lett. 18, 3392-3399.]); Isloor et al. (2009[Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787.]); Girisha et al. (2010[Girisha, K. S., Kalluraya, B., Narayana, V. & Padmashree (2010). Eur. J. Med. Chem. 45, 4640-4644.]). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C22H19N5OS·H2O

  • Mr = 419.50

  • Triclinic, [P \overline 1]

  • a = 7.9384 (2) Å

  • b = 11.1512 (2) Å

  • c = 13.0325 (3) Å

  • α = 113.481 (1)°

  • β = 90.942 (1)°

  • γ = 107.359 (1)°

  • V = 997.81 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 100 K

  • 0.41 × 0.22 × 0.17 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.925, Tmax = 0.967

  • 15860 measured reflections

  • 4542 independent reflections

  • 3499 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.124

  • S = 1.04

  • 4542 reflections

  • 292 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1N4⋯S1i 0.93 (3) 2.56 (3) 3.466 (2) 165 (3)
N5—H2N5⋯O1W 0.89 (3) 1.94 (3) 2.805 (3) 164 (3)
O1W—H2W1⋯S1ii 0.94 (4) 2.58 (4) 3.397 (2) 145 (3)
O1W—H1W1⋯N2iii 0.89 (4) 2.01 (4) 2.876 (3) 167 (4)
C20—H20A⋯S1i 0.95 2.87 3.741 (2) 153
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+2, -z; (iii) x+1, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazoles and their derivatives play an important role in medicinal chemistry (Rai et al., 2008). Several derivatives of pyrazole are of pharmaceutical interest due to their analgesic action. Pyrazole molecules also exhibit anticancer (Hall et al., 2008), anti-inflammatory, antidepressant, anticonvulsant and anti-HIV properties (Isloor et al., 2009). During the past years, considerable evidence has been accumulated to demonstrate the efficacy of pyrazole derivatives. The incorporation of an aryl system into the pyrazole ring enhances the biological activities to a great extent (Girisha et al., 2010). In view of the importance of these molecules, we report herein the crystal structure of the title compound.

The asymmetric unit of the title compound (Fig. 1) consists of one (2E)-2-{[3-methyl-5-(2-naphthayloxy)-1-phenyl-1H-pyrazol-4-yl]methylidene}hydrazinocarbothioamide molecule and one water molecule. The C1–C10 naphthalene ring system [maximum deviation = 0.025 (2) Å at atom C10] and C11–C16 benzene ring [dihedral angle between them = 85.19 (8)°] make dihedral angles of 87.02 (9)° and 14.41 (10)°, respectively, with the N1/N2/C17–C19 pyrazole ring. The 2-methylenehydrazinecarbothioamide group [C20/N3/N4/C21/S1/N5; maximum deviation = 0.022 (1) Å at atom N4] is slightly twisted from pyrazole ring as indicated by the dihedral angle of 5.60 (11)°. In the crystal (Fig. 2), molecules are linked by intermolecular N4—H1N4···S1, N5—H2N5···O1W, O1W—H2W1···S1, O1W—H1W1···N2 and C20—H20A···S1 hydrogen bonds into sheets parallel to (001) plane. ππ interactions are also observed with Cg1···Cg2 = 3.7778 (12) Å [symmetry code = -x, 2 - y, 1 - z] and Cg3···Cg3 = 3.7010 (12) Å [symmetry code = -1 - x, 1 - y, 1 - z], where Cg1, Cg2 and Cg3 are the centroids of the C1/C2/C7–C10, C2–C7 and C11–C16 rings, respectively.

Related literature top

For the biological activities of pyrazoles and their derivatives, see: Rai et al. (2008); Hall et al. (2008); Isloor et al. (2009); Girisha et al. (2010). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was obtained by refluxing a mixture of 3-methyl-5-(2-naphthyloxy)-1-phenyl-1H-pyrazole-4-carbaldehyde (0.01 mol) and thiosemicarbazide (0.01 mol) in ethanol (30 ml) with 3 drops of concentrated sulfuric acid for 1 h. Excess ethanol was removed from the reaction mixture under reduced pressure. The solid product obtained was filtered, washed with ethanol and dried. Yellow block-shaped crystals suitable for X-ray analysis were obtained by slow evaporation from ethanol–N,N-dimethylformamide (3:1 v/v) solution.

Refinement top

The N- and O-bound H atoms were located in a difference Fourier map and refined freely [N4—H1N4 = 0.93 (3) Å, N5—H2N5 = 0.89 (3) Å, N5—H1N5 = 0.88 (3) Å, O1W—H2W1 = 0.94 (3) Å, O1W—H1W1 = 0.88 (3) Å]. The remaining H atoms were positioned geometrically [C—H = 0.95 and 0.98 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl group.

Structure description top

Pyrazoles and their derivatives play an important role in medicinal chemistry (Rai et al., 2008). Several derivatives of pyrazole are of pharmaceutical interest due to their analgesic action. Pyrazole molecules also exhibit anticancer (Hall et al., 2008), anti-inflammatory, antidepressant, anticonvulsant and anti-HIV properties (Isloor et al., 2009). During the past years, considerable evidence has been accumulated to demonstrate the efficacy of pyrazole derivatives. The incorporation of an aryl system into the pyrazole ring enhances the biological activities to a great extent (Girisha et al., 2010). In view of the importance of these molecules, we report herein the crystal structure of the title compound.

The asymmetric unit of the title compound (Fig. 1) consists of one (2E)-2-{[3-methyl-5-(2-naphthayloxy)-1-phenyl-1H-pyrazol-4-yl]methylidene}hydrazinocarbothioamide molecule and one water molecule. The C1–C10 naphthalene ring system [maximum deviation = 0.025 (2) Å at atom C10] and C11–C16 benzene ring [dihedral angle between them = 85.19 (8)°] make dihedral angles of 87.02 (9)° and 14.41 (10)°, respectively, with the N1/N2/C17–C19 pyrazole ring. The 2-methylenehydrazinecarbothioamide group [C20/N3/N4/C21/S1/N5; maximum deviation = 0.022 (1) Å at atom N4] is slightly twisted from pyrazole ring as indicated by the dihedral angle of 5.60 (11)°. In the crystal (Fig. 2), molecules are linked by intermolecular N4—H1N4···S1, N5—H2N5···O1W, O1W—H2W1···S1, O1W—H1W1···N2 and C20—H20A···S1 hydrogen bonds into sheets parallel to (001) plane. ππ interactions are also observed with Cg1···Cg2 = 3.7778 (12) Å [symmetry code = -x, 2 - y, 1 - z] and Cg3···Cg3 = 3.7010 (12) Å [symmetry code = -1 - x, 1 - y, 1 - z], where Cg1, Cg2 and Cg3 are the centroids of the C1/C2/C7–C10, C2–C7 and C11–C16 rings, respectively.

For the biological activities of pyrazoles and their derivatives, see: Rai et al. (2008); Hall et al. (2008); Isloor et al. (2009); Girisha et al. (2010). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
(2E)-2-{[3-Methyl-5-(2-naphthyloxy)-1-phenyl-1H- pyrazol-4-yl]methylidene}hydrazinecarbothioamide monohydrate top
Crystal data top
C22H19N5OS·H2OZ = 2
Mr = 419.50F(000) = 440
Triclinic, P1Dx = 1.396 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9384 (2) ÅCell parameters from 5898 reflections
b = 11.1512 (2) Åθ = 2.7–29.9°
c = 13.0325 (3) ŵ = 0.19 mm1
α = 113.481 (1)°T = 100 K
β = 90.942 (1)°Block, yellow
γ = 107.359 (1)°0.41 × 0.22 × 0.17 mm
V = 997.81 (4) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
4542 independent reflections
Radiation source: fine-focus sealed tube3499 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 910
Tmin = 0.925, Tmax = 0.967k = 1414
15860 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0598P)2 + 0.5141P]
where P = (Fo2 + 2Fc2)/3
4542 reflections(Δ/σ)max < 0.001
292 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C22H19N5OS·H2Oγ = 107.359 (1)°
Mr = 419.50V = 997.81 (4) Å3
Triclinic, P1Z = 2
a = 7.9384 (2) ÅMo Kα radiation
b = 11.1512 (2) ŵ = 0.19 mm1
c = 13.0325 (3) ÅT = 100 K
α = 113.481 (1)°0.41 × 0.22 × 0.17 mm
β = 90.942 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4542 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3499 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.967Rint = 0.031
15860 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.33 e Å3
4542 reflectionsΔρmin = 0.33 e Å3
292 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.57687 (7)0.72177 (5)0.01468 (4)0.02486 (14)
O10.19366 (17)0.59419 (13)0.21670 (11)0.0213 (3)
O1W0.3788 (2)1.05291 (17)0.10581 (15)0.0346 (4)
N10.3199 (2)0.39469 (16)0.25166 (13)0.0191 (3)
N20.2933 (2)0.27084 (16)0.23124 (14)0.0206 (3)
N30.1454 (2)0.55365 (17)0.11750 (14)0.0232 (4)
N40.3012 (2)0.57326 (18)0.07115 (14)0.0233 (4)
N50.3021 (2)0.79095 (19)0.10655 (15)0.0248 (4)
C10.0100 (2)0.7186 (2)0.39444 (16)0.0198 (4)
H1A0.02390.63860.40940.024*
C20.1399 (2)0.84368 (19)0.47281 (16)0.0197 (4)
C30.2230 (3)0.8533 (2)0.57417 (16)0.0216 (4)
H3A0.19040.77520.59160.026*
C40.3494 (3)0.9740 (2)0.64713 (17)0.0245 (4)
H4A0.40400.97880.71470.029*
C50.3998 (3)1.0916 (2)0.62329 (17)0.0237 (4)
H5A0.48851.17480.67440.028*
C60.3209 (3)1.0856 (2)0.52650 (17)0.0226 (4)
H6A0.35501.16520.51110.027*
C70.1886 (2)0.96195 (19)0.44872 (16)0.0192 (4)
C80.1020 (3)0.9522 (2)0.34795 (16)0.0220 (4)
H8A0.13211.03120.33170.026*
C90.0238 (3)0.8314 (2)0.27380 (16)0.0217 (4)
H9A0.08220.82660.20740.026*
C100.0654 (2)0.71408 (19)0.29778 (16)0.0193 (4)
C110.5279 (3)0.5262 (2)0.30213 (16)0.0229 (4)
H11A0.47000.58110.26460.027*
C120.6720 (3)0.5495 (2)0.35584 (17)0.0248 (4)
H12A0.71040.62290.35690.030*
C130.7608 (3)0.4676 (2)0.40784 (17)0.0258 (4)
H13A0.86060.48350.44310.031*
C140.7026 (3)0.3621 (2)0.40795 (17)0.0252 (4)
H14A0.76340.30530.44320.030*
C150.5566 (3)0.3391 (2)0.35700 (16)0.0222 (4)
H15A0.51620.26750.35820.027*
C160.4695 (2)0.42118 (19)0.30412 (16)0.0190 (4)
C170.1488 (2)0.2736 (2)0.18121 (16)0.0203 (4)
C180.0785 (2)0.3980 (2)0.16783 (16)0.0205 (4)
C190.1928 (2)0.47093 (19)0.21273 (16)0.0191 (4)
C200.0800 (3)0.4335 (2)0.11819 (16)0.0223 (4)
H20A0.13730.36650.08530.027*
C210.3835 (3)0.6963 (2)0.06758 (15)0.0196 (4)
C220.0798 (3)0.1541 (2)0.14558 (18)0.0269 (4)
H22A0.15850.08080.16320.040*
H22B0.04100.18530.18630.040*
H22C0.07680.11800.06390.040*
H1N40.353 (3)0.504 (3)0.044 (2)0.039 (7)*
H2N50.346 (4)0.872 (3)0.103 (2)0.049 (8)*
H1N50.206 (3)0.770 (3)0.137 (2)0.039 (7)*
H2W10.367 (4)1.077 (3)0.045 (3)0.066 (10)*
H1W10.478 (4)1.114 (4)0.152 (3)0.071 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0260 (3)0.0226 (3)0.0313 (3)0.0092 (2)0.0110 (2)0.0157 (2)
O10.0210 (7)0.0147 (7)0.0275 (7)0.0045 (5)0.0013 (5)0.0095 (6)
O1W0.0398 (9)0.0229 (8)0.0378 (9)0.0026 (7)0.0007 (8)0.0156 (7)
N10.0204 (8)0.0158 (8)0.0233 (8)0.0078 (6)0.0040 (6)0.0092 (7)
N20.0230 (8)0.0155 (8)0.0258 (8)0.0080 (7)0.0042 (7)0.0098 (7)
N30.0234 (8)0.0221 (9)0.0245 (8)0.0069 (7)0.0065 (7)0.0106 (7)
N40.0250 (9)0.0214 (9)0.0271 (9)0.0100 (7)0.0104 (7)0.0118 (7)
N50.0272 (9)0.0199 (9)0.0307 (9)0.0092 (7)0.0101 (8)0.0129 (8)
C10.0203 (9)0.0176 (9)0.0258 (10)0.0082 (8)0.0084 (8)0.0118 (8)
C20.0197 (9)0.0185 (9)0.0243 (10)0.0097 (8)0.0081 (7)0.0098 (8)
C30.0245 (10)0.0190 (10)0.0261 (10)0.0102 (8)0.0071 (8)0.0119 (8)
C40.0255 (10)0.0247 (11)0.0240 (10)0.0104 (8)0.0040 (8)0.0097 (9)
C50.0229 (10)0.0193 (10)0.0267 (10)0.0064 (8)0.0040 (8)0.0079 (8)
C60.0243 (10)0.0165 (9)0.0295 (10)0.0085 (8)0.0091 (8)0.0108 (8)
C70.0201 (9)0.0183 (9)0.0227 (9)0.0097 (7)0.0087 (7)0.0095 (8)
C80.0261 (10)0.0181 (9)0.0269 (10)0.0099 (8)0.0091 (8)0.0124 (8)
C90.0243 (10)0.0208 (10)0.0235 (10)0.0091 (8)0.0064 (8)0.0117 (8)
C100.0157 (9)0.0167 (9)0.0255 (10)0.0058 (7)0.0061 (7)0.0084 (8)
C110.0243 (10)0.0219 (10)0.0253 (10)0.0095 (8)0.0052 (8)0.0115 (8)
C120.0256 (10)0.0225 (10)0.0302 (11)0.0125 (8)0.0046 (8)0.0116 (9)
C130.0230 (10)0.0276 (11)0.0288 (11)0.0111 (9)0.0083 (8)0.0119 (9)
C140.0247 (10)0.0219 (10)0.0292 (11)0.0060 (8)0.0073 (8)0.0122 (9)
C150.0234 (10)0.0184 (10)0.0257 (10)0.0076 (8)0.0033 (8)0.0098 (8)
C160.0177 (9)0.0178 (9)0.0202 (9)0.0064 (7)0.0029 (7)0.0063 (8)
C170.0210 (9)0.0167 (9)0.0212 (9)0.0055 (7)0.0012 (7)0.0068 (8)
C180.0218 (9)0.0177 (9)0.0226 (9)0.0061 (8)0.0037 (7)0.0094 (8)
C190.0190 (9)0.0152 (9)0.0220 (9)0.0033 (7)0.0014 (7)0.0086 (8)
C200.0237 (10)0.0199 (10)0.0257 (10)0.0091 (8)0.0053 (8)0.0106 (8)
C210.0251 (10)0.0169 (9)0.0168 (9)0.0065 (8)0.0016 (7)0.0077 (8)
C220.0270 (10)0.0210 (10)0.0348 (11)0.0108 (8)0.0083 (9)0.0116 (9)
Geometric parameters (Å, º) top
S1—C211.6859 (19)C6—C71.421 (3)
O1—C191.357 (2)C6—H6A0.9500
O1—C101.403 (2)C7—C81.422 (3)
O1W—H2W10.94 (3)C8—C91.369 (3)
O1W—H1W10.88 (3)C8—H8A0.9500
N1—C191.359 (2)C9—C101.410 (3)
N1—N21.380 (2)C9—H9A0.9500
N1—C161.428 (2)C11—C121.388 (3)
N2—C171.327 (2)C11—C161.391 (3)
N3—C201.289 (2)C11—H11A0.9500
N3—N41.383 (2)C12—C131.384 (3)
N4—C211.352 (2)C12—H12A0.9500
N4—H1N40.93 (3)C13—C141.386 (3)
N5—C211.335 (3)C13—H13A0.9500
N5—H2N50.89 (3)C14—C151.385 (3)
N5—H1N50.88 (3)C14—H14A0.9500
C1—C101.362 (3)C15—C161.390 (3)
C1—C21.423 (3)C15—H15A0.9500
C1—H1A0.9500C17—C181.414 (3)
C2—C31.417 (3)C17—C221.497 (3)
C2—C71.420 (3)C18—C191.381 (3)
C3—C41.366 (3)C18—C201.446 (3)
C3—H3A0.9500C20—H20A0.9500
C4—C51.411 (3)C22—H22A0.9800
C4—H4A0.9500C22—H22B0.9800
C5—C61.368 (3)C22—H22C0.9800
C5—H5A0.9500
C19—O1—C10116.98 (14)C1—C10—C9122.20 (18)
H2W1—O1W—H1W1107 (3)O1—C10—C9115.16 (16)
C19—N1—N2110.16 (15)C12—C11—C16118.91 (18)
C19—N1—C16131.06 (16)C12—C11—H11A120.5
N2—N1—C16118.75 (15)C16—C11—H11A120.5
C17—N2—N1105.70 (15)C13—C12—C11121.09 (19)
C20—N3—N4114.56 (16)C13—C12—H12A119.5
C21—N4—N3119.81 (16)C11—C12—H12A119.5
C21—N4—H1N4118.9 (16)C12—C13—C14119.39 (18)
N3—N4—H1N4121.3 (16)C12—C13—H13A120.3
C21—N5—H2N5120.8 (18)C14—C13—H13A120.3
C21—N5—H1N5117.0 (17)C15—C14—C13120.44 (19)
H2N5—N5—H1N5122 (2)C15—C14—H14A119.8
C10—C1—C2119.59 (17)C13—C14—H14A119.8
C10—C1—H1A120.2C14—C15—C16119.67 (18)
C2—C1—H1A120.2C14—C15—H15A120.2
C3—C2—C7119.00 (17)C16—C15—H15A120.2
C3—C2—C1121.73 (17)C15—C16—C11120.46 (17)
C7—C2—C1119.27 (17)C15—C16—N1118.54 (17)
C4—C3—C2120.58 (18)C11—C16—N1121.00 (17)
C4—C3—H3A119.7N2—C17—C18111.53 (16)
C2—C3—H3A119.7N2—C17—C22120.73 (17)
C3—C4—C5120.78 (19)C18—C17—C22127.74 (17)
C3—C4—H4A119.6C19—C18—C17104.38 (16)
C5—C4—H4A119.6C19—C18—C20130.63 (18)
C6—C5—C4119.91 (19)C17—C18—C20124.98 (17)
C6—C5—H5A120.0O1—C19—N1122.18 (16)
C4—C5—H5A120.0O1—C19—C18129.54 (17)
C5—C6—C7120.90 (18)N1—C19—C18108.22 (16)
C5—C6—H6A119.6N3—C20—C18121.63 (18)
C7—C6—H6A119.6N3—C20—H20A119.2
C2—C7—C6118.82 (17)C18—C20—H20A119.2
C2—C7—C8118.63 (17)N5—C21—N4116.22 (17)
C6—C7—C8122.55 (17)N5—C21—S1123.99 (15)
C9—C8—C7121.42 (18)N4—C21—S1119.79 (14)
C9—C8—H8A119.3C17—C22—H22A109.5
C7—C8—H8A119.3C17—C22—H22B109.5
C8—C9—C10118.83 (18)H22A—C22—H22B109.5
C8—C9—H9A120.6C17—C22—H22C109.5
C10—C9—H9A120.6H22A—C22—H22C109.5
C1—C10—O1122.62 (17)H22B—C22—H22C109.5
C19—N1—N2—C170.7 (2)C14—C15—C16—C110.0 (3)
C16—N1—N2—C17179.09 (16)C14—C15—C16—N1179.64 (17)
C20—N3—N4—C21178.93 (17)C12—C11—C16—C151.4 (3)
C10—C1—C2—C3179.63 (17)C12—C11—C16—N1178.98 (17)
C10—C1—C2—C70.0 (3)C19—N1—C16—C15166.70 (19)
C7—C2—C3—C40.7 (3)N2—N1—C16—C1515.3 (2)
C1—C2—C3—C4178.93 (18)C19—N1—C16—C1113.6 (3)
C2—C3—C4—C50.1 (3)N2—N1—C16—C11164.33 (17)
C3—C4—C5—C60.4 (3)N1—N2—C17—C180.1 (2)
C4—C5—C6—C70.3 (3)N1—N2—C17—C22179.62 (17)
C3—C2—C7—C60.8 (3)N2—C17—C18—C190.6 (2)
C1—C2—C7—C6178.83 (16)C22—C17—C18—C19178.93 (19)
C3—C2—C7—C8178.74 (16)N2—C17—C18—C20178.86 (17)
C1—C2—C7—C81.6 (3)C22—C17—C18—C201.6 (3)
C5—C6—C7—C20.3 (3)C10—O1—C19—N1106.6 (2)
C5—C6—C7—C8179.23 (18)C10—O1—C19—C1876.5 (2)
C2—C7—C8—C91.1 (3)N2—N1—C19—O1176.39 (16)
C6—C7—C8—C9179.36 (18)C16—N1—C19—O11.7 (3)
C7—C8—C9—C101.0 (3)N2—N1—C19—C181.1 (2)
C2—C1—C10—O1179.76 (16)C16—N1—C19—C18179.22 (18)
C2—C1—C10—C92.2 (3)C17—C18—C19—O1176.24 (18)
C19—O1—C10—C124.8 (2)C20—C18—C19—O14.3 (3)
C19—O1—C10—C9157.06 (16)C17—C18—C19—N11.0 (2)
C8—C9—C10—C12.8 (3)C20—C18—C19—N1178.40 (19)
C8—C9—C10—O1179.09 (16)N4—N3—C20—C18177.44 (17)
C16—C11—C12—C132.0 (3)C19—C18—C20—N35.4 (3)
C11—C12—C13—C141.2 (3)C17—C18—C20—N3173.91 (19)
C12—C13—C14—C150.3 (3)N3—N4—C21—N52.4 (3)
C13—C14—C15—C160.9 (3)N3—N4—C21—S1178.15 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1N4···S1i0.93 (3)2.56 (3)3.466 (2)165 (3)
N5—H2N5···O1W0.89 (3)1.94 (3)2.805 (3)164 (3)
O1W—H2W1···S1ii0.94 (4)2.58 (4)3.397 (2)145 (3)
O1W—H1W1···N2iii0.89 (4)2.01 (4)2.876 (3)167 (4)
C20—H20A···S1i0.952.873.741 (2)153
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC22H19N5OS·H2O
Mr419.50
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.9384 (2), 11.1512 (2), 13.0325 (3)
α, β, γ (°)113.481 (1), 90.942 (1), 107.359 (1)
V3)997.81 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.41 × 0.22 × 0.17
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.925, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
15860, 4542, 3499
Rint0.031
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.124, 1.04
No. of reflections4542
No. of parameters292
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.33

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1N4···S1i0.93 (3)2.56 (3)3.466 (2)165 (3)
N5—H2N5···O1W0.89 (3)1.94 (3)2.805 (3)164 (3)
O1W—H2W1···S1ii0.94 (4)2.58 (4)3.397 (2)145 (3)
O1W—H1W1···N2iii0.89 (4)2.01 (4)2.876 (3)167 (4)
C20—H20A···S1i0.95002.87003.741 (2)153.00
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z; (iii) x+1, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: F-8816-2012.

Acknowledgements

HKF and TSC thank the Universiti Sains Malaysia (USM) for a Research University Grant (No. 1001/PFIZIK/811160). TSC thanks the Malaysian government and USM for the award of a Research Fellowship.

References

First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGirisha, K. S., Kalluraya, B., Narayana, V. & Padmashree (2010). Eur. J. Med. Chem. 45, 4640–4644.  Google Scholar
First citationHall, A., Billinton, A., Brown, S. H., Clayton, N. M., Chowdhury, A., Giblin, G. M. P., Goldsmith, P., Hayhow, T. G., Hurst, D. N., Kilford, I. R., Naylor, A., Passingham, B. & Winyard, L. (2008). Bioorg. Med. Chem. Lett. 18, 3392–3399.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds