organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-{[1-(2,4-di­chloro­benz­yl)-1H-1,2,3-triazol-4-yl]meth­­oxy}-8-(tri­fluoro­meth­yl)quinoline-3-carboxyl­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, cMedicinal Chemistry Laboratory, Department of Chemistry, National Institute of Technology–Karnataka, Surathkal, Mangalore 575 025, India, and dDepartment of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM SERDANG, Selangor, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 15 September 2012; accepted 18 September 2012; online 26 September 2012)

In the title compound, C23H17Cl2F3N4O3, the triazole ring makes dihedral angles of 50.27 (6) and 82.78 (7)° with the quinoline ring system and the dichloro-substituted benzene ring. The dihedral angle between the quinoline and dichloro-substituted benzene rings is 38.17 (4)°. In the crystal, mol­ecules are linked via C—H⋯N, C—H⋯F and C—H⋯O hydrogen bonds into a three-dimensional network. The crystal is further consolidated by C—H⋯π contacts to the triazole ring and inversion-related ππ inter­actions between the benzene and pyridine rings of quinoline systems [centroid–centroid distance = 3.7037 (7) Å].

Related literature

For background and the biological activity of quinoline derivatives, see: Bi et al. (2004[Bi, Y., Stoy, P., Adam, L., He, B., Krupinski, J., Normandin, D., Pongrac, R., Seliger, L., Watson, A. & Macora, J. E. (2004). Bioorg. Med. Chem. Lett. 14, 1577-1580.]); He et al. (2005[He, J., Yan, L., Yang, R., Xiao, Z., Cheng, J., Zhou, W. & Zhang, Y. (2005). Bioorg. Med. Chem. Lett. 15, 2980-2985.]); Holla et al. (2006[Holla, B. S., Mahalinga, M., Karthikeyan, M. S., Akbarali, P. M. & Shetty, N. S. (2006). Bioorg. Med. Chem. 14, 2040-2047.]); Isloor et al. (2000[Isloor, A. M., Kalluraya, B. & Rao, M. (2000). J. Saudi Chem. Soc. 4, 265-270.], 2009[Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787.]); Vijesh et al. (2010[Vijesh, A. M., Isloor, A. M., Prabhu, V., Ahmad, S. & Malladi, S. (2010). Eur. J. Med. Chem. 45, 5460-5464.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C23H17Cl2F3N4O3

  • Mr = 525.31

  • Monoclinic, P 21 /c

  • a = 10.0414 (6) Å

  • b = 18.3997 (11) Å

  • c = 15.5456 (7) Å

  • β = 128.559 (2)°

  • V = 2246.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 100 K

  • 0.32 × 0.31 × 0.17 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.896, Tmax = 0.942

  • 28920 measured reflections

  • 8173 independent reflections

  • 6633 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.102

  • S = 1.03

  • 8173 reflections

  • 317 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1–N3/C8/C9 triazole ring

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯N3i 0.93 2.62 3.3330 (14) 134
C7—H7A⋯F1ii 0.97 2.46 3.1712 (15) 130
C8—H8A⋯O2iii 0.93 2.25 3.0183 (18) 139
C2—H2ACg1iv 0.93 2.92 3.8418 (17) 173
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+2; (iv) [x-1, -y+{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Quinoline and its derivatives play an important role in medicinal chemistry research. Fluorinated quinolines, in particular CF3 substituted quinolines, occupy a significant place in modern medicinal chemistry. Biological studies clearly indicated that the presence of trifluoromethyl group in positions 7 and 8 of the quinoline ring is responsible for the biological activity (Holla et al., 2006; He et al., 2005; Bi et al., 2004). On the other hand, heterocyclic compounds play an important role in an untiring effort aimed at developing new antimicrobial agents with a new mechanism of action. These heterocyclic compounds are well known to possess diverse pharmacological properties, viz. antibacterial, antifungal, anti-inflammatory, anticonvulsant, antiviral, antimalarial, antituberculosis, and anticancer effects (Isloor et al., 2000, 2009; Vijesh et al., 2010). In view of this biological importance, we have synthesized the title compound to study its crystal structure.

In the title compound (Fig. 1), the triazole (N1–N3/C8/C9) ring makes dihedral angles of 50.27 (6) and 82.78 (7)° with the quinoline ring system (N4/C11–C19) and the dichloro-substituted benzene ring (C1–C6) respectively. The dihedral angle between the quinoline and the dichloro-substituted benzene ring is 38.17 (4)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal packing (Fig. 2), the molecules linked via intermolecular C5—H5A···N3, C7—H7A···F1 and C8—H8A···O2 hydrogen bonds (Table 1) into a three dimensional network. The crystal is further consolidated by C2—H2A···Cg1 interactions (Table 1), involving the triazole ring (N1–N3/C8/C9). Weak ππ interactions are also observed with Cg2···Cg4 = 3.7037 (7) Å [symmetry code: -x, 1 - y, 2 - z], where Cg2 and Cg4 are centroids of the pyridine ring (N4/C11/C12/C17/C18/C19) and the benzene ring (C12–C17) respectively.

Related literature top

For background and the biological activity of quinoline derivatives, see: Bi et al. (2004); He et al. (2005); Holla et al. (2006); Isloor et al. (2000, 2009); Vijesh et al. (2010). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).

Experimental top

To a stirred solution of 1-(bromomethyl)-2,4-dichlorobenzene (0.50 g, 0.0020 mol), sodium azide (0.149 g, 0.0022 mol) in aqueous polyethylene glycol (PEG 400) (10 ml, 1:1, v/v), ethyl 4-(prop-2-yn-1-yloxy)-8- (trifluoromethyl)quinoline-3-carboxylate (0.711 g, 0.0022 mol), sodium ascorbate (0.435 g, 0.0022 mol), 10 mol of copper iodide were added. The heterogeneous mixture was stirred vigorously overnight. Completion of the reaction was monitored by the TLC. The product was extracted in ethyl acetate and concentrated. The crude product was purified by column chromatography using pet ether and ethyl acetate as eluents. Crystals were grown by slow evaporation of a dilute ethanol solution at room temperature. Yield: 0.35 g, 32.11 %, M. p.: 423–425 K.

Refinement top

All H atoms were positioned geometrically [C–H = 0.93, 0.96 and 0.97 Å] with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl group. In the final refinement, four outliers, (0 14 0), (0 13 1), (-3 0 3) and (3 0 0), were omitted.

Structure description top

Quinoline and its derivatives play an important role in medicinal chemistry research. Fluorinated quinolines, in particular CF3 substituted quinolines, occupy a significant place in modern medicinal chemistry. Biological studies clearly indicated that the presence of trifluoromethyl group in positions 7 and 8 of the quinoline ring is responsible for the biological activity (Holla et al., 2006; He et al., 2005; Bi et al., 2004). On the other hand, heterocyclic compounds play an important role in an untiring effort aimed at developing new antimicrobial agents with a new mechanism of action. These heterocyclic compounds are well known to possess diverse pharmacological properties, viz. antibacterial, antifungal, anti-inflammatory, anticonvulsant, antiviral, antimalarial, antituberculosis, and anticancer effects (Isloor et al., 2000, 2009; Vijesh et al., 2010). In view of this biological importance, we have synthesized the title compound to study its crystal structure.

In the title compound (Fig. 1), the triazole (N1–N3/C8/C9) ring makes dihedral angles of 50.27 (6) and 82.78 (7)° with the quinoline ring system (N4/C11–C19) and the dichloro-substituted benzene ring (C1–C6) respectively. The dihedral angle between the quinoline and the dichloro-substituted benzene ring is 38.17 (4)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal packing (Fig. 2), the molecules linked via intermolecular C5—H5A···N3, C7—H7A···F1 and C8—H8A···O2 hydrogen bonds (Table 1) into a three dimensional network. The crystal is further consolidated by C2—H2A···Cg1 interactions (Table 1), involving the triazole ring (N1–N3/C8/C9). Weak ππ interactions are also observed with Cg2···Cg4 = 3.7037 (7) Å [symmetry code: -x, 1 - y, 2 - z], where Cg2 and Cg4 are centroids of the pyridine ring (N4/C11/C12/C17/C18/C19) and the benzene ring (C12–C17) respectively.

For background and the biological activity of quinoline derivatives, see: Bi et al. (2004); He et al. (2005); Holla et al. (2006); Isloor et al. (2000, 2009); Vijesh et al. (2010). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
Ethyl 4-{[1-(2,4-dichlorobenzyl)-1H-1,2,3-triazol-4-yl]methoxy}-8- (trifluoromethyl)quinoline-3-carboxylate top
Crystal data top
C23H17Cl2F3N4O3F(000) = 1072
Mr = 525.31Dx = 1.554 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9559 reflections
a = 10.0414 (6) Åθ = 2.3–32.6°
b = 18.3997 (11) ŵ = 0.35 mm1
c = 15.5456 (7) ÅT = 100 K
β = 128.559 (2)°Block, colourless
V = 2246.0 (2) Å30.32 × 0.31 × 0.17 mm
Z = 4
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
8173 independent reflections
Radiation source: fine-focus sealed tube6633 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 32.7°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1515
Tmin = 0.896, Tmax = 0.942k = 2627
28920 measured reflectionsl = 2322
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.415P]
where P = (Fo2 + 2Fc2)/3
8173 reflections(Δ/σ)max = 0.001
317 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C23H17Cl2F3N4O3V = 2246.0 (2) Å3
Mr = 525.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0414 (6) ŵ = 0.35 mm1
b = 18.3997 (11) ÅT = 100 K
c = 15.5456 (7) Å0.32 × 0.31 × 0.17 mm
β = 128.559 (2)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
8173 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6633 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.942Rint = 0.028
28920 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.03Δρmax = 0.49 e Å3
8173 reflectionsΔρmin = 0.27 e Å3
317 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.12680 (3)0.821670 (15)0.85096 (2)0.02315 (7)
Cl20.32434 (4)0.689263 (18)0.48063 (2)0.02946 (7)
F10.36101 (10)0.45643 (4)0.65715 (6)0.02879 (16)
F20.25813 (10)0.52957 (5)0.60326 (6)0.03245 (17)
F30.47656 (10)0.56112 (5)0.59016 (6)0.03603 (19)
O10.32034 (9)0.56730 (4)1.13470 (6)0.01678 (14)
O20.48813 (13)0.39682 (6)1.03651 (8)0.0395 (3)
O30.55544 (11)0.46603 (4)1.17639 (7)0.02473 (17)
N10.29130 (11)0.78082 (5)1.00429 (7)0.01548 (15)
N20.30596 (12)0.80120 (5)1.09313 (7)0.01942 (17)
N30.36803 (12)0.74507 (5)1.16052 (7)0.01799 (16)
N40.01453 (12)0.47968 (5)0.81631 (7)0.01919 (17)
C10.07552 (13)0.78849 (6)0.77012 (8)0.01699 (18)
C20.20346 (13)0.75504 (6)0.67150 (9)0.01960 (19)
H2A0.31270.75010.64990.024*
C30.16378 (13)0.72921 (6)0.60602 (8)0.01965 (19)
C40.00095 (14)0.73555 (6)0.63755 (9)0.02013 (19)
H4A0.02390.71750.59310.024*
C50.12413 (13)0.76941 (6)0.73696 (8)0.01918 (19)
H5A0.23350.77390.75870.023*
C60.08973 (13)0.79674 (5)0.80482 (8)0.01678 (17)
C70.22889 (13)0.83146 (5)0.91327 (8)0.01838 (18)
H7A0.32210.84540.91330.022*
H7B0.18560.87500.92330.022*
C80.34385 (12)0.71183 (5)1.01398 (8)0.01612 (17)
H8A0.34640.68540.96400.019*
C90.39297 (12)0.68906 (5)1.11442 (8)0.01461 (16)
C100.45857 (12)0.61685 (5)1.16863 (8)0.01687 (18)
H10A0.52630.59591.15000.020*
H10B0.53180.62311.24780.020*
C110.22978 (12)0.53905 (5)1.03163 (8)0.01451 (16)
C120.05997 (12)0.56544 (5)0.95288 (8)0.01491 (17)
C130.00764 (13)0.62046 (5)0.97944 (8)0.01711 (18)
H13A0.05970.64091.04940.021*
C140.17216 (13)0.64365 (5)0.90227 (9)0.01925 (19)
H14A0.21610.67970.92020.023*
C150.27516 (14)0.61315 (6)0.79582 (9)0.01969 (19)
H15A0.38630.62950.74390.024*
C160.21298 (13)0.55957 (5)0.76808 (8)0.01790 (18)
C170.04291 (13)0.53391 (5)0.84626 (8)0.01585 (17)
C180.17098 (14)0.45736 (6)0.89147 (9)0.01910 (19)
H18A0.21020.42060.87140.023*
C190.28671 (13)0.48409 (5)1.00108 (8)0.01653 (17)
C200.45265 (14)0.44489 (6)1.07212 (9)0.01967 (19)
C210.71534 (15)0.42565 (6)1.24926 (10)0.0268 (2)
H21A0.77580.42491.21920.032*
H21B0.69290.37591.25750.032*
C220.81915 (19)0.46389 (8)1.35829 (12)0.0428 (4)
H22A0.92150.43681.41030.064*
H22B0.75430.46761.38430.064*
H22C0.84810.51171.35000.064*
C230.32547 (15)0.52651 (6)0.65532 (9)0.0236 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02094 (12)0.02780 (13)0.02435 (13)0.00553 (9)0.01591 (10)0.00119 (9)
Cl20.02577 (13)0.03967 (16)0.02093 (13)0.01115 (11)0.01358 (11)0.00591 (10)
F10.0312 (4)0.0247 (3)0.0217 (3)0.0053 (3)0.0121 (3)0.0087 (3)
F20.0371 (4)0.0409 (4)0.0170 (3)0.0021 (3)0.0157 (3)0.0006 (3)
F30.0250 (4)0.0398 (4)0.0187 (3)0.0109 (3)0.0015 (3)0.0020 (3)
O10.0178 (3)0.0181 (3)0.0134 (3)0.0053 (3)0.0091 (3)0.0027 (2)
O20.0297 (5)0.0477 (6)0.0332 (5)0.0175 (4)0.0157 (4)0.0051 (4)
O30.0222 (4)0.0196 (4)0.0207 (4)0.0056 (3)0.0076 (3)0.0040 (3)
N10.0157 (3)0.0153 (4)0.0159 (4)0.0003 (3)0.0100 (3)0.0006 (3)
N20.0237 (4)0.0178 (4)0.0196 (4)0.0005 (3)0.0149 (4)0.0022 (3)
N30.0205 (4)0.0170 (4)0.0184 (4)0.0016 (3)0.0130 (3)0.0020 (3)
N40.0222 (4)0.0165 (4)0.0167 (4)0.0015 (3)0.0110 (3)0.0019 (3)
C10.0175 (4)0.0174 (4)0.0181 (4)0.0041 (3)0.0121 (4)0.0048 (3)
C20.0152 (4)0.0234 (5)0.0197 (4)0.0010 (3)0.0106 (4)0.0039 (4)
C30.0186 (4)0.0213 (5)0.0166 (4)0.0021 (3)0.0098 (4)0.0021 (3)
C40.0212 (5)0.0234 (5)0.0188 (4)0.0014 (4)0.0139 (4)0.0029 (4)
C50.0163 (4)0.0230 (5)0.0193 (4)0.0007 (3)0.0117 (4)0.0041 (4)
C60.0160 (4)0.0161 (4)0.0176 (4)0.0019 (3)0.0101 (4)0.0042 (3)
C70.0185 (4)0.0160 (4)0.0194 (4)0.0003 (3)0.0112 (4)0.0030 (3)
C80.0164 (4)0.0156 (4)0.0160 (4)0.0011 (3)0.0099 (3)0.0009 (3)
C90.0129 (4)0.0152 (4)0.0143 (4)0.0024 (3)0.0078 (3)0.0019 (3)
C100.0142 (4)0.0165 (4)0.0148 (4)0.0024 (3)0.0066 (3)0.0003 (3)
C110.0170 (4)0.0128 (4)0.0134 (4)0.0018 (3)0.0094 (3)0.0002 (3)
C120.0169 (4)0.0123 (4)0.0145 (4)0.0010 (3)0.0092 (3)0.0005 (3)
C130.0191 (4)0.0147 (4)0.0179 (4)0.0025 (3)0.0117 (4)0.0035 (3)
C140.0209 (5)0.0145 (4)0.0236 (5)0.0003 (3)0.0145 (4)0.0021 (3)
C150.0185 (4)0.0167 (4)0.0201 (5)0.0019 (3)0.0101 (4)0.0013 (3)
C160.0187 (4)0.0156 (4)0.0142 (4)0.0006 (3)0.0077 (4)0.0001 (3)
C170.0185 (4)0.0136 (4)0.0144 (4)0.0001 (3)0.0097 (3)0.0004 (3)
C180.0225 (5)0.0159 (4)0.0193 (4)0.0011 (3)0.0133 (4)0.0022 (3)
C190.0172 (4)0.0149 (4)0.0172 (4)0.0006 (3)0.0105 (4)0.0009 (3)
C200.0189 (4)0.0192 (4)0.0215 (5)0.0021 (3)0.0129 (4)0.0031 (3)
C210.0202 (5)0.0219 (5)0.0277 (5)0.0048 (4)0.0099 (4)0.0102 (4)
C220.0331 (7)0.0265 (6)0.0304 (7)0.0013 (5)0.0009 (5)0.0054 (5)
C230.0224 (5)0.0242 (5)0.0154 (4)0.0035 (4)0.0075 (4)0.0002 (4)
Geometric parameters (Å, º) top
Cl1—C11.7387 (11)C7—H7B0.9700
Cl2—C31.7383 (11)C8—C91.3772 (14)
F1—C231.3429 (14)C8—H8A0.9300
F2—C231.3408 (15)C9—C101.4891 (14)
F3—C231.3482 (13)C10—H10A0.9700
O1—C111.3594 (11)C10—H10B0.9700
O1—C101.4571 (12)C11—C191.3833 (14)
O2—C201.2089 (14)C11—C121.4282 (14)
O3—C201.3260 (14)C12—C131.4161 (14)
O3—C211.4649 (13)C12—C171.4201 (13)
N1—C81.3466 (13)C13—C141.3711 (15)
N1—N21.3477 (12)C13—H13A0.9300
N1—C71.4689 (13)C14—C151.4105 (15)
N2—N31.3186 (12)C14—H14A0.9300
N3—C91.3646 (13)C15—C161.3724 (15)
N4—C181.3091 (14)C15—H15A0.9300
N4—C171.3710 (13)C16—C171.4244 (14)
C1—C21.3873 (15)C16—C231.5001 (15)
C1—C61.3970 (14)C18—C191.4239 (14)
C2—C31.3878 (15)C18—H18A0.9300
C2—H2A0.9300C19—C201.4908 (14)
C3—C41.3886 (15)C21—C221.5006 (19)
C4—C51.3908 (15)C21—H21A0.9700
C4—H4A0.9300C21—H21B0.9700
C5—C61.3925 (15)C22—H22A0.9600
C5—H5A0.9300C22—H22B0.9600
C6—C71.5054 (14)C22—H22C0.9600
C7—H7A0.9700
C11—O1—C10116.90 (8)C19—C11—C12118.84 (9)
C20—O3—C21116.06 (9)C13—C12—C17120.01 (9)
C8—N1—N2111.27 (8)C13—C12—C11121.76 (9)
C8—N1—C7127.43 (9)C17—C12—C11118.21 (9)
N2—N1—C7121.28 (8)C14—C13—C12120.17 (9)
N3—N2—N1106.97 (8)C14—C13—H13A119.9
N2—N3—C9108.95 (8)C12—C13—H13A119.9
C18—N4—C17116.75 (9)C13—C14—C15120.34 (10)
C2—C1—C6122.25 (10)C13—C14—H14A119.8
C2—C1—Cl1117.85 (8)C15—C14—H14A119.8
C6—C1—Cl1119.89 (8)C16—C15—C14120.67 (10)
C1—C2—C3118.10 (10)C16—C15—H15A119.7
C1—C2—H2A120.9C14—C15—H15A119.7
C3—C2—H2A120.9C15—C16—C17120.55 (9)
C2—C3—C4121.71 (10)C15—C16—C23119.98 (9)
C2—C3—Cl2118.53 (8)C17—C16—C23119.45 (9)
C4—C3—Cl2119.75 (9)N4—C17—C12122.67 (9)
C3—C4—C5118.61 (10)N4—C17—C16119.07 (9)
C3—C4—H4A120.7C12—C17—C16118.26 (9)
C5—C4—H4A120.7N4—C18—C19126.15 (10)
C4—C5—C6121.66 (10)N4—C18—H18A116.9
C4—C5—H5A119.2C19—C18—H18A116.9
C6—C5—H5A119.2C11—C19—C18117.37 (9)
C5—C6—C1117.65 (9)C11—C19—C20127.57 (9)
C5—C6—C7120.41 (9)C18—C19—C20114.90 (9)
C1—C6—C7121.90 (10)O2—C20—O3123.18 (10)
N1—C7—C6110.51 (8)O2—C20—C19121.81 (10)
N1—C7—H7A109.5O3—C20—C19115.00 (9)
C6—C7—H7A109.5O3—C21—C22106.89 (11)
N1—C7—H7B109.5O3—C21—H21A110.3
C6—C7—H7B109.5C22—C21—H21A110.3
H7A—C7—H7B108.1O3—C21—H21B110.3
N1—C8—C9104.60 (9)C22—C21—H21B110.3
N1—C8—H8A127.7H21A—C21—H21B108.6
C9—C8—H8A127.7C21—C22—H22A109.5
N3—C9—C8108.21 (9)C21—C22—H22B109.5
N3—C9—C10122.53 (9)H22A—C22—H22B109.5
C8—C9—C10129.24 (9)C21—C22—H22C109.5
O1—C10—C9111.58 (8)H22A—C22—H22C109.5
O1—C10—H10A109.3H22B—C22—H22C109.5
C9—C10—H10A109.3F2—C23—F1107.08 (9)
O1—C10—H10B109.3F2—C23—F3106.34 (9)
C9—C10—H10B109.3F1—C23—F3106.27 (10)
H10A—C10—H10B108.0F2—C23—C16113.11 (10)
O1—C11—C19124.63 (9)F1—C23—C16112.41 (9)
O1—C11—C12116.38 (9)F3—C23—C16111.19 (9)
C8—N1—N2—N30.11 (11)C11—C12—C13—C14178.94 (10)
C7—N1—N2—N3178.65 (9)C12—C13—C14—C150.22 (16)
N1—N2—N3—C90.08 (11)C13—C14—C15—C160.47 (17)
C6—C1—C2—C30.03 (15)C14—C15—C16—C170.20 (17)
Cl1—C1—C2—C3179.26 (8)C14—C15—C16—C23178.60 (10)
C1—C2—C3—C40.65 (16)C18—N4—C17—C120.28 (15)
C1—C2—C3—Cl2178.39 (8)C18—N4—C17—C16179.17 (10)
C2—C3—C4—C50.66 (16)C13—C12—C17—N4178.92 (10)
Cl2—C3—C4—C5178.36 (8)C11—C12—C17—N40.22 (15)
C3—C4—C5—C60.05 (16)C13—C12—C17—C160.53 (15)
C4—C5—C6—C10.53 (15)C11—C12—C17—C16179.23 (9)
C4—C5—C6—C7178.48 (9)C15—C16—C17—N4179.18 (10)
C2—C1—C6—C50.54 (15)C23—C16—C17—N40.38 (15)
Cl1—C1—C6—C5179.82 (8)C15—C16—C17—C120.29 (15)
C2—C1—C6—C7178.46 (9)C23—C16—C17—C12179.10 (10)
Cl1—C1—C6—C72.27 (13)C17—N4—C18—C190.02 (17)
C8—N1—C7—C651.57 (13)O1—C11—C19—C18175.75 (9)
N2—N1—C7—C6130.14 (10)C12—C11—C19—C180.33 (14)
C5—C6—C7—N1101.78 (11)O1—C11—C19—C200.67 (17)
C1—C6—C7—N176.08 (12)C12—C11—C19—C20174.75 (10)
N2—N1—C8—C90.08 (11)N4—C18—C19—C110.28 (17)
C7—N1—C8—C9178.52 (9)N4—C18—C19—C20175.42 (10)
N2—N3—C9—C80.03 (11)C21—O3—C20—O22.25 (17)
N2—N3—C9—C10178.60 (9)C21—O3—C20—C19176.76 (9)
N1—C8—C9—N30.03 (11)C11—C19—C20—O2179.10 (12)
N1—C8—C9—C10178.41 (9)C18—C19—C20—O23.91 (16)
C11—O1—C10—C974.10 (11)C11—C19—C20—O30.08 (16)
N3—C9—C10—O191.43 (11)C18—C19—C20—O3175.10 (9)
C8—C9—C10—O186.82 (13)C20—O3—C21—C22173.46 (11)
C10—O1—C11—C1975.83 (12)C15—C16—C23—F2125.51 (11)
C10—O1—C11—C12108.65 (10)C17—C16—C23—F255.68 (13)
O1—C11—C12—C132.78 (14)C15—C16—C23—F1113.06 (11)
C19—C11—C12—C13178.58 (9)C17—C16—C23—F165.75 (14)
O1—C11—C12—C17175.90 (8)C15—C16—C23—F35.93 (16)
C19—C11—C12—C170.10 (14)C17—C16—C23—F3175.25 (10)
C17—C12—C13—C140.28 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1–N3/C8/C9 triazole ring
D—H···AD—HH···AD···AD—H···A
C5—H5A···N3i0.932.623.3330 (14)134
C7—H7A···F1ii0.972.463.1712 (15)130
C8—H8A···O2iii0.932.253.0183 (18)139
C2—H2A···Cg1iv0.932.923.8418 (17)173
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1/2, z+3/2; (iii) x+1, y+1, z+2; (iv) x1, y+1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC23H17Cl2F3N4O3
Mr525.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.0414 (6), 18.3997 (11), 15.5456 (7)
β (°) 128.559 (2)
V3)2246.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.32 × 0.31 × 0.17
Data collection
DiffractometerBruker APEX DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.896, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
28920, 8173, 6633
Rint0.028
(sin θ/λ)max1)0.759
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.102, 1.03
No. of reflections8173
No. of parameters317
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.27

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1–N3/C8/C9 triazole ring
D—H···AD—HH···AD···AD—H···A
C5—H5A···N3i0.932.623.3330 (14)134.3
C7—H7A···F1ii0.97002.46003.1712 (15)130.00
C8—H8A···O2iii0.93002.25003.0183 (18)139.00
C2—H2A···Cg1iv0.93002.923.8418 (17)173
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1/2, z+3/2; (iii) x+1, y+1, z+2; (iv) x1, y+1/2, z3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: F-8809-2012.

Acknowledgements

HKF and CWO thank Universiti Sains Malaysia (USM) for a Research University Grant (1001/PFIZIK/811160). CWO also thanks the Malaysian Goverment and USM for the award of the post of Research Officer under the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBi, Y., Stoy, P., Adam, L., He, B., Krupinski, J., Normandin, D., Pongrac, R., Seliger, L., Watson, A. & Macora, J. E. (2004). Bioorg. Med. Chem. Lett. 14, 1577–1580.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHe, J., Yan, L., Yang, R., Xiao, Z., Cheng, J., Zhou, W. & Zhang, Y. (2005). Bioorg. Med. Chem. Lett. 15, 2980–2985.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHolla, B. S., Mahalinga, M., Karthikeyan, M. S., Akbarali, P. M. & Shetty, N. S. (2006). Bioorg. Med. Chem. 14, 2040–2047.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Rao, M. (2000). J. Saudi Chem. Soc. 4, 265–270.  CAS Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVijesh, A. M., Isloor, A. M., Prabhu, V., Ahmad, S. & Malladi, S. (2010). Eur. J. Med. Chem. 45, 5460–5464.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds